0

0
3

文字

分享

0
0
3

線蟲的演化賽局:既然是孤雌生殖,為何還需要精子?

寒波_96
・2019/04/04 ・3113字 ・閱讀時間約 6 分鐘 ・SR值 523 ・七年級

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

「孤雌」生殖,但是永遠需要精子

如今常用的模式生物:秀麗隱桿線蟲(Caenorhabditis elegans),最早慧眼識線蟲的是法國生物學家 Victor Nigon。在 1949 年時,他還記錄了一種土壤中的線蟲 Mesorhabditis belari,這種線蟲只有少量男生,男生會和女生交配,卻很少將 DNA 遺傳給後代。

而最近的新研究也發現,這種線蟲的生殖方式真的十分特殊,且相當巧妙。[1][2]

線蟲研究先驅,法國生物學家 Victor Nigon,看起來就是個科學家樣。圖/取自〈WormBook: The Online Review of C. elegans Biology〉

Mesorhabditis belari 線蟲是本文的主角,之後直接簡稱作「線蟲」。它的生殖方式算是孤雌生殖(parthenogenesis),卻又不是典型的孤雌生殖。孤雌生殖屬於無性生殖的一種,往往不需要男生,只要有媽媽就能生下女兒,例如大理石紋螯蝦

某些孤雌生殖的動物卻需要精子刺激,才能讓卵母細胞活化,發育為胚胎。

此一孤雌生殖的方式稱作「假受精(pseudogamy)」、「雌核發育(gynogenesis)」,或是「依賴精子的孤雌生殖(sperm-dependent parthenogenesis)」,通常用的是別種動物的精子,而這些精子只作為啓動器使用,精子本身的 DNA 不會影響胚胎的遺傳組成。

但線蟲又不太一樣,她們是利用同種男生的精子激活卵子,然而儘管使用同類的精子,男生的遺傳物質同樣無法傳承下去。

有上過演化課的話,應該會感到非常可疑。世界上不同生物的生殖方式無奇不有,但是再獵奇也不該與演化原則衝突:不同性別間的利益要達到平衡,否則將系統崩潰,導致生物滅絕。

Mesorhabditis belari 線蟲,看起來就是個線蟲樣,不是太特別。圖/取自 ref 2

假如像線蟲這樣,女生缺乏男生就無法受孕,但是男生付出代價後,卻也無法傳承自己的遺傳物質作為回報,對男生沒有好處;這種看似依賴單方面奉獻的生殖系統,是如何維持的呢?

無性生殖、有性生殖,同時進行

線蟲在實驗室環境下,一輩子產下的後代總是約有 9% 男生。線蟲女生一定要有同種男生的精子,才能產下後代,而男生也無法跨物種情慾交流,因此,男生在生殖中的功能,只有讓同種女生受孕。這是為什麼呢?線蟲的卵細胞發育為胚胎,為什麼非要精子不可?

細胞發育與分裂的時候,需要形成正確的結構拉開空間。 線蟲受精以後,精子可以提供細胞骨架的材料,作為中心體(centrosomes)讓胚胎能夠正常分裂。這些結構卵細胞無法自行生產,必需要靠精子提供,胚胎才能正常發育。

線蟲女生會製造兩種胚胎,實驗總共觀察的 258 個胚胎中,大部分 227 個是雌核發育(gynogenetic),小部分 31 個是兩性融合(amphimictic)。兩種胚胎形成的性別截然不同,雌核發育胚胎都長成女生,兩性融合胚胎皆發育為男生。

線蟲兩性融合(amphimictic)與雌核發育(gynogenetic),受精後胚胎各自的狀況截然不同。圖/取自 ref 1

如此生下的後代,源自雌核發育的女兒,完全不會繼承任何精子的 DNA,遺傳上 100% 複製母體,可以算是無性生殖的產物。源於兩性融合的兒子,則是繼承精卵各一半的遺傳物質,能視為有性生殖的個體。

為什麼兩性融合的胚胎,幾乎全部發育為男生?這是由於精子不同所致。線蟲與人類一樣,都用 X、Y 性染色體決定性別。不論雌核發育或是兩性融合胚胎,配備 Y 染色體的精子穿透機率都高達 90%,遠遠超過配備 X 的精子。

然而,雌核發育的胚胎不會傳承男生的遺傳物質,獲得哪種精子沒有差別;兩性融合的胚胎則是有很高比例得到 Y 精子,假如接收到 X 往往還會陣亡。

這些因素綜合起來,最終的結果是:高比例的雌核發育胚胎全部形成女兒,低比例的兩性融合胚胎通通產生兒子,大約占 9% 左右。

雌核發育(gynogenetic)的胚胎,有 90% 的精子都配備 Y 染色體。圖/取自 ref 1

為什麼總是生9%兒子?

了解線蟲怎麼生寶寶以後,接著要回答的問題是:為什麼兒子總是 9%?後代的性別比例,其實可以歸納為數學問題。研究者使用「賽局」模型,希望參透線蟲的生殖天機。生女生男的賽局中,有哪些條件要考慮呢?

以線蟲女生角度來看,受孕需要精子,所以沒有男生不行;但是男生只有卵細胞啓動器的功能,不能傳承 DNA,生太多兒子又是浪費資源;更重要的是,假如兒子去當別的媽媽的卵細胞啓動器,對自己的世系將毫無幫助。

綜合起來就是:

媽媽一定要生兒子,但是比例不需要太高,能精子不落外人田更好。

為了妹妹,甘心成為生殖後代的零件吧

對線蟲男生而言,自己的整個基因組,都無法傳承給有生殖能力的後代,這樣活著還有什麼意義?

且慢!有聽過這句話嗎?

「我將會為兩位兄弟或是八位表親犧牲生命。(I would lay down my life for two brothers or eight cousins)」

霍爾丹名言。圖/取自 The best schools

這句名言來自族群遺傳學界的上古神獸霍爾丹(J.B.S. Haldane),他的意思是,血緣關係更親近的個體,之間共享更多遺傳成分,從演化來看,「一個我」量化以後等於「兩位兄弟」或「八位表親」。此一概念,後來成為解釋利他行為(altruism),與重要理論親擇(kin selection)的基礎。

身為線蟲男生,儘管註定沒有後代,卻會有大概 10 位姐妹(由於許多男生出生的比女生早,他們將擁有很多妹妹)。他們與姐妹間,有部分遺傳組成是共通的,如果能協助自己的姐妹生寶寶,等於能間接傳播自己的 DNA,又有利於自己所屬的世系。

由上述假設的條件推論,如果地方的媽媽生下一定比例的兒子,兒子又大部分留在附近,傾向和自己的同母姐妹情慾交流,就可以達到兩性都能接受的平衡。而賽局模型估計,要達到此一平衡的男生比例是:9%。

生物個體的細胞,可以分為生殖細胞與體細胞兩種。線蟲男生雖然也是獨立的個體,不過以生殖狀態來看,卻可以視為供應中心體的「體細胞」。這似乎有點像是蜜蜂,不過又不一樣。

線蟲男生們跟公鄉民不一樣,有姊姊,也有很多妹妹啦。圖/取自 DISP

大自然的賽局平衡

孤雌生殖是演化的結果,並不會總是維持現狀。孤雌生殖的動物,可以完全不需要男生,也可能無法長期維持無性生殖,又回到有性生殖或是不幸滅團。

經過一系列精巧的研究以後,研究團隊終於釐清 Mesorhabditis belari 線蟲繁衍後代時,同時綜合無性與有性生殖的細胞機制;也以賽局計算,得知兒子的比例為什麼總是 9% 的原因。

線蟲的生殖機制,不論當初是如何形成,都使得它當下處於微妙的平衡上,保持在「自體假受精(autopseudogamy)」的特殊狀態。

延伸閱讀

參考文獻

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

文章難易度
寒波_96
174 篇文章 ・ 665 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。

0

1
0

文字

分享

0
1
0
男性結紮新選擇?防堵精子的 ADAM 水凝膠
胡中行_96
・2022/11/17 ・2652字 ・閱讀時間約 5 分鐘

美劇《The Big Bang Theory》第 11 季第 6 集裡,Howard Wolowitz 狼吞虎嚥,深怕術前禁食餓著。旁邊的 Raj Koothrappali 也狂吃紓壓,聲稱為這個拜把兄弟深感焦慮。[1]雖然 Raj 是「看人食米粉,你咧喝燒」,[註1]操心撈過界;但不可諱言,輸精管結紮手術(vasectomy)總是令眾家好漢,聞之色變。實際上,這種侵入性醫療行為,通常無須禁食,[2]事前會打麻醉,術後還有口服止痛藥,[3, 4]理應免於嚴重蛋疼。不過,大家真該想清楚的,是將來不見得能生育的風險。[5]有鑑於「反起反倒」[註2]的人性不容忽視,近來體貼的科學家,發明了一項新科技,賦予男性隨時後悔的權力。

結紮手術會打麻藥,所以不用怕痛。圖/Marco Verch Professional Photographer on Flickr(CC BY 2.0)

傳統與無刀口輸精管結紮術

在進入正題之前,我們先來複習舊有的技術,當作待會兒比較的基礎。男性結紮是為了預防在沒戴保險套的情形下,將精子射進女性體內,使之懷孕。[4]手術步驟的摘要,大致如下:

  1. 從陰莖至陰囊,甚至任何會遮蔽此部位的毛髮都要刮除。[2]
  2. 徹底把下體清洗並消毒乾淨。[2, 6]
  3. 施打局部麻醉。[2, 4, 6](少數選擇全身麻醉的男性,[3]為防範食物從過度放鬆的胃部跑進肺臟,請務必預先禁食。[7]
  4. 如果採取傳統輸精管結紮(incision vasectomy或conventional vasectomy),那麼外科醫師會從陰囊上方二側,分別劃道 1 至 2 公分的切口;若是無刀口輸精管結紮(no-scalpel vasectomy),則僅戳個 1 公分的小孔。[2-4, 8]
  5. 截斷輸精管,即破壞睪丸至尿道,這條精子聯外通路的其中一段。[4, 6]
  6. 用可吸收縫線或膠水收闔傷口;但無刀口的或可省略。[3, 4]
輸精管結紮手術:將輸精管(紅圈處)切斷。圖/K. D. Schroeder on Wikimedia Commons(CC BY-SA 3.0)

ADAM 水凝膠結紮的原理

上述的結紮方法成功率高,術後一般頂多輕微不適,幾天即可恢復正常生活。[2, 3, 6]然而,輸精管的廢存猶如革命建國,套句孫文的話,就是「建設難而破壞易」。[9]重建程序相較複雜,[4]依手法與其他因素而定,結紮逆轉後順利授孕的比率,約為 30% 至 90% 以上,並無百分之百的保障。[10]為此,在美國維吉尼亞的 Contraline 公司,開發出一種名叫「ADAM」的暫時性結紮專利水凝膠,來避免絕育。[11]

有些外科醫師本來就愛在結紮時,跟病人分享音樂,或同步講解流程。[6]這會兒嘗試新科技,要是來首范瑋琪的〈到不了〉,肯定再貼切不過。局部麻醉後,一把狀似熱熔槍的推進器,前端穿過男性陰囊的皮膚,將水凝膠送入輸精管裡。[5]灌進去的 ADAM,如同封堵水管的熱熔膠,阻塞輸精管,「♫不敢漏掉/一絲一毫♫」。[11-13]往後肆無忌憚地無套射精,發散空包彈時,「♫你眼睛會笑/彎成一條橋♫」;因為精子發現「♫終點卻是我/永遠到不了♫」~[12, 13]

據說短短 10 分鐘的手術,效果竟能維持二年,[5]副作用又比現行的結紮方式更小。[11]ADAM 水凝膠會自然降解,和排不出去的精子一樣,都能被身體吸收[3, 11]到期後輸精管恢復通暢,便可以積極增產報國(aka 製造全球人口負擔)。[11]

注射ADAM水凝膠的推進器。圖/Contraline on Twitter

ADAM 水凝膠的未來

2022 年 11 月 11 日,美商 Contraline 公司宣佈,澳洲墨爾本 Epworth Freemasons 醫院的團隊,已經成功地將 ADAM 水凝膠注射到 4 名男性受試者體內。除了於當地繼續努力,他們也計劃在 2023 年稍晚,展開自己國內大規模的臨床試驗。[11, 14]期盼用所得的結果,於 2025 或 2026 年之前,換取美國食品藥物管理局的上市許可。[11]將來一旦商業化,Contraline 還打算推出 1 年或 3 年等不同效期的產品,並與醫療保險公司洽談合作,提供男性消費者負擔得起的多元選擇。[11]倘若哪天在臺灣或您所居住的國家也有此技術,您或您的伴侶會考慮使用嗎?

  

謝辭

平常多半撰寫鑑識相關的死人故事,難得有如此正向的作品。謹以本文獻給長期支持筆者創作的母親 Yun-yu Chen 女士,以及摯友 Chinling Huang 老師。希望二位不會介意,這是針對生理男性的衛教短篇。

備註

  1. 看人食米粉,你咧喝燒:臺語發音 khuànn-lâng-tsia̍h-bí-hún,lí-leh-huah-sio;意思是替別人瞎操心。[15]
  2. 反起反倒:臺語發音 huán-khí-huán-tó;意指出爾反爾、反覆無常。[16]

參考資料

  1. Big Bang Theory Quote 9327’. The Big Bang Theory. (Accessed on 12 NOV 2022)
  2. Vasectomy’. (03 FEB 2022) Cleveland Clinic.
  3. Vasectomy (male sterilisation)’. (18 MAR 2021) U.K. National Health Service.
  4. Stratton KL, Zieve D, et al. (01 JAN 2022) ‘Vasectomy’. Medline Plus.
  5. Brown M. (11 NOV 2022) ‘Male contraceptive being trialled in Melbourne dubbed a game changer by researchers’. ABC News.
  6. Stormont G, Deibert CM. (17 JUL 2022) ‘Vasectomy’. In: StatPearls. Treasure Island (FL): StatPearls Publishing.
  7. General anesthesia’. (18 DEC 2020) Mayo Clinic.
  8. Australian State Government of Victoria. (08 AUG 2019) ‘Contraception – vasectomy’. Better Health Channel.
  9. 陳春生(2014)〈第二章 孫中山政黨思想之演進〉《政黨論:孫中山政治思想研究(一)》,第21頁;臺灣商務印書館
  10. Vasectomy reversal’. (20 AUG 2021) Mayo Clinic.
  11. Gupta S. (10 NOV 2022) ‘This company is creating a new kind of birth control for men’. Fast Company.
  12. Male Contraceptive Initiative Awards Grant to Contraline null’. (24 JAN 2019) Contraline.
  13. 福茂唱片(02 FEB 2012)「范瑋琪 Christine Fan ─ 到不了(官方版MV)」YouTube.
  14. Contraline Announces First Patients Successfully Implanted in Male Contraceptive Study’. (11 NOV 2022) Contraline.
  15. 許晉彰、盧玉雯「看人食米粉,你咧喝燒」《台灣俗語諺語辭典》,第458頁;五南圖書出版股份有限公司
  16. 反起反倒」(2011)教育部臺灣閩南語常用詞辭典
胡中行_96
63 篇文章 ・ 23 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。

0

2
0

文字

分享

0
2
0
天選之人!為什麼地球上只有我們是高智慧生命體?——《人類的旅程》
商業周刊
・2022/10/21 ・2959字 ・閱讀時間約 6 分鐘

人類最早的足跡

爬著蜿蜒的山路,前往位於現代以色列的迦密山洞穴,不難想像史前時代這一帶的壯麗環境。

地中海型氣候應是四季宜人,氣溫只會小幅變動。附近青翠的山谷裡,穿山越嶺曲折流過的溪流,應是飲用水的來源。山脈旁的森林應適合狩獵鹿、瞪羚、犀牛、野豬。再向外,在毗連狹長海岸平原及撒馬利亞山脈的開闊荒野地帶,應生長著史前品種的穀物及果樹。四周的溫暖氣候、多樣性生態及生食材料,應使迦密山洞穴成為萬千年來,無數狩獵採集族群的理想家園。

這些古代洞穴,如今是聯合國教科文組織(UNESCO)的人類演化世界遺產,從中挖掘出的遺物確實證明,在數十萬年間,這裡曾有一連串史前人類棲息地,同時智人與尼安德塔人(Neanderthals,譯注:遺跡最早在德國尼安德河谷被發現的史前人類)可能曾經相遇,引人遐思。

1920 年查爾斯.R.奈特( Charles R. Knight )所畫的,想像中的史前人類。 圖/wikimedia

在此地和世上其他遺址的考古發現,顯示遠古及早期現代人類,是緩慢但持續學會新技能,善於用火,打造出越來越精細的刀刃、手斧、黑燧石及石灰石工具,也創作藝術作品。這些文化與技術進步,逐漸成為人類特徵,使我們有別於其他物種,而關鍵的推力之一,是人類腦部的進化。

人腦為什麼能發展得如此特別?

人類的腦部非比尋常:容量大且經壓縮,比所有其他物種的腦部都複雜。人腦的大小在過去六百萬年裡長大三倍,這種變化大都發生於二十至八十萬年前,以智人出現前為主。

在人類歷史的長河中,人腦的能力為何能擴展到如此強大?答案乍看之下或許不言而喻:頭腦發達顯然使人類可以達到地球上沒有其他生物辦得到的安全與繁榮水準。然而,事實真相要錯綜複雜得多。要是像人腦那樣的腦部,真的如此明確有益於生存,那其他物種經過數十億年演化,為何未發展出類似的腦部?

我們暫且來看看其間的差別。以眼部為例,它是沿幾條演化路徑獨立發展。有脊椎動物(兩棲類、鳥類、魚類、哺乳類、爬蟲類)的眼部,頭足類動物(烏賊、章魚、墨魚)的眼部,還有較簡單形式:單眼,見於蜜蜂、蜘蛛、水母、海星等無脊椎動物。這種現象稱為趨同演化(convergent evolution),就是不同物種各自演化出相似的特徵,而非來自共同祖先的既有特徵。眼部之外的例子不勝枚舉,像是昆蟲、鳥類、蝙蝠都有翅膀,魚類(鯊魚)與海生哺乳類(海豚)為適應水下生活而體形類似。

顯然不同物種是各自發展而獲得近似的有利特徵,但是能夠創作文學、哲學、藝術傑作,或發明耕犁、輪子、指南針、印刷機、蒸汽引擎、電報、飛機、網際網路的頭腦,卻是例外。這種頭腦只演化過一次,在人體上。

人腦隨著演化發展與進化。圖/pixabay

這麼強大的腦部,具有明顯的優勢,為何在自然界絕無僅有?

這個謎題的解答,有部分要歸咎於腦部的兩大缺點。一來人腦需消耗龐大能量。它只占人體二%的重量,卻要消耗二○%的能量。其次人腦很大,使新生兒頭部很難通過產道。因此比其他動物的腦部,人腦更壓縮或更「褶皺」,並且人類嬰兒出生時,腦子只有「半熟」,需要好多年的微調才能成熟。

所以人類嬰兒無生活能力:許多動物的幼兒出生後不久就會走路,也很快就能自己覓食,人類卻需要兩年時間才能穩穩地走路,至於物質上自給自足,還要很多年。既然有這些缺點,那當初是什麼因素導致人腦的發展?

研究者曾認為,或許有數種力量共同促成這一過程。

生態假說(ecological hypothesis)主張,人腦是出於人類暴露在環境挑戰下而進化。當氣候起伏不定,附近動物的數量隨之增減,腦部較發達的史前人類更能夠找到新的食物來源,設計捕獵採集策略,發展烹煮及儲存技術,使他們在棲息地生態條件不斷變動下依舊能夠生存並興旺。

反之,社會假說(social hypothesis)主張,在複雜的社會結構中日益需要合作、競爭、交易,這促成更精進的腦部,才更有能力去理解他人的動機,預期他人的反應,於是成為演化優勢。同理,能夠說服、操弄、恭維、敘述、娛人,這些都有利於個人社會地位,也有它本身的好處:刺激大腦發展及說話、論述能力。

文化假說(cultural hypothesis)則強調人類吸收及儲存資訊的能力,使資訊能夠代代相傳。依此觀點,人腦的獨特優勢之一是能夠有效率地學習他人經驗,養成有利的習慣與偏好,不必仰賴緩慢許多的生物適應過程,即可促進在各種環境下存活。換言之,人類嬰兒雖然身體上無能為力,但是頭腦裡備有獨特的學習能力,包括能夠領會及保留,曾幫助祖先存活、也將協助後代興盛的行為規範,那就是文化。

另一種可能進一步推動腦部發展的機制,是性選擇(sexual selection)。即使對腦部本身沒有明顯的演化優勢,但人類也許形成了對頭腦較發達的配偶的偏好。這些先進的頭腦或許具有對保護及養育子女很重要的隱形特質,有意找這種配偶的人,從可辨認的特徵像是智慧、口才、思慮敏捷或幽默感,能夠推斷出這些特質。

科技進步下越來越聰明的大腦!

人類獨有的進步以人腦進化為主要推力,尤其在於它有助於帶來技術進步:以日益精進的方式,把周遭自然物質及資源轉為我們所用。技術進步又塑造繼起的演化過程,使人類得以更成功的適應不斷變動的環境,從而進一步推動新科技及加以利用。這種重複且具強化作用的機制引導著科技加速向前邁進。

隨著技術進步大腦也更快速發展。圖/pixabay

尤其有人主張,越來越熟諳用火的早期人類開始烹煮食物,因而減少咀嚼和消化所需的能量,以致熱量充裕,並空出原本由顎骨和肌肉占據的頭顱空間,更加刺激腦部成長。這種良性循環或許促進烹飪技術更多創新,繼而又使腦部進一步成長。

不過腦部並非人類與其他哺乳類唯一有別的器官。人的手也是其一。與腦合作的雙手,也在一定程度上為回應技術而演化,尤其受益於製作及使用狩獵工具、針、烹飪器皿。

特別當人類長於雕刻石頭、製作木矛等技術時,能夠強力使用並正確加以改良的人,存活的可能性就增加。擅長狩獵的人能夠更可靠地養家活口,扶養更多子女長大成人。相關技能的世代傳承,使人口中能幹的獵人比例增加。再來,進一步創新的好處,如更堅硬的矛和後來更強的弓、更尖的箭等,又提高狩獵技藝的演進優勢。

類似性質的正面回饋循環,見於整個人類歷史:環境變遷與技術創新,促進人口成長,引發人類去適應變化中的棲息地和新工具,這些適應增強人類操縱環境、創造新技術的能力。在後面會看到,這種循環是理解人類歷程,解開成長謎團的關鍵。

———本書摘自《人類的旅程》,2022 年 10 月,商業周刊,未經同意請勿轉載

商業周刊
12 篇文章 ・ 3 位粉絲

1

4
2

文字

分享

1
4
2
【2022 年諾貝爾生理或醫學奬】復現尼安德塔人消逝的 DNA,也映襯我們何以為人
寒波_96
・2022/10/06 ・8169字 ・閱讀時間約 17 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

人對自身歷史的好奇歷久彌新。最近十年古代 DNA 研究大行其道,光是發表於 Cell、Nature、Science 的論文就多到要辛苦讀完,加上其他期刊更是眼花撩亂。「古代遺傳學」的衝擊毋庸置疑,開創者帕波(Svante Pääbo)足以名列歷史偉人;然而,得知 2022 年諾貝爾生理或醫學獎由他一人獨得 ,還是令人吃驚——諾貝爾獎竟然會頒給人類演化學家?

諾貝爾獎有物理獎、有化學獎,但是沒有生物學獎,而是「生理或醫學獎」。帕波獲獎的理由是:「發現滅絕人類的基因組以及研究人類演化」。乍看和生理或醫學沒有關係,深入思考……好像還真的沒有什麼關係。

偷用強者我朋友的感想:「應該就是選厲害的。第一個和生理或醫學無關的生理或醫學獎得主,聽起來滿屌的」。

帕波直接的貢獻非常明確,在他的努力下,重現消失數萬年的尼安德塔人(Neanderthal)基因組。他為什麼想要這樣做,過程中經歷什麼困難,發現又有什麼意義呢?

喜愛古埃及的演化遺傳學家

帕波公元 1955 年在瑞典出生,獲獎時 67 歲。他從小對古埃及有興趣,大學時選擇醫學仍不忘古埃及,但是一生都在追求新奇的帕波,嫌埃及研究的步調太慢,後來走上科學研究之路。1980 年代初博士班時期,他使用當時最高端的分子生物學手段探討免疫學,成果發表於 Cell 等頂尖期刊,可謂免疫學界的頂級新秀。

然而,他始終無法忘情逝去的世界。1984 年美國的科學家獲得斑驢的 DNA 片段,轟動一時。斑驢已經滅絕一百年,能夠由其遺骸取得古代 DNA,令博士生帕波大為震撼。他很快決定結合自己的專業與興趣,嘗試由古埃及木乃伊取得 DNA,並且獨立將結果發表於 Nature 期刊。

古代 DNA。圖/取自 參考資料 1

博士畢業後,帕波義無反顧地轉換領域,遠渡美國追隨加州柏克萊大學的威爾森(Allan Wilson)。威爾森在 1970 年代便開始探討分子演化,後來又根據不同人類族群間粒線體 DNA 的差異,估計非洲以外的人群,分家只有幾萬年,支持智人出非洲說。

帕波正式投入相關研究後意識到,從古代樣本取樣 DNA 的汙染問題相當嚴重。這邊「汙染」的意思是,並非抓到樣本內真正的古代 DNA 目標,而是周圍環境、實驗操作者等來源的 DNA;包括他自己之前的木乃伊 DNA,很可能也不是真正的古代 DNA。另一大問題是,生物去世後 DNA 便會開始崩潰,經歷成千上萬年後,樣本中即使仍有少量遺傳物質殘存,含量也相當有限。

帕波投入不少心血改善問題。例如那時新發明的 PCR 能精確並大量複製 DNA,他馬上用於自己的題目(更早前是利用細菌,細菌繁殖時順便生產 DNA)。多年嘗試後,他決定放棄埃及木乃伊(埃及木乃伊的基因組在 2017 年成功),改以遺傳與智人差異較大的尼安德塔人為研究對象。

取得數萬年前尼安德塔人的 DNA

根據現有的證據,尼安德塔人是距今約 4 萬到 40 多萬年前的古人類。確認為尼安德塔人的第一件化石,於 1856 年在德國的尼安德谷發現,並以此得名(之前 2 次更早出土化石卻都沒有意識到)。這是我們所知第一種,不是智人的古代人類(hominin)。

對於古人類化石,一百多年來都是由考古與型態分析。帕波帶著遺傳學工具投入,不但增進考古和古人類學的知識,也拓展了遺傳學的領域。他後來前往德國的慕尼黑大學,幾年後又被挖角到馬克斯普朗克研究所,領導萊比錫新成立的人類演化部門,多年來培養出整個世代的科學家,也改變我們對人類演化的認知。

不同個體的粒線體 DNA 之間差異,智人與黑猩猩最多,智人與智人最少,智人與尼安德塔人介於期間。圖/取自 參考資料 2

帕波在 1996 年首度取得尼安德塔人的 DNA 片段,來自粒線體。他為了確認結果,邀請一位美國小女生重複實驗,驗證無誤,她就是後來也成為一方之霸的史東(Anne Stone)。比較這段長度 105 個核苷酸的片段,尼安德塔人與智人間的差異,明顯超過智人與智人。

然而,粒線體只有 16500 個核苷酸,絕大部分遺傳訊息其實藏在細胞核的染色體中。想認識尼安德塔人的遺傳全貌,非得重現細胞核的基因組。

可是一個細胞內有數百套粒線體,只有 2 套基因組,因此粒線體 DNA 的含量為細胞核數百倍;而且染色體合計超過 30 億個核苷酸,數量無比龐大。可以說,細胞核基因組可供取材的 DNA 量少,需要復原的訊息又多,比粒線體更難好幾個次元。

方法學與時俱進:從 PCR 到次世代定序

一開始,帕波與合作者使用 PCR,但是帕波知道這是死路一條。取樣 DNA 會破壞材料,尼安德塔人的化石有限;PCR 一次又只能復原幾百核苷酸,要完成 30 億的目標遙遙無期。

帕波持續努力克服難關。2000 年人類基因組首度問世,採取「霰彈槍」定序法,大幅提升效率;也就是將 DNA 序列都打碎,一次定序一大堆片段,再由電腦程式拼湊。帕波因此和 454 生命科學公司合作,改用新的次世代定序法,偵測化石中的古代 DNA。2006 年發表的論文可謂里程碑,報告次世代定序得知的 100 萬個尼安德塔人核苷酸,足以進行一些基因體學的分析。

帕波當時在美國的合作者魯賓(Edward Rubin)持續使用 PCR,雙方分歧愈來愈大,終於分道揚鑣。所以很可惜地,2010 年尼安德塔人基因組論文發表時,魯賓沒有參與到最後。這是人類史上第一次,取得滅絕生物大致完整的基因組,也是帕波獲頒諾貝爾獎的直接理由。

帕波戰隊。圖/取自 The Neandertal Genome Project

鐵證:尼安德塔人與智人有過遺傳交流

這份拼湊多位尼安德塔人的基因組,儘管品質不佳,卻足以解答一個問題:尼安德塔人與智人有過混血嗎?答案是有,卻和本來想的不一樣。尼安德塔人沒有長居非洲,主要住在歐洲、西南亞、中亞,也就是歐亞大陸的西部。假如與智人有過混血,歐洲人應該最明顯。結果並非如此。

帕波的組隊能力無與倫比,他廣邀各領域的菁英參與計畫,不只取得 DNA 資料,也陸續研發許多分析資料的手法,其中以哈佛大學的瑞克(David Reich)最出名。

分析得知,非洲以外,歐洲、東亞、大洋洲的人,基因組都有 1% 到 4% 能追溯到尼安德塔人(後來修正為 2% 左右)。所以雙方傳承至今的混血,發生在智人離開非洲以後,又向各地分家以前;並非尼安德塔人主要活動的歐洲。

首度由 DNA 定義古代新人類:丹尼索瓦人

復原古代基因組的工作相當困難,不過引進次世代定序後,從不可能的任務降級為難題,尼安德塔人重出江湖變成時間問題。出乎意料,同樣在 2010 年,帕波戰隊又發表另外 2 篇論文,描述一種前所未知的古人類:丹尼索瓦人(Denisovan)。不是藉由化石,而是首度由 DNA 得知新的古代人種。

根據細胞核基因組,尼安德塔人、丹尼索瓦人的親戚關係最近,智人比較遠,三群人類間有過多次遺傳交流。圖/取自 參考資料 1

丹尼索瓦人得名於出土化石的遺址(地名來自古時候當地隱士的名字),位於西伯利亞南部的阿爾泰地區,算是中亞。帕波對這兒並不陌生,之前俄羅斯科學家在這裡發現過尼安德塔人化石,而且由於乾燥與寒冷,預計化石中的古代 DNA 保存狀況應該不錯。

帕波戰隊對丹尼索瓦洞穴中的一件小指碎骨定序,首先拼裝出粒線體,驚訝地察覺到這不是智人,卻也不是尼安德塔人,接下來的細胞核基因組重複證實此事。它們變成前後 2 篇論文,帕波出名的不喜歡物種爭論,不使用學名,所以直稱其為「丹尼索瓦人」。

還有幾顆丹尼索瓦洞穴出土的牙齒也尋獲粒線體,而且這些臼齒特別大,型態前所未見。奇妙的是,丹尼索瓦人粒線體、基因組的遺傳史不一樣;和智人、尼安德塔人相比,尼安德塔人的粒線體比較接近智人,細胞核基因組卻比較接近丹尼索瓦人。

這反映古代人類群體間的遺傳交流相當複雜,不只是智人、尼安德塔人,也不只有過一次。後來又在丹尼索瓦洞穴發現一位爸爸是丹尼索瓦人、媽媽是尼安德塔人的混血少女,更是支持不同人群遺傳交流的直接證據。

遠觀丹尼索瓦洞穴。圖/取自論文〈Age estimates for hominin fossils and the onset of the Upper Palaeolithic at Denisova Cave〉的 Supplementary information

回溯分歧又交織的人類演化史

重現第一個尼安德塔人基因組後,帕波戰隊持續改進定序與分析的技術,也獲得更多樣本,深入不同族群的分家年代、彼此間的混血比例等問題,新知識不斷推陳出新。

丹尼索瓦人方面,如今仍無法確認他們的活動範圍,不過很可能是歐亞大陸偏東部的廣大地區。一如尼安德塔人,丹尼索瓦人也與智人有過遺傳交流。

最初估計某些大洋洲人配備 4% 到 6% 的丹尼索瓦人血緣,後來修正為 2% 左右(不同方法估計的結果不一樣,總之和尼安德塔血緣差不多)。不同智人具備丹尼索瓦 DNA 的比例差異頗大,某些大洋洲人之外,東亞族群也具備些許,歐亞大陸西部的人卻幾乎沒有。

到帕波獲得諾貝爾獎為止,古代 DNA 最早的紀錄是超過一百萬年的西伯利亞古代象。圖/最早古代 DNA,超過一百萬年的西伯利亞象

至今年代最古早的人類 DNA,來自西班牙的胡瑟裂谷(Sima de los Huesos),距今 43 萬年左右(最早的是超過一百萬年的古代象,由受到帕波啟發的其餘團隊發表)。根據 DNA 特徵,胡瑟裂谷人的細胞核基因組更接近尼安德塔人,可以視作初期的尼安德塔人族群。然而,他們的粒線體卻更像丹尼索瓦人。

帕波開發的研究方法,不只針對消逝的智人近親,也能用於古代智人與其他生物,累積一批數萬年前智人的基因組。釐清近期的混血事件外,還能探討不同人群當初分家的時期。估計尼安德塔人、丹尼索瓦人約在 40 多萬年前分家,他們和智人的共同祖先,又能追溯到距今 50 到 80 萬年的範圍。

智人何以為智人?遠古血脈的傳承,磨合,新適應

消逝幾萬年的尼安德塔人、丹尼索瓦人,皆為智人的極近親。由於數萬年前的遺傳交流,仍有一部分近親血脈流傳於智人的體內。這些血脈經過數萬年,早已融入成為我們的一部分。

人,人,人,人呀。圖/取自 參考資料 2

智人的某些基因與基因調控,受到遠古混血影響。最出名的案例,莫過於青藏高原族群(圖博人或藏人)的 EPAS1 基因繼承自丹尼索瓦人,比智人版本的基因更有利於適應缺氧。另外也觀察到許多案例,與免疫、代謝等功能有關。

近年 COVID-19(武漢肺炎、新冠肺炎)席捲世界,觀察到感染者的症狀輕重受到遺傳差異影響;其中至少兩處 DNA 片段,一處會增加、另一處降低住院的機率,都可以追溯到尼安德塔人的遠古混血。

非洲外每個人都有 1% 到 2% 血緣來自尼安德塔人,不同人遺傳到的片段不一樣。將不同智人個體的片段拼起來,大概能湊出 40% 尼安德塔人基因組(不同算法有不同結果),也就是說,當初進入智人族群的尼安德塔 DNA 變異,不少已經失傳。

失傳可能是機率問題,某一段 DNA 剛好沒有智人繼承。但是也可能是由於尼安德塔 DNA 變異,對智人有害或是遺傳不相容,而被天擇淘汰。遺傳重組之故,智人基因組上每個位置,繼承到尼安德塔變異的機率應該差不多;可是相比於體染色體,X 染色體的比例卻明顯偏低;這意謂智人的 X 染色體,不適合換上尼安德塔版本。

例如 2022 年發表的論文,比較 TKTL1 基因上的差異對智人、尼安德塔人神經發育的影響。圖/取自〈Human TKTL1 implies greater neurogenesis in frontal neocortex of modern humans than Neanderthals

智人之所以異於非人者幾希?藉由比較智人的極近親尼安德塔人,能深入思考這個大哉問。是哪些遺傳改變讓智人誕生,後來又衍生出什麼不可取代的遺傳特色?另一方面也能反思,某些我們以為專屬智人的特色,其實並非智人的專利。

分析遺傳序列,畢竟只是鍵盤辦案,一向雄心壯志的帕波,當然想要更進一步解答疑惑。比方說,尼安德塔人、智人間某處 DNA 差異對神經發育有什麼影響?體外培養細胞、模擬器官發育的新穎技術,如今也被帕波引進人類演化學的領域。

瑞典與愛沙尼亞之子,德國製造,替人類做出卓越貢獻的人

回顧完帕波到得獎時的精彩成就,他的工作與生理或醫學有哪些關係,各位讀者可以自行判斷。我還是覺得沒什麼直接關係,如遠古混血影響病毒感染的重症機率這種事,那些 DNA 變異最初是否源自尼安德塔人,其實無關緊要。不過多少還是有些影響,像是為了研究古代基因組而研發出的基因體學分析方法,應該也能用於生醫領域。

《尋找失落的基因組》台灣翻譯本。

帕波 2014 年時發表回憶錄《尋找失落的基因組》,自爆許多內幕。台灣的翻譯出過兩版,可惜目前絕版了。我在 2015 年、2019 年各寫過一篇介紹。書中有許多值得玩味之處,不同讀者會看到不同重點,有興趣可以找來閱讀,看看有什麼啟發。

主題是諾貝爾獎就不能不提,帕波得獎也讓諾貝爾新添一組父子檔,他的爸爸伯格斯特龍(Sune Karl Bergström)是 1982 年生理或醫學獎得主。為什麼父子不同姓?因為他是隨母姓的私生子,父子間非常不熟。

他的媽媽卡琳.帕波(Karin Pääbo)是愛沙尼亞移民瑞典的化學家,2007 年去世前曾在訪問提及,她兒子在 13、14 歲時從埃及旅遊回來,對科學產生興趣。帕波獲頒諾貝爾獎後受訪提到,可惜媽媽已經去世,無法與她分享榮耀。移民異國討生活的單親媽媽,能夠養育出得到諾貝爾獎的兒子,也可謂偉大成就。

人類演化的議題弘大淵博,但是究其根本,依然要回歸到一代一代的傳承。每個人都無比渺小,卻也是全人類中的一份子,親身參與其中。諾貝爾生理或醫學獎 2022 年的頒獎選擇,乍看突兀,仔細思索卻頗有深意。帕波的研究也許很不生理或醫學,卻再度強化諾貝爾奬設立的精神:「獎勵替人類做出卓越貢獻的人」。

  • 帕波得獎後接受電話訪問:

延伸閱讀

參考資料

  1. Press release: The Nobel Prize in Physiology or Medicine 2022. NobelPrize.org. Nobel Prize Outreach AB 2022. Wed. 5 Oct 2022.
  2. Advanced information. NobelPrize.org. Nobel Prize Outreach AB 2022. Wed. 5 Oct 2022.
  3. Geneticist who unmasked lives of ancient humans wins medicine Nobel
  4. Ancient DNA pioneer Svante Pääbo wins Nobel Prize in Physiology or Medicine
  5. Nature 論文蒐集「Nobel Prize in Physiology or Medicine 2022
  6. Estonian descendant Svante Pääbo awarded Nobel prize

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

所有討論 1
寒波_96
174 篇文章 ・ 665 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。