0

0
0

文字

分享

0
0
0

昆蟲的異想世界

PanSci_96
・2013/12/07 ・3101字 ・閱讀時間約 6 分鐘 ・SR值 473 ・五年級

本文由民視《科學再發現》贊助,泛科學獨立製作

insect

文 / Gilver

從大約三億多年前石炭紀的時候,有翅昆蟲像是蜻蜓、蟑螂就已經在天空翱翔;兩億五千萬年前的二疊紀,完全變態昆蟲祖先出現,經歷漫長的演化產生今日70%的昆蟲種類。直到今天,昆蟲已經發現的昆蟲就超過75萬種,是地球上物種多樣性的第一名!孩子們在年幼的時候,就已經會在他們的圖畫上面加上翩翩起舞的蝴蝶;螞蟻和蜜蜂在故事裡總是扮演著辛勤工作的角色;身邊總是會有朋友每逢蟑螂出現就驚聲尖叫;蚊子傳染的登革熱是每個夏天南台灣重要的防疫工作。昆蟲和我們的生命經驗息息相關,而牠們迷人的多樣性,當然也深深吸引了自然觀察愛好者的目光。不過,雖然我們常常看到昆蟲,卻不知道牠們對我們還隱瞞多少祕密。這場M.I.C.邀請兩位講者:「昆蟲法醫」台大昆蟲系蕭旭峰教授,以及《昆蟲臉書》作者黃仕傑,為我們帶來昆蟲鮮為人知的故事。

媽媽討厭蟲,但是我很喜歡!

在正式開講之前,P編鄭國威先對現場的大小朋友展開一番身家背景調查。許多小朋友都表示喜歡昆蟲,像是白粉蝶、鍬形蟲都是他們的心頭好,其中一位小弟或許道出了大部分昆蟲迷不被親友所了解的心聲:「媽媽討厭蟲,但是我很喜歡!」 除了從小就對昆蟲萌生興趣的孩子們,在場也有幾位是從鳥會、昆蟲植物活體展覽同好、野地動物調查員跑來一探昆蟲的秘密。傑哥(黃仕傑)昆蟲臉書的書友和蕭老師的研究生粉絲組團參加。

-----廣告,請繼續往下閱讀-----

vlcsnap-00005 vlcsnap-00030

蕭旭峰:看似討人厭的蠅蛆,也可以是患者的天使

「不小心挑到一個大家可能不是很有興趣的主題了……」 台大昆蟲系的蕭旭峰教授登台時說。「2004年5月31日,花蓮發生了一件車禍……以下會有特別的畫面。」 影片中出現意外現場頭部受創的機車騎士躺在手術台上的畫面,而在特寫畫面中那略為掀起的頭皮下,竄動著數以百計的蠅蛆。但在場的大小朋友心臟似乎都很大顆,在場沒有人針對畫面提出抗議!

蕭老師今天為我們帶來的昆蟲秘密,就是蠅蛆在法醫學上的應用。「通常醫生在把蛆清除乾淨後,傷口就會變得很乾淨。」現在醫學上有一種「蛆療法」,正是利用醫用的蛆來清理傷口,甚至還有治療的效用,不但殺菌、還癒合得快,可以應用在糖尿病患者的截肢術後處理。「恐懼或厭惡其實是源自於無知,在昆蟲面前我們必須保持謙卑。」比起早在三到五億年前就出現的昆蟲,人類懂得還太少,無論是活著還是死了的,人類終究會是昆蟲的食物。

vlcsnap-00011

辦案不是當柯南,是科學

「法醫不是李組長眉頭一皺,就能發覺案情不單純;或者是像柯南一樣早就知道兇手是誰。(笑)」 蕭老師提出了蠅蛆在辦案上一項很重要的指標稱為「死後間隔時間」(Post-mortem interval,PMI),可以了解並重建案情發生的時程。蠅類是自然界中重要的分解者,特別是麗蠅和肉蠅,能夠很快發現屍體並產卵、生蛆,因此蠅蛆生活史的週期很適合用來估算PMI。從豬屍的蠅蛆實驗觀察中,大致上可以把腐爛過程分出新鮮期(麗蠅產卵)、膨脹期(屍斑出現,伴隨著屍體脹氣)和腐敗期(蛆大量孵化,吃掉80%以上的屍體),在這三個階段之後再經歷一陣子就會變成只剩白骨。

蕭老師表示,影響蠅蛆發育的因素有很多,大致上跟屍體所處環境、屍體本身體質、屍體上的昆蟲相變化和蠅蛆種類有關。其中,屍體所處的周遭氣溫是相當重要的一項,會大大影響蠅蛆的發育,快的話甚至在夏季能夠在一周內就將屍體變作白骨堆。另外一個耐人尋味的點是,在許多吸毒者的法醫案例中發現藥物與毒物對蠅蛆的發育速度有不同的影響,目前已知古柯鹼會加速生長,但大麻反而會延遲,農藥也會使得生長減慢。

-----廣告,請繼續往下閱讀-----

由於法醫的鑑定結果會影響檢察官和法官的判斷,也牽涉到嫌疑犯的刑罰輕重,蕭老師認為「隨時要提醒自己不是柯南,是科學。必須要接受最嚴格的檢視與考驗。

黃仕傑:同一隻蟲的同個表情,可以怒瞪也是微笑

黃仕傑(傑哥)是Facebook粉絲專頁「昆蟲的臉書」的版主,自稱是「熱血抓狂男」的他走訪全台各地,利用微距鏡頭捕捉各種稀奇古怪的昆蟲臉孔。因為拍攝角度的不同,一隻隻的昆蟲擁有了表情,成為照片故事的主角。長腳蛉幼蟲有著兩張臉、怪表情的螽斯、戴著新潮眼鏡的夜行性虻類、怒目相視而又微笑的昆蟲,都是傑哥的得意作品。

傑哥最喜歡的一群昆蟲是角蟬,曾經一度想要研究牠們,然而他們不但難找、種類又繁多,生物多樣性中心引美國角蟬大師之言,台灣就有九十幾種角蟬,有太多太多東西需要釐清,聽起來很艱辛,還是拍照觀察吧,光是角蟬的型態和生態就都很有趣呢!

vlcsnap-00016

除了拍照,生態觀察也是一門樂事

角蟬的若蟲不跑、不跳也不動,他們跟蚜蟲採取類似的防禦策略,就是將吸食的植物汁液轉變成蜜露,然後用這些蜜露去雇用螞蟻來當牠的保鑣,這種現象可以一直持續到成蟲。所以,角蟬雖然難找,但可以透過尋找特定寄主植物或是螞蟻聚集的地方,來找到特定種類的角蟬。不過這種策略不是每次都行得通,像是最難找的一種鋸角蟬,就曾經出現過蕨類、懸鉤子、甚至枯枝上,沒什麼固定。此外,也有一些角蟬的前胸背板演化成繁複的造型,可能有擬態、警戒、防禦的效果。

-----廣告,請繼續往下閱讀-----

在如數家珍似的盤點角蟬一番後,傑哥接著講「殺手中的殺手」金小蜂的故事。有一次傑哥在夜觀時看到一隻青黃枯葉蛾的幼蟲,身上停了一隻金小蜂,還有兩百多顆初步推斷是小繭蜂的絲繭。這裡有兩個有趣的現象:這幼蟲說來也奇怪,似乎沒事一般的過著牠的生活,可見這些蜂多麼高明,在絲毫沒讓寄主困擾的情形下恣意地啃食牠的肉而不致死。

另外,金小蜂在小繭蜂的絲繭旁邊做什麼呢?出於好奇之下,傑哥將這隻幼蟲帶回家裡養,結果從裡面鑽出來的很少是小繭蜂,倒是在之後鑽出了不少金小蜂。再與丁亮先生討論生態行為後,謎題終於揭曉—那隻金小蜂正在跟還在繭裡的雌金小蜂交配,而且金小蜂的幼蟲比小繭蜂晚孵化,鑽出來的時候正好可以吃小繭蜂的蛹,不愧是殺手中的殺手!

走訪雨林,才知蘭花螳螂不一定在蘭花上

傑哥為了尋找更多昆蟲的面貌,甚至會飛到東南亞進行雨林探險。他熱情地跟我們分享了幾張雨林裡精彩的照片:美麗的蘭花螳螂幾乎很少站在蘭花上面,牠的擬態早就唯妙唯肖到蝴蝶自己會傻傻地飛過來;夜晚的雨林可以拍到各式各樣有趣的枯葉螳螂;全世界最有名的偽裝者「葉竹節蟲」;超級珍稀的「華麗金屬螳螂」等等。

除了昆蟲,傑哥還有一個特別的興趣,就是看到傳說中的「臭臭花」—萊佛士大王花就要湊過去聞,想知道它究竟有多臭。不過,萊佛士大王花真正最臭的只有在開花第二天早上的兩個小時,它會在那時釋放出最精華的腥臭味吸引麗蠅來幫它授粉,而在任務完成之後就慢慢沒味道了。

-----廣告,請繼續往下閱讀-----

在昆蟲面前,我們必須保持謙卑

從蕭老師的昆蟲法醫學,我們學到原來看似噁心的蠅蛆,其實是非常重要的分解者、醫師的好幫手,也是法醫的鑑定工具;而傑哥為我們帶來精彩的昆蟲臉書以及生態故事,它們極其精彩的生物多樣性足以讓我們折服,感嘆人類也不過在地球上活了兩百多萬年,對於地球上多采多姿的生命實在了解有限。文末,引用蕭老師的一句話作為今日精彩演講的結尾:「在昆蟲面前,我們必須保持謙卑。」

DSC00653 DSC00664

「M.I.C. ╳ 民視科學再發現」科學系列講座,由國科會支持,辦理單位為民視文化與PanSci 泛科學。

更多精采的科學內容,每週六上午八點,請收看民視53頻道「科學再發現」

延伸閱讀:

文章難易度
PanSci_96
1214 篇文章 ・ 2087 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

5
1

文字

分享

0
5
1
快!還要更快!讓國家級地震警報更好用的「都會區強震預警精進計畫」
鳥苷三磷酸 (PanSci Promo)_96
・2024/01/21 ・2584字 ・閱讀時間約 5 分鐘

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

從地震儀感應到地震的震動,到我們的手機響起國家級警報,大約需要多少時間?

臺灣從 1991 年開始大量增建地震測站;1999 年臺灣爆發了 921 大地震,當時的地震速報系統約在震後 102 秒完成地震定位;2014 年正式對公眾推播強震即時警報;到了 2020 年 4 月,隨著技術不斷革新,當時交通部中央氣象局地震測報中心(以下簡稱為地震中心)僅需 10 秒,就可以發出地震預警訊息!

然而,地震中心並未因此而自滿,而是持續擴建地震觀測網,開發新技術。近年來,地震中心執行前瞻基礎建設 2.0「都會區強震預警精進計畫」,預計讓臺灣的地震預警系統邁入下一個新紀元!

-----廣告,請繼續往下閱讀-----

連上網路吧!用建設與技術,換取獲得地震資料的時間

「都會區強震預警精進計畫」起源於「民生公共物聯網數據應用及產業開展計畫」,該計畫致力於跨部會、跨單位合作,由 11 個執行單位共同策畫,致力於優化我國環境與防災治理,並建置資料開放平台。

看到這裡,或許你還沒反應過來地震預警系統跟物聯網(Internet of Things,IoT)有什麼關係,嘿嘿,那可大有關係啦!

當我們將各種實體物品透過網路連結起來,建立彼此與裝置的通訊後,成為了所謂的物聯網。在我國的地震預警系統中,即是透過將地震儀的資料即時傳輸到聯網系統,並進行運算,實現了對地震活動的即時監測和預警。

地震中心在臺灣架設了 700 多個強震監測站,但能夠和地震中心即時連線的,只有其中 500 個,藉由這項計畫,地震中心將致力增加可連線的強震監測站數量,並優化原有強震監測站的聯網品質。

-----廣告,請繼續往下閱讀-----

在地震中心的評估中,可以連線的強震監測站大約可在 113 年時,從原有的 500 個增加至 600 個,並且更新現有監測站的軟體與硬體設備,藉此提升地震預警系統的效能。

由此可知,倘若地震儀沒有了聯網的功能,我們也形同完全失去了地震預警系統的一切。

把地震儀放到井下後,有什麼好處?

除了加強地震儀的聯網功能外,把地震儀「放到地下」,也是提升地震預警系統效能的關鍵做法。

為什麼要把地震儀放到地底下?用日常生活來比喻的話,就像是買屋子時,要選擇鬧中取靜的社區,才不會讓吵雜的環境影響自己在房間聆聽優美的音樂;看星星時,要選擇光害比較不嚴重的山區,才能看清楚一閃又一閃的美麗星空。

-----廣告,請繼續往下閱讀-----

地表有太多、太多的環境雜訊了,因此當地震儀被安裝在地表時,想要從混亂的「噪音」之中找出關鍵的地震波,就像是在搖滾演唱會裡聽電話一樣困難,無論是電腦或研究人員,都需要花費比較多的時間,才能判讀來自地震的波形。

這些環境雜訊都是從哪裡來的?基本上,只要是你想得到的人為震動,對地震儀來說,都有可能是「噪音」!

當地震儀靠近工地或馬路時,一輛輛大卡車框啷、框啷地經過測站,是噪音;大稻埕夏日節放起絢麗的煙火,隨著煙花在天空上一個一個的炸開,也是噪音;台北捷運行經軌道的摩擦與震動,那也是噪音;有好奇的路人經過測站,推了推踢了下測站時,那也是不可忽視的噪音。

因此,井下地震儀(Borehole seismometer)的主要目的,就是盡量讓地震儀「遠離塵囂」,記錄到更清楚、雜訊更少的地震波!​無論是微震、強震,還是來自遠方的地震,井下地震儀都能提供遠比地表地震儀更高品質的訊號。

-----廣告,請繼續往下閱讀-----

地震中心於 2008 年展開建置井下地震儀觀測站的行動,根據不同測站底下的地質條件,​將井下地震儀放置在深達 30~500 公尺的乾井深處。​除了地震儀外,站房內也會備有資料收錄器、網路傳輸設備、不斷電設備與電池,讓測站可以儲存、傳送資料。

既然井下地震儀這麼強大,為什麼無法大規模建造測站呢?簡單來說,這一切可以歸咎於技術和成本問題。

安裝井下地震儀需要鑽井,然而鑽井的深度、難度均會提高時間、技術與金錢成本,因此,即使井下地震儀的訊號再好,若非有國家建設計畫的支援,也難以大量建置。

人口聚集,震災好嚴重?建立「客製化」的地震預警系統!

臺灣人口主要聚集於西半部,然而此區的震源深度較淺,再加上密集的人口與建築,容易造成相當重大的災害。

-----廣告,請繼續往下閱讀-----

許多都會區的建築老舊且密集,當屋齡超過 50 歲時,它很有可能是在沒有耐震規範的背景下建造而成的的,若是超過 25 年左右的房屋,也有可能不符合最新的耐震規範,並未具備現今標準下足夠的耐震能力。 

延伸閱讀:

在地震界有句名言「地震不會殺人,但建築物會」,因此,若建築物的結構不符合地震規範,地震發生時,在同一面積下越密集的老屋,有可能造成越多的傷亡。

因此,對於發生在都會區的直下型地震,預警時間的要求更高,需求也更迫切。

-----廣告,請繼續往下閱讀-----

地震中心著手於人口密集之都會區開發「客製化」的強震預警系統,目標針對都會區直下型淺層地震,可以在「震後 7 秒內」發布地震警報,將地震預警盲區縮小為 25 公里。

111 年起,地震中心已先後完成大臺北地區、桃園市客製化作業模組,並開始上線測試,當前正致力於臺南市的模組,未來的目標為高雄市與臺中市。

永不停歇的防災宣導行動、地震預警技術研發

地震預警系統僅能在地震來臨時警示民眾避難,無法主動保護民眾的生命安全,若人民沒有搭配正確的防震防災觀念,即使地震警報再快,也無法達到有效的防災效果。

因此除了不斷革新地震預警系統的技術,地震中心也積極投入於地震的宣導活動和教育管道,經營 Facebook 粉絲專頁「報地震 – 中央氣象署」、跨部會舉辦《地震島大冒險》特展、《震守家園 — 民生公共物聯網主題展》,讓民眾了解正確的避難行為與應變作為,充分發揮地震警報的效果。

-----廣告,請繼續往下閱讀-----

此外,雖然地震中心預計於 114 年將都會區的預警費時縮減為 7 秒,研發新技術的腳步不會停止;未來,他們將應用 AI 技術,持續強化地震預警系統的效能,降低地震對臺灣人民的威脅程度,保障你我生命財產安全。

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
194 篇文章 ・ 297 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

3
0

文字

分享

0
3
0
數位攝影搖身一變黑科技,CIS 成長無止盡,遇上異常該如何 DEBUG?
宜特科技_96
・2023/06/05 ・4124字 ・閱讀時間約 8 分鐘

一個女子用手機在進行自拍
圖/宜特科技

從小時候的底片相機,發展到數位相機,如今手機就能拍出許多高清又漂亮的照片,你知道都是多虧了 CIS 晶片嗎?

本文轉載自宜特小學堂〈CIS晶片遇到異常 求助無門怎麼辦〉,如果您對半導體產業新知有興趣,歡迎按下右邊的追蹤,就不會錯過宜特科技的最新文章!

CIS 晶片又稱 CMOS 影像感測器(CMOS Image Sensor),最早是在 1963 年由美國一家半導體公司發明出來的積體電路設計,隨著時代進步,廣泛應用在數位攝影的感光元件中。而人們對攝影鏡頭解析度需求不斷增加,渴望拍出更精美的畫質。

CIS 已從早期數十萬像素,一路朝億級像素邁進,有賴於摩爾定律(Moore’s Law)在半導體微縮製程地演進,使得訊號處理能力顯著提升。如今的 CIS 已經不僅適用於消費型電子產品,在醫療檢測、安防監控領域等應用廣泛,近幾年智慧電車興起,先進駕駛輔助系統(ADAS, Advanced Driver. Assistance Systems)已成為新車的安全標配,未來車用 CIS 的市場更是潛力無窮。

然而,越精密、越高階的 CIS 晶片由於結構比較薄,加上特殊的 3D 堆疊結構,使得研發難度大大提升,當遇到異常(Defect)現象時,想透過分析找出故障的真因也更為困難了。

-----廣告,請繼續往下閱讀-----

本文將帶大家認識三大晶片架構,並以案例說明當 CIS 晶片遇到異常,到底我們可以利用那些工具或手法,成功 DEBUG?

一、認識 CIS 三大晶片架構

現今 CIS 晶片架構,可概分為三大類,(一)前照式(Front Side illumination,簡稱FSI);(二)背照式 (Back Side illumination,簡稱 BSI);(三)堆疊式 CIS(Stacked CIS)

(一)前照式(FSI)CIS

為使 CIS 晶片能符合半導體製程導入量產,最初期的 CIS 晶片為前照式 (Front Side illumination,簡稱 FSI) CIS;其感光路徑係透過晶片表面進行收光,不過,前照式 CIS 在效能上的最大致命傷為感光路徑會因晶片的感光元件上方金屬層干擾,而造成光感應敏度衰減。

(二)背照式(BSI)CIS

為使 CIS 晶片能有較佳的光感應敏度,背照式(Back Side illumination ,簡稱 BSI)CIS 技術應運而生。此類型產品的感光路徑,係由薄化至數微米後晶片背面進行收光,藉此大幅提升光感應能力。

而 BSI CIS 的前段製程與 FSI CIS 類似,主要差別在於後段晶片對接與薄化製程。BSI CIS 的製程是在如同 FSI CIS 一般製程後,會將該 CIS 晶片正面與 Carrier wafer 對接。對接後的晶片再針對 CIS 晶片背面進行 Backside grinding 製程至數微米厚度以再增進收光效率,即完成 BSI CIS。

(三)堆疊式(Stacked)CIS

隨著智慧型手機等消費電子應用的蓬勃發展,人們對於拍攝影像的影像處理功能需求也大幅增加,使製作成本更親民與晶片效能更能有效提升,利用晶圓級堆疊技術,將較成熟製程製作的光感測元件(Sensor Chip)晶片,與由先進製程製作、能提供更強大計算能力的特殊應用 IC(Application Specific Integrated Circuit,簡稱 ASIC)晶片、或是再進一步與記憶體(DRAM)晶片進行晶圓級堆疊後,便可製作出兼具高效能與成本效益的堆疊式 CIS(Stacked CIS)晶片(圖一),也是目前最主流的晶片結構。

-----廣告,請繼續往下閱讀-----
堆疊式(Stacked) CIS晶片示意圖
《圖一》堆疊式(Stacked)CIS 晶片示意圖。圖/宜特科技

二、如何找堆疊式(Stacked)CIS 晶片的異常點(Defect)呢?

介紹完三大類 CIS 架構,我們就來進入本文重點:「如何找到堆疊式(Stacked)CIS 晶片的異常點(Defect)?」

由於這類型的 CIS 晶片結構相對複雜,在進行破壞性分析前,需透過電路專家電路分析或熱點(Hot Spot)故障分析,鎖定目標、縮小範圍在 Stacked CIS 晶片中的其一晶片後,針對可疑的失效點/失效層,進行該 CIS 樣品破壞性分析,方可有效地呈現失效點的失效狀態以進行進一步的預防修正措施。

接著,我們將分享宜特故障分析實驗室,是如何(一)利用電性熱點定位;(二)移除非鎖定目標之晶粒(Die),並針對鎖定目標晶粒(Die)逐層分析;(三)電性量測分析;(四)超音波顯微鏡(SAT)分析等四大分析手法交互應用,進行 Stacked CIS 晶片進行故障分析,順利找到異常點(Defect)。

(一)透過電性熱點定位找故障點(Hot Spot)

當CIS晶片具有高阻值(High Resistance)、短路(Short)、漏電(Leakage)或是功能失效(Function Failure)等電性失效時,可依據不同的電性失效模式,經由直流通電或上測試板通電,並透過選擇適合的電性故障分析(EFA, Electrical Failure Analysis)工具來進行電性定位分析。

設備OBIRCHThermal EMMIInGaAs
偵測目標電晶體/金屬層金屬層/封裝/印刷電路板電晶體/金屬層
失效模式漏電/短路/高阻值漏電/短路/高阻值漏電/短路/開路
各設備適合使用的選擇時機

包括雷射光束電阻異常偵測(Optical Beam Induced Resistance Change,簡稱 OBIRCH)熱輻射異常偵測顯微鏡(Thermal EMMI)(圖二)、砷化鎵銦微光顯微鏡(InGaAs),藉由故障點定位設備找出可能的異常熱點(Hot Spot)位置,以利後續的物性故障(PFA, Physical Failure Analysis)分析。

-----廣告,請繼續往下閱讀-----
透過Thermal EMMI找到電性失效的故障點位置
《圖二》透過 Thermal EMMI 找到電性失效的故障點位置。圖/宜特科技

(二)移除非鎖定目標之晶粒,並針對鎖定目標晶粒逐層分析

接著,依照上述電性分析縮小可能的異常範圍至光感測元件晶片、ASIC 或記憶體晶片區後,根據 Stacked CIS 晶片堆疊的結構特性,需先將其一側的矽基材移除,方可進行逐層去除(Layer by layer),或層層檢查。

再者,透過特殊分析手法,移除不需保留的晶粒結構,進而露出目標晶粒之最上層金屬層(圖三)。接著,透過逐層去除(Layer by layer),最終在金屬層第一層(Metal 1)找到燒毀現象的異常點(defect) (圖四)。

搭配特殊手法,將CIS待測樣品不需保留之晶粒部分,完整移除
《圖三》搭配特殊手法,將 CIS 待測樣品不需保留之晶粒部分,完整移除。圖/宜特科技
對照Hot Spot分析範圍,進行鎖定目標晶粒進行逐層去除,發現燒毀現象
《圖四》對照Hot Spot分析範圍,進行鎖定目標晶粒進行逐層去除,發現燒毀現象。圖/宜特科技

(三)電性量測分析:導電性原子力顯微鏡(C-AFM, Conductive Atomic Force Microscopy)與奈米探針系統(Nano-prober)的應用

當逐層去除(Layer by Layer)過程當中,除利用電子顯微鏡(SEM) 於故障點區域進行 VC(Voltage Contrast)的電性確認與金屬導線型態觀察外,亦可搭配導電原子力顯微鏡(Conductive Atomic Force Microscopy,簡稱C-AFM)快速掃描該異常區域,以獲得該區域電流分布圖(Current map)(圖五),並量測該接點對矽基板(Si Substrate)的電性表現,進而確認該區域是否有漏電 / 開路等電性異常問題。

C-AFM異常分析結果圖
《圖五 (左)》C-AFM 異常分析結果圖。圖五 (左): 外加正電壓 (+1V) 時的 Current map 異常電性發生;
《圖五 (右)》外加負電壓 (-1V) 時的 Current map 異常電性發生 (黃圈處)。圖/宜特科技

在完成C-AFM分析後,若有相關疑似異常路徑需要進一步進行電性量測與定位,可使用奈米探針電性量測(Nano-Prober)進行更精準的異常點定位分析,包括電子束感應電流(EBIC , Electron Beam Induced Current)、電子束吸收電流(EBAC, Electron Beam Absorbed Current)、與電子束感應阻抗偵測(EBIRCH , Electron Beam Induced Resistance Change)等定位法。而Nano-Prober亦可針對電晶體進行電性量測,如Vt、 IdVg、IdVd等基本參數獲取(圖六)。

-----廣告,請繼續往下閱讀-----

當透過上述分析手法精準找到異常點後,亦可再透過雙束聚焦離子束(Dual-beam FIB,簡稱DB-FIB)或是穿透式電子顯微鏡(Transmission Electron Microscopy,簡稱TEM)來對異常點進行結構確認,以釐清失效原因(圖七)。

EBIC分析結果圖
《圖六》EBIC分析結果圖。圖/宜特科技
TEM分析結果圖
《圖七》TEM分析結果圖。圖/宜特科技

(四)超音波顯微鏡(Scanning Acoustic Tomography,簡稱SAT)分析:於背照式(BSI)/堆疊式(Stacked)CIS晶圓對接製程的應用

超音波顯微鏡(SAT)

超音波顯微鏡(SAT)為藉由超音波於不同密度材料反射速率及回傳能量不同的特性來進行分析,當超音波遇到不同材料的接合介面時,訊號會部分反射及部分穿透,但當超音波遇到空氣(空隙)介面時,訊號則會 100% 反射,機台就會接收這些訊號組成影像。
超音波顯微鏡(SAT)原理圖
超音波顯微鏡(SAT)原理圖。圖/宜特科技

在背照式(BSI)與堆疊式(Stacked)CIS 製程中晶圓與晶圓對接(bonding)製程中,SAT 可作為偵測晶圓與晶圓之間接合不良造成存在空隙的重要利器(圖八)。

圖八: 透過超音波顯微鏡(SAT),找到晶圓與晶圓對接(bonding)之鍵合空隙位置
《圖八》透過超音波顯微鏡(SAT),找到晶圓與晶圓對接(bonding)之鍵合空隙位置。圖/宜特科技

半導體堆疊技術的蓬勃發展,加上人們對影像感測器在消費性電子、車用電子、安控系統等應用,功能需求大幅度增加,CIS 未來將繼續進化,無論是晶圓級對接的製程穩定度分析,或是堆疊式(Stacked)CIS 故障分析,都可以透過宜特實驗室豐富的分析手法,與一站式整合服務精準地分析、加速產品開發、改善產品品質。

宜特科技_96
5 篇文章 ・ 3 位粉絲
我們了解你想要的不只是服務,而是一個更好的自己:) iST宜特自1994年起,以專業獨家技術,為電子產業的上中下游客戶, 提供故障分析、可靠度實驗、材料分析和訊號測試之第三方公正實驗室

3

5
4

文字

分享

3
5
4
鑑識故事系列:德國免費電玩,邀玩家扮法醫
胡中行_96
・2023/03/20 ・1664字 ・閱讀時間約 3 分鐘

本系列以往藉由講解真實案件,來分享鑑識科學;這篇則摘要免費電玩的虛構情境,鼓勵讀者親自體驗辦案。2023 年 1 月的《國際法醫期刊》(International Journal of Legal Medicine),介紹了一款德國漢堡開放線上大學(Hamburg Open Online University)的遊戲,名叫「Adventure Legal Medicine」(非官方中譯:法醫歷險)。論文詳述開發過程與教學功能,還強調玩家不管有無醫學知識,皆能輕易上手。[1]

=========微劇情,防雷線=========

想避開遊戲情境簡介的讀者,請跳過圖片後的第一段,謝謝。

電玩《Adventure Legal Medicine》的繪畫風格。圖/參考資料 1,Figure 1(CC BY 4.0)

情境設定

依照學習的領域,此遊戲有下列 5 個故事情境,可供選擇:

-----廣告,請繼續往下閱讀-----
  1. 估計死亡時間(time of death estimation):有人死在公寓裡。玩家必須選取正確的驗屍工具,例如:直腸體溫計(rectal thermometer)或神經反射錘(reflex hammer),來推估死亡時間。[1, 2]
  2. 體外驗屍檢查(external post-mortem examination):河岸上死者的某些身體部位,藏有非自然死亡的線索。[1]像是顱骨和手肘擦傷等,都有待玩家一探究竟。[2]
  3. 鑑識人類學(forensic anthropology):森林裡,散落著人類骨骸。觀察並測量骨頭,以推估年紀、性別和身高。將結果拿去跟失蹤人口的檔案比對,玩家或許就能找出死者的身份。[1]
  4. DNA親子鑑定(DNA analysis/paternity test):不知從哪迸出 4 個人,想繼承情境 2 那名死者的巨額財產。[1]玩家得從唾液樣本,分析他們的 DNA,判斷誰才是真有血親關係的子嗣。[1, 2]
  5. 解剖、酒精與藥物(autopsy/alcohol and drug influence):玩家幫車禍死者體外驗屍;解剖以檢查器官;並進行毒物學分析。最後,判讀以上檢查所得的結果。[1]

開發過程

這個遊戲是鑑識病理學家、鑑識人類學家、心理學家、醫科學生、遊戲工程師和插畫藝術家,共同合作的結晶。類似於商業開發的線上遊戲,產品正式釋出之前,得先找人來封閉測試。2 名分別為 25 和 49 歲的男性;以及 21、25 與 54 歲的 3 名女性,率先嘗試情境 1 和 2 的前期測試版。研發團隊根據他們的感想與建議,改進遊戲,並設計情境 3。接著,請 40 名醫學系的學生,操作情境 1 至 3 的測試版。另外,其他不同教育程度的學生,作為一般大眾的樣本,也受邀試玩。最終統合大家的評論後,團隊設計出情境 4 和 5 的遊戲。[1]

嚴肅遊戲

德國研發團隊將產品定位成「嚴肅遊戲」(serious game),以教學而非娛樂為主要目的,而且在視覺上多採灰階,來保持中性。[1]筆者試玩了一小部份,又觀賞攻略影片,覺得繪圖和音效雖不華麗,但頗為用心。由於遊戲全程都有電子版的課本唾手可得,玩家本身無須具備專業知識。每個階段結束後,還能透過小測驗,了解學習成效。對相關科系而言,也可用於輔助教學或自學。從 2020 年 1 月在 Google Play 上架以來,有數千人下載,並獲得平均 4.5 星的評價;可惜不曉得線上網頁版的使用人次。[1]下面是此遊戲的基本資料、連結與攻略,歡迎讀者分享闖關心得。

Adventure Legal Medicine

  • 名稱:Adventure Legal Medicine[1](英文別名:Forensic Medicine Adventure;德文名稱:Abenteuer Rechtsmedizin)[2]
  • 對象:醫學相關科系的學生及一般愛好者。[1]
  • 語言:英文和德文。[1]英文版的故事敘述,用字不難;但基於辦案的情境,勢必會出現骨骼、基因等,鑑識科學常見的專有名詞。
  • 行動裝置版:僅支援Android系統的平板電腦和手機;沒有 iOS 的版本。請點超連結下載,或上Google Play搜尋「Abenteuer Rechtsmedizin」。[1]
  • 線上網頁版http://elearning.uke.de/HOOU/RechtsmedizinSeriousGame/ (完全載入後,可以按下方代表德文的「DE」,將語言改為英文「EN」。)[1]
電玩《Adventure Legal Medicine》英文版,前 4 個情境的攻略。影/參考資料 2

  

參考資料

  1. Anders S, Steen A, Müller T, et al. (2023) ‘Adventure Legal Medicine: a free online serious game for supplementary use in undergraduate medical education’. International Journal of Legal Medicine, 137, 545–549.
  2. SLY MobileGaming (15 JAN 2021) ‘Forensic Medicine Adventure Abenteuer Rechtsmedizin | Point and Click Game Walkthrough’. YouTube.
所有討論 3
胡中行_96
169 篇文章 ・ 65 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。