0

16
0

文字

分享

0
16
0

指紋的辨識:從指紋認證系統發展到鑑識科學的應用——《黏黏滑滑》

晨星出版
・2023/01/07 ・3415字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

這幾年來我拿過幾本護照和簽證,所以我相當熟悉指紋掃描這件事。但是這次的流程感覺有點不一樣。首先,我坐在位於威靈頓的紐西蘭警察總局一間無窗的房間裡。掃描影像也是用一個跟我的智慧型手機差不多大小的儀器掃描。但是我卻著迷似地,用以前不曾有過的方式盯著複雜的紋路看。

指紋負責人吉蘭.哈利爾(Gilane Khalil)帶我走了一趟我的指紋之旅:

指紋的分類與組成

深色線就是凸起區,我們稱作乳突紋線(papillary ridge),其紋路可大略分為三類:箕形紋(loop)、斗形紋(whorl),及弧形紋(arch)。箕形紋的紋線會出現,繞圈之後再彎折回來,回到同一側。弧形紋是從一端往上彎曲或隆起,然後流向另一端—只有大約5%的人口有這種指紋。斗形紋是環形紋路。大部分人會有箕形紋混合斗形紋,你手上的指紋也是如此。

她指著取自我右手中指的指紋說,「不過你的指紋的確很不尋常。你看得出來這個特徵是結合了箕形紋和和斗形紋嗎?真是很好的複合紋路範例。」

-----廣告,請繼續往下閱讀-----
乳突紋線的紋路複雜,但是以上是最常見的三種。你的是哪一種呢?圖/

雖然指紋獲得最多關注,但我們整個手掌其實都被這個有乳突紋線的皮膚包覆,上方覆加一層網絡,有特有的深褶痕和摺皺。這些複雜性全都反映出肉眼可見表面之下的暗潮洶湧。我們皮膚上的紋線圖型是由不同種類的蛋白質角蛋白構成,最強、最耐久的種類就位於凸起的紋線,比較柔韌的則位於兩者之間的凹部。這樣的組合讓紋線可以承受大量擠壓,而凹部則可讓它們有空間屈曲和伸展。

這些紋路的根部很深,延伸到皮膚最外層(表皮)之下,並進入下方的真皮。這層結締組織有類似的紋線形式—大衛.林登(DavidLinden)稱之為「朝內的指紋」—其提供表皮各種支持,包括血管。

皮膚的汗腺和管道也會把這幾層固定在一起,灌注沿指紋線頂端分布的大量汗孔。位於手掌無毛皮膚下的腺體是人體當中最大也最緻密者,每平方公分有 1000 ∼ 1200 個。所以下次你在不合時宜的時刻冒手汗時,你就知道要怪誰了。

人類並不是手腳有乳突紋線皮膚的唯一靈長目。匹茲堡動物園(Pittsburgh Zoo)和聯邦調查局(FBI)在 2011 年進行一項研究,在例行性獸醫檢查期間採集各種不同靈長目的指紋。毫不意外,已知與我們關係密切的物種,如紅毛猩猩、金剛猩猩和黑猩猩,都出現類似的箕形紋、斗形紋和弧形紋,雖然與我們的分布有點不同。

-----廣告,請繼續往下閱讀-----

所有紅毛猩猩的指紋中,幾乎一半都有人類罕見的弧形紋。黑猩猩的斗形紋比我們多,而金剛猩猩的箕形紋比例與一般人類差不多。不過目前已知另外至少還有一種動物也有指紋,儘管其演化路徑與靈長目非常不同:無尾熊(學名是Phascolarctos cinereus)。

無尾熊的指紋與人類相似。圖/envatoelements

這種毛茸茸的有袋動物(也是澳洲的代表動物)指頭上的紋線,不管大小、形狀和排列,都跟人類的紋線相似,牠們前掌每根指頭都有弧形紋,有些後掌也有。斗形紋和箕形紋往往只出現在特定指頭。差異如此大的物種之間有這些共同特定特徵的原因,普遍認為是因為紋線可以增進牠們的抓握能力。對大半時間都待在森林樹冠的物種而言,這是很有效的技能⋯⋯或我們之後將會看到,這種技能更常出現在都市叢林中。

指紋認證系統的起源

指紋長久以來都被當做人類在物體上留下痕跡的方式,從簽合約和泥板文書(clay tablet),到古代墓碑的牆面。但是用來辨識個體—因其明顯的獨特性—是比較近代才開始,且有一段非常成敗參半的過去。

與指紋早期發展關係最密切的有三個人,分別是亨利.佛德斯(HenryFaulds)醫師、優生學家法蘭西斯.高爾頓(Francis Galton),以及殖民地警察愛德華.亨利(Edward Henry)。佛德斯透過實驗證實指紋會永久存在—即使遭遇嚴重的表皮損傷也可以恢復原本的紋路。除了尺寸變大,指紋的紋路從出生到成年都一樣。

-----廣告,請繼續往下閱讀-----

他也設計出第一個正式的紋路分類系統。高爾頓在1892 年的一本著作就是以那些主張為基礎,他從世界各地蒐集了指紋樣本之後,宣稱掌足凸紋(friction ridges)是「比任何身體特徵都還更加肯定的身分判定標準」。這開啟了一扇門,世人開始把指紋當做一種鑑別工具。

高爾頓特別強調此技術對英國殖民地的潛在重要性,「這些地方的土著很難區別」。沒錯,他真的這樣寫。駐紮在印度,擔任孟加拉警察分局督察長的愛德華.亨利非常推崇高爾頓的作品,且確信他可以把分類系統再調整得更實用一點。在他的努力之下,亨利系統(HenrySystem)誕生了, 1901 年獲蘇格蘭場(Scotland Yard)採用,自此之後衍生的不同版本也受到執法機關和其他警政機構使用。

鑑識科學的指紋比對

最近幾十年來, 有些有威望的科學組織開始批評指紋在鑑識科學的地位—尤其是做為刑事案件的證據。癥結點環繞在個化(individualisation)的概念;即鑑識痕跡〔例如犯罪現場找到的潛伏指紋(latent print)〕可以無歧義地連結到特定的某個人,「而因此排除其他所有人。」

2009 年,美國國家研究委員會(National Research Council)發表一份針對美國鑑識科學狀態的大型研究。他們在這份研究中提到,指紋鑑定缺乏提出這種主張所需的科學依據。之後的報告也同意,指出諸如錯誤率、專家之間缺乏可重複性和重現性,以及認知偏誤等風險。

-----廣告,請繼續往下閱讀-----

如果你曾經看過那些時髦的「犯罪現場調查」(CSI)電視劇,你可能會想,這跟認知偏誤有什麼關係。指紋比對想必都是由電腦完成的吧?這個嘛,雖然電腦化的資料庫的確善盡職責,但拿指紋比對資料庫裡的指紋資料這個過程,其實是由人工進行,很意外吧。

在紐西蘭這裡,軟體只會當做初步過濾的工具,用來觀察指紋的整體模式,以及畫面中不同點之間的關係。那樣的電腦分析會吐出一長串可能的候選清單,接著就人工檢查每一位候選人的指紋細節—所謂的人工即是受過訓練的指紋專家。指紋專家要留意很多地方。負責管理紐西蘭國家指紋服務(National Finger Print Service)的塔妮亞.凡.皮爾(Tanja Van Peer)告訴我:

光是一枚完美的潛伏指紋,可能資訊量就很龐大。當我們調出指紋畫面,我們要看的不只是紋線的流動和形狀;汗孔、皮膚褶皺及疤痕也都獨一無二。我們縮小螢幕上的搜尋範圍後,就會調出原始的指紋組,並重複進行分析。我們每一次鑑別都會再跟另外兩位專家進行半盲確認,上法庭時,會再重複進行所有過程。我們的驗證過程非常可靠。

但是即使經過以上所有嚴謹地檢查和斟酌程序,指紋分析還是一直被視為意見證據(opinion evidence)。沒錯,指紋分析是基於最高級專家的判斷,指紋連結到錯誤人選的可能性非常低,但並不是零。

-----廣告,請繼續往下閱讀-----

根據其性質,意見證據無法提供絕對的確定性。 2017 年,美國科學促進會(American Association for the Advancement of Science, AAAS)表示,「(檢查人員)應避免主張或暗示可能來源數量僅限於單一人選的說法。」類似「吻合」、「鑑定」、「個化」等用詞及其同義字,所暗示的含意都超出科學可支援的範圍。

不過,把人類這個因素完全排除於指紋分析之外,也不太可能讓過程更加準確。事實上,許多研究已顯示,說到比對指紋,訓練有素檢查人員的表現都明顯優於任何自動系統。在我參訪期間,凡.皮爾不斷強調,紐西蘭的專家接受了5 年紮實的訓練,精進他們的技能,但是她也坦承,即使是如此可靠的分析方法,也無法保證完全不會出錯。

指紋驗證系統如今還是被視為意見證據。圖/envatoelements

愈來愈多組織也會採用類似的「盲性驗證」步驟,降低偏誤的風險。把過程調整得更科學一點,似乎也是全球趨勢。洛桑大學(University ofLausanne) 鑑識科學教授克里斯托夫.錢帕德(Christophe Champod)認為,有個方法可以辦得到,就是為指紋證據分配數學機率,這能使其更符合在法庭上呈現DNA 證據的方式。有幾個以此為目標的數學模型正在發展中,雖然目前還沒有任何模型可以廣泛採用。

指紋還是會繼續被當做一種法庭上的鑑識證據,但還是希望透過這些努力,可以增進其可靠性和客觀性,同時也正式確立其並非萬無一失—就跟所有鑑識技術一樣。唯一可以有自信地宣稱兩組指紋「完全吻合」的人,只有虛構的電視警探吧。

-----廣告,請繼續往下閱讀-----

——本文摘自《黏黏滑滑》,2022 年 11 月,晨星出版,未經同意請勿轉載。

文章難易度
晨星出版
12 篇文章 ・ 3 位粉絲

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

3

5
4

文字

分享

3
5
4
鑑識故事系列:德國免費電玩,邀玩家扮法醫
胡中行_96
・2023/03/20 ・1664字 ・閱讀時間約 3 分鐘

本系列以往藉由講解真實案件,來分享鑑識科學;這篇則摘要免費電玩的虛構情境,鼓勵讀者親自體驗辦案。2023 年 1 月的《國際法醫期刊》(International Journal of Legal Medicine),介紹了一款德國漢堡開放線上大學(Hamburg Open Online University)的遊戲,名叫「Adventure Legal Medicine」(非官方中譯:法醫歷險)。論文詳述開發過程與教學功能,還強調玩家不管有無醫學知識,皆能輕易上手。[1]

=========微劇情,防雷線=========

想避開遊戲情境簡介的讀者,請跳過圖片後的第一段,謝謝。

電玩《Adventure Legal Medicine》的繪畫風格。圖/參考資料 1,Figure 1(CC BY 4.0)

情境設定

依照學習的領域,此遊戲有下列 5 個故事情境,可供選擇:

-----廣告,請繼續往下閱讀-----
  1. 估計死亡時間(time of death estimation):有人死在公寓裡。玩家必須選取正確的驗屍工具,例如:直腸體溫計(rectal thermometer)或神經反射錘(reflex hammer),來推估死亡時間。[1, 2]
  2. 體外驗屍檢查(external post-mortem examination):河岸上死者的某些身體部位,藏有非自然死亡的線索。[1]像是顱骨和手肘擦傷等,都有待玩家一探究竟。[2]
  3. 鑑識人類學(forensic anthropology):森林裡,散落著人類骨骸。觀察並測量骨頭,以推估年紀、性別和身高。將結果拿去跟失蹤人口的檔案比對,玩家或許就能找出死者的身份。[1]
  4. DNA親子鑑定(DNA analysis/paternity test):不知從哪迸出 4 個人,想繼承情境 2 那名死者的巨額財產。[1]玩家得從唾液樣本,分析他們的 DNA,判斷誰才是真有血親關係的子嗣。[1, 2]
  5. 解剖、酒精與藥物(autopsy/alcohol and drug influence):玩家幫車禍死者體外驗屍;解剖以檢查器官;並進行毒物學分析。最後,判讀以上檢查所得的結果。[1]

開發過程

這個遊戲是鑑識病理學家、鑑識人類學家、心理學家、醫科學生、遊戲工程師和插畫藝術家,共同合作的結晶。類似於商業開發的線上遊戲,產品正式釋出之前,得先找人來封閉測試。2 名分別為 25 和 49 歲的男性;以及 21、25 與 54 歲的 3 名女性,率先嘗試情境 1 和 2 的前期測試版。研發團隊根據他們的感想與建議,改進遊戲,並設計情境 3。接著,請 40 名醫學系的學生,操作情境 1 至 3 的測試版。另外,其他不同教育程度的學生,作為一般大眾的樣本,也受邀試玩。最終統合大家的評論後,團隊設計出情境 4 和 5 的遊戲。[1]

嚴肅遊戲

德國研發團隊將產品定位成「嚴肅遊戲」(serious game),以教學而非娛樂為主要目的,而且在視覺上多採灰階,來保持中性。[1]筆者試玩了一小部份,又觀賞攻略影片,覺得繪圖和音效雖不華麗,但頗為用心。由於遊戲全程都有電子版的課本唾手可得,玩家本身無須具備專業知識。每個階段結束後,還能透過小測驗,了解學習成效。對相關科系而言,也可用於輔助教學或自學。從 2020 年 1 月在 Google Play 上架以來,有數千人下載,並獲得平均 4.5 星的評價;可惜不曉得線上網頁版的使用人次。[1]下面是此遊戲的基本資料、連結與攻略,歡迎讀者分享闖關心得。

Adventure Legal Medicine

  • 名稱:Adventure Legal Medicine[1](英文別名:Forensic Medicine Adventure;德文名稱:Abenteuer Rechtsmedizin)[2]
  • 對象:醫學相關科系的學生及一般愛好者。[1]
  • 語言:英文和德文。[1]英文版的故事敘述,用字不難;但基於辦案的情境,勢必會出現骨骼、基因等,鑑識科學常見的專有名詞。
  • 行動裝置版:僅支援Android系統的平板電腦和手機;沒有 iOS 的版本。請點超連結下載,或上Google Play搜尋「Abenteuer Rechtsmedizin」。[1]
  • 線上網頁版http://elearning.uke.de/HOOU/RechtsmedizinSeriousGame/ (完全載入後,可以按下方代表德文的「DE」,將語言改為英文「EN」。)[1]
電玩《Adventure Legal Medicine》英文版,前 4 個情境的攻略。影/參考資料 2

  

參考資料

  1. Anders S, Steen A, Müller T, et al. (2023) ‘Adventure Legal Medicine: a free online serious game for supplementary use in undergraduate medical education’. International Journal of Legal Medicine, 137, 545–549.
  2. SLY MobileGaming (15 JAN 2021) ‘Forensic Medicine Adventure Abenteuer Rechtsmedizin | Point and Click Game Walkthrough’. YouTube.
所有討論 3
胡中行_96
169 篇文章 ・ 65 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。

0

10
2

文字

分享

0
10
2
鑑識故事系列:Lucia de Berk 值班死幾人?荷蘭護理冤案
胡中行_96
・2023/02/27 ・2983字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

前言:本文為鑑識系列中,罕見提及統計學的故事。不過,繁複的計算過程全部省略,僅討論統計概念和辦案原理。請害怕數學的讀者放心。

護理人員 Lucia de Berk。圖/Carole Edrich on Wikimedia Commons(CC BY-SA 3.0)

荷蘭護理人員 Lucia de Berk,長年於海牙茱莉安娜兒童醫院(Juliana Kinderziekenhuis)的 1 個病房,與紅十字醫院(Rode Kruis Ziekenhuis)的 2 個病房工作。2001 年 12 月,她因謀殺罪嫌被捕。[1]

超幾何分佈

警方起先偵辦 2 名住院病患的死因,發現是中毒身亡;後來連帶調查 1997 至 2001 年間,幾家醫院可能的謀殺案件,於是找上了她。[2]在法庭上,司法心理學家 Henk Elffers 用機率的概念,證明 Lucia de Berk 有罪。簡單來說,就是計算嫌犯現身出事班次的機率。他採取的統計方法,叫做超幾何分佈(又稱「超幾何分配」;hypergeometric distribution)。[1]

超幾何分佈適合用在從一個母數中,隨機抽取樣本,不再放回的情形。例如:袋子裝有 N 顆球,其中 L 顆為紅球。一把抓出 n 顆球,不特別挑選的話,紅球碰巧被抓到的機率為 X。[3, 4]以此類推,在此案被調查的時間範圍內,病房總共有 N 個班次,其中 Lucia de Berk 值了 L 班,而有醫療事故的班次共 n 個。如果不刻意安排,則她正好出現在事故班次的機率為 X。[1]公式介紹。[4]

此處實際帶入數據後得到的答案,說明 Lucia de Berk 理論上應該只有 3 億 4 千 2 百萬分之一(X = 1 / 3.42 x 108)的機率,會剛好在醫療事故發生的班次值班。因此,法庭認定她的頻繁出現(> 1 / 3.42 x 108),絕非巧合。[1, 2, 5, 6]2003 年,Lucia de Berk因 7 起謀殺和 3 次殺人未遂,[2]被判終身監禁。[5]

茱利安納兒童醫院(Juliana Kinderziekenhuis)外觀。圖/Joris on Wikimedia Commons(CC BY-SA 3.0)
紅十字醫院(Rode Kruis Ziekenhuis)已於 2021 年關閉。圖/1Veertje on Wikimedia Commons(CC BY-SA 4.0)。

統計謬誤

當時有位醫師任職於 Lucia de Berk 待過的一家醫院。他的女性姻親 Metta de Noo-Derksen 醫師,以及 Metta 的兄弟 Ton Derksen 教授,都覺得事有蹊蹺。[7]Metta 和 Ton 檢視死者的病歷紀錄,並指出部份醫療事故的類型和事發時間,與判決所用的數據對不起來因為後者大半仰賴記憶,他們甚至發現有些遭指控的班次,Lucia de Berk 其實不在現場。然而,光是這些校正,還不足以推翻判決。[1, 7]

-----廣告,請繼續往下閱讀-----

所幸出生於英國的荷蘭萊頓大學(Universiteit Leiden)統計學榮譽教授 Richard Gill,也伸出援手。[2]在協助此案的多年後,他的團隊發表了一篇論文,解釋不該使用超幾何分佈的理由,例如:[1]

  1. 護理人員不可互換:所有受訪醫師都說,護理人員可以相互替換;但是護理人員覺得,他們無法取代彼此。由於各別的個性與行事風格迥異,他們對病患的影響也不同。[1]
  2. 醫療事故通報機率:既然每個護理人員都有自己的個性,他們判定某事件為醫療事故,並且通報醫師的機率也不一樣。[1]畢竟醫院的通報規定是一回事;符合標準與否,都由護理人員判斷。比方說,有個病患每次緊張,血壓就破表。那就讓他坐著冷靜會兒,再登記第二次測量的正常結果即可。不過,難免會有菜鳥護士量一次就嚇到通報,分明給病房添亂。
  3. 班次與季節事故率:夜間與週末只剩護理人員和少數待命的醫師;季節性的特定病例增減;以及病患的生理時鐘等,都會影響出事的機率。[1]
  4. 護理排班並不平均:護理人員的班次安排,理想上會有帶狀的規律。可能連續幾天都是白班,接著是幾個小夜班之類的,[1]比較方便調整作息。此外,護理人員的資歷和個性,通常也會被納入考量。[1]以免某個班次全是資深人員;但另個班次緊急事故發生時,卻只剩不會臨機應變的新手。在這樣的排班原則下,如果單看某個時期的班表,每個人所輪到的各類班次總數,應該不會完全相同。
  5. 出院政策曾經改變:茱莉安娜兒童醫院在案發期間,曾經針對確定救不活的小病患,是否該在家中或病房離世,做過政策上的調整。帳面上來說,算在病房裡的事故量絕對會有變化。[1]

總之,太多因素會影響護理排班,或是干擾醫療事故的通報率,因此不能過度簡化成抽取紅球那樣的隨機概念。更嚴重的是,Henk Elffers 在計算過程中,分開處理 3 個病房的機率,然後再相乘。Richard Gill 的團隊強調,這樣會造成在多處上班的護理人員,比只為一處服務者,看起來有較高的嫌疑。[1]

帕松分佈

因應這種情境,Richard Gill 教授建議採用帕松分佈(又譯「布阿松分配」;Poisson distribution),[1]一種描述特定時間內,事件發生率的統計模型。[8]有別於先前的計算方法,在這裡事故傾向(accident proneness),以及整體排班狀況等變因,都納入了考量。前者採計護理人員通報醫療事故的意願強度;後者則為輪班的總次數。這個模型通常是拿來推估非尖峰時段的來電、大城市的火災等,也適用於 Lucia de Berk 的案子。[1](深入瞭解公式計算(p. 4 – 6)。[1, 8]

雖然此模型的細節複雜,統計學家得大費周章解釋給法官聽,但是考慮的條件比較趨近真實。倘若套用原始判決的數據,這個計算最後的答案是 0.0206161,意即醫療事故本來就有 49 分之 1 的機率,會與 Lucia de Berk 的班次重疊。如果帶入 Mettade Noo-Derksen 和 Ton Derksen 校正過的數據,機率更高達 9 分之 1。[1, 9]換句話說,她單純是倒楣出現在那裡,就被當作連續殺人犯。[6]

其他證據與翻案

大相逕庭的計算結果,顯示出選擇正確統計模型的重要性。然而,最不合理的,是以機率作為判決的主要根據。就謀殺案件來說,怎能不忠於病歷或驗屍報告?Richard Gill 教授接受美國犯罪學講師 Jon Robins 的訪問時,表示後來由醫師和毒物學家組成的獨立團隊,被允許瀏覽當初沒送上法庭的關鍵資料。[2]他們發現原本被視為受害者的病患,根本都喪命於自然死因。[2, 6]

在各方人士的協助下,Lucia de Berk 還是歷經兩次上訴失敗。[6]她曾於 2008 年,被允許在家等候重審結果。[1]但直到 2010 年 4 月,司法才還她清白。[7]Ton Derksen 認為,在荷蘭像這樣誤判的案件,約佔總判決數的 4 至 11%,也就是每年 1,000 人左右。不過,2006 到 2016 年間被判刑的 2 萬 3 千人裡,只有 5 個上訴到最高法院,而且僅 Lucia de Berk 的案子得以平反。[10]

-----廣告,請繼續往下閱讀-----
Lucia de Berk 冤案改編電影的海報。圖/電影《Lucia de B.》(2014) on IMDB

  

參考資料

  1. Gill RD, Groeneboom P, de Jong P. (2018) ‘Elementary Statistics on Trial—The Case of Lucia de Berk’. Chance 31, 4, pp. 9-15.
  2. Robins J. (10 APR 2020) ‘Ben Geen: Statisticians back former nurse’s in last chance to clear name’. The Justice Gap.
  3. 超幾何分佈」國立高雄大學統計學研究所(Accessed on 03 FEB 2023)
  4. 李柏堅(06 FEB 2015)「超幾何分配CUSTCourses on YouTube.
  5. Sims J. (24 FEB 2022) ‘Are We in the Midst of a Data Illiteracy Epidemic?’. Inside Hook.
  6. Schneps L, Colmez C. (26 MAR 2013) ‘Justice Flunks Math’. The New York Times.
  7. Alexander R. (28 APR 2013) ‘Amanda Knox and bad maths in court’. BBC News.
  8. 李伯堅(04 FEB 2015)「布阿松分配」CUSTCourses on YouTube.
  9. Wilson D. (13 DEC 2022) ‘Red flag to be wary of when hunting a killer nurse’. The Herald, Scotland.
  10. One in nine criminals may have been wrongly convicted – research’. (21 NOV 2016) Dutch News.
胡中行_96
169 篇文章 ・ 65 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。