0

0
0

文字

分享

0
0
0

鏡花水月—萬花筒Part1

邱文凱
・2013/11/07 ・2274字 ・閱讀時間約 4 分鐘 ・SR值 472 ・五年級

-----廣告,請繼續往下閱讀-----

Camera 360

緣起

在大三的一個因緣際會之下,重拾手作科學的念頭。當時,便是手工打造出一支萬花筒來,也從那時候開始……踏上分享科學的旅程。

對我來說,萬花筒蘊含著無限的希望,每旋轉一次,萬花筒內的影像隨之改變;見到的圖像,或許是第一次,也是最後一次的邂逅。做一支萬花筒,把剎那的美烙印在心中吧。

所需材料

相片0272-tile2

由左至右,由上而下列出:

1. 1000P白玉卡

-----廣告,請繼續往下閱讀-----

2. 包裝紙

3. 電池座、小燈泡

4. 載玻片3片(別懷疑,就是生物實驗用的那種)

5. 〝透光〞串珠(酌量)

-----廣告,請繼續往下閱讀-----

6. 電工膠帶(黑色)

7. 試管、橡膠塞

8. 霧面膠片

9. 透明膠片

-----廣告,請繼續往下閱讀-----

製作流程

1. 裁切1000P白玉卡(規格如圖所示)

5

2. 用電工膠帶,將在玻片兩兩黏貼在一起(載玻片間距為0.2cm)

2

小插曲—

在剛開始製作萬花筒時

煩惱於找不到合適的鏡子或替代物

在極度焦慮的情況下(因為趕著做出來送人)

偶然看到自己平板黑屏時竟有類似鏡子的效果XD(如圖,捷運車窗也有類似現象)

所以就試著用手上的載玻片與電工膠帶實驗看看

結果意外的合用,也順利的做出一份別緻的禮物

cats

3. 將三片載玻片組成一個正三角形,頂角的部分也用電工膠帶固定(如圖)

3

4. 還沒完喔,將載玻片組成的三面體,以電工膠帶完全覆蓋其表面(如圖)

-----廣告,請繼續往下閱讀-----

4

ps:如果不以電工膠帶完全覆蓋的話,會出現左圖的情形(透光,反而看不清楚反射的像),雖然用電工膠帶覆蓋後(如右圖),黑色的膠帶把許多光給吸收掉了,導致無法擁有跟真正鏡子(玻璃一面鍍銀)一樣好的反射效果,但若使用其他顏色的膠帶容易透光,反而會干擾成像。

4-1

5. 將裁切後的白玉卡沿圖中藍色虛線處稍微以美工刀劃開,以利之後彎折

5

6. 再將白玉卡再加工出兩個圓洞(規格如圖所示,建議使用圓規刀切割)

6

7. 將白玉卡沿著之前劃過的線往背面折,並將蓋玻片三面鏡至於如圖所示之處(對齊底端,左右置中)

7

8. 將串珠放入試管中(大約裝半管高),並將試管裝滿水,另一方面將橡皮塞貫穿出個洞

-----廣告,請繼續往下閱讀-----

8

ps:貫通的目的在於讓多餘的水排出(如圖),不然橡皮塞無法塞入,之後再用保麗龍膠將洞封起來即可

8-1

9. 將封好的試管穿入白玉卡上的兩個圓孔,做一個暫時固定的效果,用膠帶將白玉卡固定成長方盒狀(如圖)

相片0039

ps: 通常我會用保麗龍膠再稍微固定下四邊

相片0043

10. 將白玉卡長方盒四面上包裝紙

相片0044

11. 從包裝紙上裁個3.7×3.7的小正方形來做觀景窗,上面洞的造型可任挑,記得挖洞後要上層透明膠片,並將觀景窗黏在遠離試管的那一側

11

12. 如果只要做自然光版的萬花筒,只要最後將靠近試管的那一側開口以霧面膠片封住即可,將霧面膠片端朝向陽光、轉動試管(不是轉動方筒喔),觀察到的景象將如圖左

-----廣告,請繼續往下閱讀-----

12

13. 若是要做燈泡版,請在試管外罩上幾層霧面膠片(大概3層左右)之後,再安裝上燈泡

(以免燈泡的光過強,造成眼睛的不適)

13

你將可以看到如陽光灑落玻璃天頂的景象

(個人很建議使用鎢絲小燈泡,因為它給我一種溫暖感,無論是手心或內心)

-----廣告,請繼續往下閱讀-----

IMG_20130716_1

原理:

萬花筒是藉由筒內面鏡〝不同角度〞的組合,造成不同的〝多次成像〞,所以我們才能看到千變萬化的景象

從夾角90度的二面鏡子來看(如下圖),物體分別與鏡子,形成像A、像B,再次反射形成像C

物與像A、像B等距,若以O為圓心,物距為半徑做一圓,物體與其像都會剛好在圓上喔

a1-vert
(上圖由潘冠錡老師提供)

 

而這次的萬花筒是利用正三角形的三面鏡(如本次製作,夾角60度)

a2-vert
(上圖由潘冠錡老師提供)

每個夾角上面的圖案、串珠,經多次反射,形成五個像,加上物體就形成六邊形了(如下圖)

筆者之前也曾製作過頂角30度的等腰三角面鏡,經多次反射,形成十二邊形

(30°  75°  75°等腰三角面鏡,效果如圖右)

30度

 

大家在製作萬花筒前,如果不清楚出來的圖樣有怎樣的效果
可以藉由底下這程式來模擬喔(可模擬兩面鏡夾角45度~90度之間的成像)

(程式由潘冠錡老師提供)

 

想知道關於萬花筒原理的應用嗎?

可見下一篇的 蝶.花

-----廣告,請繼續往下閱讀-----
文章難易度
邱文凱
9 篇文章 ・ 0 位粉絲
相信著 "以人化物" 器物再美,缺乏人的溫度,終將不完美 而若多一分人性的溫暖,便能包容原先器物的小缺陷 這是設計科學小物的初衷 希望這些東西能充滿著溫暖,無論是手心的亦或是內心的

0

1
0

文字

分享

0
1
0
人與 AI 的關係是什麼?走進「2024 未來媒體藝術節」,透過藝術創作尋找解答
鳥苷三磷酸 (PanSci Promo)_96
・2024/10/24 ・3176字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與財團法人臺灣生活美學基金會合作。 

AI 有可能造成人們失業嗎?還是 AI 會成為個人專屬的超級助理?

隨著人工智慧技術的快速發展,AI 與人類之間的關係,成為社會大眾目前最熱烈討論的話題之一,究竟,AI 會成為人類的取代者或是協作者?決定關鍵就在於人們對 AI 的了解和運用能力,唯有人們清楚了解如何使用 AI,才能化 AI 為助力,提高自身的工作效率與生活品質。

有鑑於此,目前正於臺灣當代文化實驗場 C-LAB 展出的「2024 未來媒體藝術節」,特別將展覽主題定調為奇異點(Singularity),透過多重視角探討人工智慧與人類的共生關係。

-----廣告,請繼續往下閱讀-----

C-LAB 策展人吳達坤進一步說明,本次展覽規劃了 4 大章節,共集結來自 9 個國家 23 組藝術家團隊的 26 件作品,帶領觀眾從了解 AI 發展歷史開始,到欣賞各種結合科技的藝術創作,再到與藝術一同探索 AI 未來發展,希望觀眾能從中感受科技如何重塑藝術的創造範式,進而更清楚未來該如何與科技共生與共創。

從歷史看未來:AI 技術發展的 3 個高峰

其中,展覽第一章「流動的錨點」邀請了自牧文化 2 名研究者李佳霖和蔡侑霖,從軟體與演算法發展、硬體發展與世界史、文化與藝術三條軸線,平行梳理 AI 技術發展過程。

圖一、1956 年達特茅斯會議提出「人工智慧」一詞

藉由李佳霖和蔡侑霖長達近半年的調查研究,觀眾對 AI 發展有了清楚的輪廓。自 1956 年達特茅斯會議提出「人工智慧(Artificial Intelligence))」一詞,並明確定出 AI 的任務,例如:自然語言處理、神經網路、計算學理論、隨機性與創造性等,就開啟了全球 AI 研究浪潮,至今將近 70 年的過程間,共迎來三波發展高峰。

第一波技術爆發期確立了自然語言與機器語言的轉換機制,科學家將任務文字化、建立推理規則,再換成機器語言讓機器執行,然而受到演算法及硬體資源限制,使得 AI 只能解決小問題,也因此進入了第一次發展寒冬。

-----廣告,請繼續往下閱讀-----
圖二、1957-1970 年迎來 AI 第一次爆發

之後隨著專家系統的興起,讓 AI 突破技術瓶頸,進入第二次發展高峰期。專家系統是由邏輯推理系統、資料庫、操作介面三者共載而成,由於部份應用領域的邏輯推理方式是相似的,因此只要搭載不同資料庫,就能解決各種問題,克服過去規則設定無窮盡的挑戰。此外,機器學習、類神經網路等技術也在同一時期誕生,雖然是 AI 技術上的一大創新突破,但最終同樣受到硬體限制、技術成熟度等因素影響,導致 AI 再次進入發展寒冬。

走出第二次寒冬的關鍵在於,IBM 超級電腦深藍(Deep Blue)戰勝了西洋棋世界冠軍 Garry Kasparov,加上美國學者 Geoffrey Hinton 推出了新的類神經網路算法,並使用 GPU 進行模型訓練,不只奠定了 NVIDIA 在 AI 中的地位, 自此之後的 AI 研究也大多聚焦在類神經網路上,不斷的追求創新和突破。

圖三、1980 年專家系統的興起,進入第二次高峰

從現在看未來:AI 不僅是工具,也是創作者

隨著時間軸繼續向前推進,如今的 AI 技術不僅深植於類神經網路應用中,更在藝術、創意和日常生活中發揮重要作用,而「2024 未來媒體藝術節」第二章「創造力的轉變」及第三章「創作者的洞見」,便邀請各國藝術家展出運用 AI 與科技的作品。

圖四、2010 年發展至今,高性能電腦與大數據助力讓 AI 技術應用更強

例如,超現代映畫展出的作品《無限共作 3.0》,乃是由來自創意科技、建築師、動畫與互動媒體等不同領域的藝術家,運用 AI 和新科技共同創作的作品。「人們來到此展區,就像走進一間新科技的實驗室,」吳達坤形容,觀眾在此不僅是被動的觀察者,更是主動的參與者,可以親身感受創作方式的轉移,以及 AI 如何幫助藝術家創作。

-----廣告,請繼續往下閱讀-----
圖五、「2024 未來媒體藝術節——奇異點」展出現場,圖為超現代映畫的作品《無限共作3.0》。圖/C-LAB 提供

而第四章「未完的篇章」則邀請觀眾一起思考未來與 AI 共生的方式。臺灣新媒體創作團隊貳進 2ENTER 展出的作品《虛擬尋根-臺灣》,將 AI 人物化,採用與 AI 對話記錄的方法,探討網路發展的歷史和哲學,並專注於臺灣和全球兩個場景。又如國際非營利創作組織戰略技術展出的作品《無時無刻,無所不在》,則是一套協助青少年數位排毒、數位識毒的方法論,使其更清楚在面對網路資訊時,該如何識別何者為真何者為假,更自信地穿梭在數位世界裡。

透過歷史解析引起共鳴

在「2024 未來媒體藝術節」規劃的 4 大章節裡,第一章回顧 AI 發展史的內容設計,可說是臺灣近年來科技或 AI 相關展覽的一大創舉。

過去,這些展覽多半以藝術家的創作為展出重點,很少看到結合 AI 發展歷程、大眾文明演變及流行文化三大領域的展出內容,但李佳霖和蔡侑霖從大量資料中篩選出重點內容並儘可能完整呈現,讓「2024 未來媒體藝術節」觀眾可以清楚 AI 技術於不同階段的演進變化,及各發展階段背後的全球政治經濟與文化狀態,才能在接下來欣賞展區其他藝術創作時有更多共鳴。

圖六、「2024 未來媒體藝術節——奇異點」分成四個章節探究 AI 人工智慧時代的演變與社會議題,圖為第一章「流動的錨點」由自牧文化整理 AI 發展歷程的年表。圖/C-LAB 提供

「畢竟展區空間有限,而科技發展史的資訊量又很龐大,在評估哪些事件適合放入展區時,我們常常在心中上演拉鋸戰,」李佳霖笑著分享進行史料研究時的心路歷程。除了從技術的重要性及代表性去評估應該呈現哪些事件,還要兼顧詞條不能太長、資料量不能太多、確保內容正確性及讓觀眾有感等原則,「不過,歷史事件與展覽主題的關聯性,還是最主要的決定因素,」蔡侑霖補充指出。

-----廣告,請繼續往下閱讀-----

舉例來說,Google 旗下人工智慧實驗室(DeepMind)開發出的 AI 軟體「AlphaFold」,可以準確預測蛋白質的 3D 立體結構,解決科學家長達 50 年都無法突破的難題,雖然是製藥或疾病學領域相當大的技術突破,但因為與本次展覽主題的關聯性較低,故最終沒有列入此次展出內容中。

除了內容篩選外,在呈現方式上,2位研究者也儘量使用淺顯易懂的方式來呈現某些較為深奧難懂的技術內容,蔡侑霖舉例說明,像某些比較艱深的 AI 概念,便改以視覺化的方式來呈現,為此上網搜尋很多與 AI 相關的影片或圖解內容,從中找尋靈感,最後製作成簡單易懂的動畫,希望幫助觀眾輕鬆快速的理解新科技。

吳達坤最後指出,「2024 未來媒體藝術節」除了展出藝術創作,也跟上國際展會發展趨勢,於展覽期間規劃共 10 幾場不同形式的活動,包括藝術家座談、講座、工作坊及專家導覽,例如:由策展人與專家進行現場導覽、邀請臺灣 AI 實驗室創辦人杜奕瑾以「人工智慧與未來藝術」為題舉辦講座,希望透過帶狀活動創造更多話題,也讓展覽效益不斷發酵,讓更多觀眾都能前來體驗由 AI 驅動的未來創新世界,展望 AI 在藝術與生活中的無限潛力。

展覽資訊:「未來媒體藝術節——奇異點」2024 Future Media FEST-Singularity 
展期 ▎2024.10.04 ( Fri. ) – 12.15 ( Sun. ) 週二至週日12:00-19:00,週一休館
地點 ▎臺灣當代文化實驗場圖書館展演空間、北草坪、聯合餐廳展演空間、通信分隊展演空間
指導單位 ▎文化部
主辦單位 ▎臺灣當代文化實驗場

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
從認證到實踐:以智慧綠建築三大標章邁向淨零
鳥苷三磷酸 (PanSci Promo)_96
・2024/11/15 ・4487字 ・閱讀時間約 9 分鐘

本文由 建研所 委託,泛科學企劃執行。 


當你走進一棟建築,是否能感受到它對環境的友善?或許不是每個人都意識到,但現今建築不只提供我們居住和工作的空間,更是肩負著重要的永續節能責任。

綠建築標準的誕生,正是為了應對全球氣候變遷與資源匱乏問題,確保建築設計能夠減少資源浪費、降低污染,同時提升我們的生活品質。然而,要成為綠建築並非易事,每一棟建築都需要通過層層關卡,才能獲得標章認證。

為推動環保永續的建築環境,政府自 1999 年起便陸續著手推動「綠建築標章」、「智慧建築標章」以及「綠建材標章」的相關政策。這些標章的設立,旨在透過標準化的建築評估系統,鼓勵建築設計融入生態友善、能源高效及健康安全的原則。並且政府在政策推動時,為鼓勵業界在規劃設計階段即導入綠建築手法,自 2003 年特別辦理優良綠建築作品評選活動。截至 2024 年為止,已有 130 件優良綠建築、31 件優良智慧建築得獎作品,涵蓋學校、醫療機構、公共住宅等各類型建築,不僅提升建築物的整體性能,也彰顯了政府對綠色、智慧建築的重視。

-----廣告,請繼續往下閱讀-----

說這麼多,你可能還不明白建築要變「綠」、變「聰明」的過程,要經歷哪些標準與挑戰?

綠建築標章智慧建築標章綠建材標章
來源:內政部建築研究所

第一招:依循 EEWH 標準,打造綠建築典範

環境友善和高效率運用資源,是綠建築(green building)的核心理念,但這樣的概念不僅限於外觀或用材這麼簡單,而是涵蓋建築物的整個生命週期,也就是包括規劃、設計、施工、營運和維護階段在內,都要貼合綠建築的價值。

關於綠建築的標準,讓我們先回到 1990 年,當時英國建築研究機構(BRE)首次發布有關「建築研究發展環境評估工具(Building Research Establishment Environmental Assessment Method,BREEAM®)」,是世界上第一個建築永續評估方法。美國則在綠建築委員會成立後,於 1998 年推出「能源與環境設計領導認證」(Leadership in Energy and Environmental Design, LEED)這套評估系統,加速推動了全球綠建築行動。

臺灣在綠建築的制訂上不落人後。由於臺灣地處亞熱帶,氣溫高,濕度也高,得要有一套我們自己的評分規則——臺灣綠建築評估系統「EEWH」應運而生,四個英文字母分別為 Ecology(生態)、Energy saving(節能)、Waste reduction(減廢)以及 Health(健康),分成「合格、銅、銀、黃金和鑽石」共五個等級,設有九大評估指標。

-----廣告,請繼續往下閱讀-----

我們就以「台江國家公園」為例,看它如何躍過一道道指標,成為「鑽石級」綠建築的國家公園!

位於臺南市四草大橋旁的「台江國家公園」是臺灣第8座國家公園,也是臺灣唯一的濕地型的國家公園。同時,還是南部行政機關第一座鑽石級的綠建築,其外觀採白色系列,從高空俯瞰,就像在一座小島上座落了許多白色建築群的聚落;從地面看則有臺南鹽山的意象。

因其地形與地理位置的特殊,生物多樣性的保護則成了台江國家公園的首要考量。園區利用既有的魚塭結構,設計自然護岸,保留基地既有的雜木林和灌木草原,並種植原生與誘鳥誘蟲等多樣性植物,採用複層雜生混種綠化。以石籠作為擋土護坡與卵石回填增加了多孔隙,不僅強化了環境的保護力,也提供多樣的生物棲息環境,使這裡成為動植物共生的美好棲地。

台江國家公園是南部行政機關第一座鑽石級的綠建築。圖/內政部建築研究所

第二招:想成綠建築,必用綠建材

要成為一幢優秀好棒棒的綠建築,使用在原料取得、產品製造、應用過程和使用後的再生利用循環中,對地球環境負荷最小、對人類身體健康無害的「綠建材」非常重要。

-----廣告,請繼續往下閱讀-----

這種建材最早是在 1988 年國際材料科學研究會上被提出,一路到今日,國際間對此一概念的共識主要包括再使用(reuse)、再循環(recycle)、廢棄物減量(reduce)和低污染(low emission materials)等特性,從而減少化學合成材料產生的生態負荷和能源消耗。同時,使用自然材料與低 VOC(Volatile Organic Compounds,揮發性有機化合物)建材,亦可避免對人體產生危害。

在綠建築標章後,內政部建築研究所也於 2004 年 7 月正式推行綠建材標章制度,以建材生命週期為主軸,提出「健康、生態、高性能、再生」四大方向。舉例來說,為確保室內環境品質,建材必須符合低逸散、低污染、低臭氣等條件;為了防溫室效應的影響,須使用本土材料以節省資源和能源;使用高性能與再生建材,不僅要經久耐用、具高度隔熱和防音等特性,也強調材料本身的再利用性。


在台江國家公園內,綠建材的應用是其獲得 EEWH 認證的重要部分。其不僅在設計結構上體現了生態理念,更在材料選擇上延續了對環境的關懷。園區步道以當地的蚵殼磚鋪設,並利用蚵殼作為建築格柵的填充材料,為鳥類和小生物營造棲息空間,讓「蚵殼磚」不再只是建材,而是與自然共生的橋樑。園區的內部裝修選用礦纖維天花板、矽酸鈣板、企口鋁板等符合綠建材標準的系統天花。牆面則粉刷乳膠漆,整體綠建材使用率為 52.8%。

被建築實體圍塑出的中庭廣場,牆面設計有蚵殼格柵。圖/內政部建築研究所

在日常節能方面,台江國家公園也做了相當細緻的設計。例如,引入樓板下的水面蒸散低溫外氣,屋頂下設置通風空氣層,高處設置排風窗讓熱空氣迅速排出,廊道還配備自動控制的微噴霧系統來降溫。屋頂採用蚵殼與漂流木創造生態棲地,創造空氣層及通風窗引入水面低溫外企,如此一來就能改善事內外氣溫及熱空氣的通風對流,不僅提升了隔熱效果,減少空調需求,讓建築如同「與海共舞」,在減廢與健康方面皆表現優異,展示出綠建築在地化的無限可能。

-----廣告,請繼續往下閱讀-----
島式建築群分割後所形成的巷道與水道。圖/內政部建築研究所

在綠建材的部分,另外補充獲選為 2023 年優良綠建築的臺南市立九份子國民中小學新建工程,其採用生產過程中二氧化碳排放量較低的建材,比方提高高爐水泥(具高強度、耐久、緻密等特性,重點是發熱量低)的量,並使用能提高混凝土晚期抗壓性、降低混凝土成本與建物碳足跡的「爐石粉」,還用再生透水磚做人行道鋪面。

2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所
2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所

同樣入選 2023 年綠建築的還有雲林豐泰文教基金會的綠園區,首先,他們捨棄金屬建材,讓高爐水泥使用率達 100%。別具心意的是,他們也將施工開挖的土方做回填,將有高地差的荒地恢復成平坦綠地,本來還有點「工業風」的房舍告別荒蕪,無痛轉綠。

雲林豐泰文教基金會的綠園區。圖/內政部建築研究所

等等,這樣看來建築夠不夠綠的命運,似乎在建材選擇跟設計環節就決定了,是這樣嗎?當然不是,建築是活的,需要持續管理–有智慧的管理。

第三招:智慧管理與科技應用

我們對生態的友善性與資源運用的效率,除了從建築設計與建材的使用等角度介入,也須適度融入「智慧建築」(intelligent buildings)的概念,即運用資通訊科技來提升建築物效能、舒適度與安全性,使空間更人性化。像是透過建築物佈建感測器,用於蒐集環境資料和使用行為,並作為空調、照明等設備、設施運轉操作之重要參考。

-----廣告,請繼續往下閱讀-----

為了推動建築與資通訊產業的整合,內政部建築研究所於 2004 年建立了「智慧建築標章」制度,為消費者提供判斷建築物是否善用資通訊感知技術的標準。評估指標經多次修訂,目前是以「基礎設施、維運管理、安全防災、節能管理、健康舒適、智慧創新」等六大項指標作為評估基準。
以節能管理指標為例,為了掌握建築物生命週期中的能耗,需透過系統設備和技術的主動控制來達成低耗與節能的目標,評估重點包含設備效率、節能技術和能源管理三大面向。在健康舒適方面,則在空間整體環境、光環境、溫熱環境、空氣品質、水資源等物理環境,以及健康管理系統和便利服務上進行評估。

樹林藝文綜合大樓在設計與施工過程中,充分展現智慧建築應用綜合佈線、資訊通信、系統整合、設施管理、安全防災、節能管理、健康舒適及智慧創新 8 大指標先進技術,來達成兼顧環保和永續發展的理念,也是利用建築資訊模型(BIM)技術打造的指標性建築,受到國際矚目。

樹林藝文綜合大樓。圖/內政部建築研究所「111年優良智慧建築專輯」(新北市政府提供)

在興建階段,為了保留基地內 4 棵原有老樹,團隊透過測量儀器對老樹外觀進行精細掃描,並將大小等比例匯入 BIM 模型中,讓建築師能清晰掌握樹木與建築物之間的距離,確保施工過程不影響樹木健康。此外,在大樓啟用後,BIM 技術被運用於「電子維護管理系統」,透過 3D 建築資訊模型,提供大樓內設備位置及履歷資料的即時讀取。系統可進行設備的監測和維護,包括保養計畫、異常修繕及耗材管理,讓整棟大樓的全生命週期狀況都能得到妥善管理。

智慧建築導入 BIM 技術的應用,從建造設計擴展至施工和日常管理,使建築生命周期的管理更加智慧化。以 FM 系統 ( Facility Management,簡稱 FM ) 為例,該系統可在雲端進行遠端控制,根據會議室的使用時段靈活調節空調風門,會議期間開啟通往會議室的風門以加強換氣,而非使用時段則可根據二氧化碳濃度調整外氣空調箱的運轉頻率,保持低頻運作,實現節能效果。透過智慧管理提升了節能效益、建築物的維護效率和公共安全管理。

-----廣告,請繼續往下閱讀-----

總結

綠建築、綠建材與智慧建築這三大標章共同構建了邁向淨零碳排、居住健康和環境永續的基礎。綠建築標章強調設計與施工的生態友善與節能表現,從源頭減少碳足跡;綠建材標章則確保建材從生產到廢棄的全生命週期中對環境影響最小,並保障居民的健康;智慧建築標章運用科技應用,實現能源的高效管理和室內環境的精準調控,增強了居住的舒適性與安全性。這些標章的綜合應用,讓建築不僅是滿足基本居住需求,更成為實現淨零、促進健康和支持永續的具體實踐。

建築物於魚塭之上,採高腳屋的構造形式,尊重自然地貌。圖/內政部建築研究所

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

7
3

文字

分享

0
7
3
【2021諾貝爾化學獎】化學史的革命性進展:簡單又環保的「不對稱有機催化」
諾貝爾化學獎譯文_96
・2021/10/27 ・5691字 ・閱讀時間約 11 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自諾貝爾化學獎專題系列,原文為《【2021諾貝爾化學獎】他們的工具帶給了建構分子的革命性發展

  • 譯者/曹一允|美國德州農工大學 Karen Wooley 教授指導下取得博士,現於日本萊雅公司進行研究。
  • 譯者/蔡蘊明|台大化學系名譽教授

他們的工具帶給了建構分子的革命性發展

化學家可以透過連接許多小的化學塊材來創造新分子,但控制這些看不見的物質,以所需的方式結合是很困難的。班傑明 • 李斯特(Benjamin List)和大衛 • 麥克米蘭(David MacMillan)獲得了 2021 年諾貝爾化學獎的桂冠,以表彰他們開發了一種新而巧妙的工具來建構分子:有機催化。它的用途包括研發新的藥物,以及使得化學更為環保。

許多行業和研究領域都須依賴化學家建構新功能分子的能力,那些可以是任何在太陽能電池中捕獲光或將能量儲存在電池中的物質,也可以是製造輕便跑鞋或抑制疾病在身體內進展的分子。

然而,如果我們將大自然建造化學物質的能力,與我們自己的能力進行比較,那我們就好像是長期的被困在石器時代一般。大自然的進化產生了令人難以置信的特殊工具,酵素(或稱酶),用於建構賦予生命形態的各種形狀、顏色和功能的分子複合物。最初,當化學家分離出這些化學傑作後,他們只能以崇敬的眼光看著。在他們自己的分子建構工具箱中的錘子和鑿子,顯得愚鈍和不可靠,所以當他們企圖複製大自然的產品時,往往最終會產生許多不需要的副產物。

精細化學的新工具

化學家添加到工具箱中的每一個新工具,都漸漸地提高了他們建構分子的精確度。緩慢但確實地,化學已經由用在石頭上的鑿子發展出許多精細的技藝。這對人類實在大有助益,而其中一些工具已經獲得諾貝爾化學獎的肯定。

-----廣告,請繼續往下閱讀-----

獲得 2021 年諾貝爾化學獎的發現,已經將分子的建構拉到一個全新的水平。它不僅使化學更為環保,而且更容易製造不對稱分子。在化學分子的構築過程中,經常會出現一種狀況,就是可以形成兩種分子 —— 就像我們的手一樣 —— 是彼此的鏡像。尤其是在製造藥品時,化學家經常希望只得到這兩個鏡像中的一個,但卻很難找到有效的方法來做到這一點。李斯特和麥克米蘭為此研發出的概念 —— 不對稱有機催化 —— 既簡單又出色。實際上很多人都很納悶,為什麼我們沒有早點想到它。

真的,為什麼呢?這不是一個容易回答的問題,但在我們嘗試之前,需要快速地回顧一下歷史,我們將會定義「催化」(catalysis)和「催化劑」(catalyst)這兩個術語,並為 2021 年的化學諾貝爾獎奠定理解的基礎。

許多分子有兩種異構物存在,其中一種是另一種的鏡像,它們經常對身體產生完全不同的影響。例如,一種版本的檸檬烯分子具有檸檬香味,而其鏡像則聞起來像橘子。圖/諾貝爾獎官網

催化劑加速化學反應

在十九世紀,當化學家開始探索不同化學物質相互反應的方式時,他們有了一些奇怪的發現。例如,如果他們將銀放入含有過氧化氫(H2O2)的燒杯中,過氧化氫會突然開始分解成水(H2O) 和氧氣(O2)。但是促發這個過程的銀,似乎完全不會受到反應的影響。類似的,從發芽的穀物中獲得的一種物質,則可以將澱粉分解成葡萄糖。

1835 年,著名的瑞典化學家貝吉里斯(Jacob Berzelius)開始注意到其中的規律。在皇家瑞典科學院年度報告中,敘述物理和化學的最新進展時,他寫到了一種可以"產生化學活性"的新"力"。他列舉了幾個例子,其中只要有某一種物質的存在,就可讓化學反應發生,並指出這種現像似乎比以前認知的要普遍得多。他認為這種物質具有一種「催化力」,並稱這種現象為「催化作用」。

-----廣告,請繼續往下閱讀-----

催化劑產生塑膠、香水和美味的食物

自貝吉里斯時代以來,大量的汗水流過了化學家的吸管,他們已經發現許多種催化劑,可以分解分子或將它們連接在一起。多虧了這些催化劑,他們現在可以開發出我們日常生活中使用的數千種不同的物質,例如藥品、塑膠、香水和食品調味劑。事實是,估計有世界 GDP 總量的 35%,在某種程度上涉及化學催化。

原則上,西元 2000 年之前發現的所有催化劑都屬於以下兩類之一:它們若不是金屬那就是酵素。金屬通常是極好的催化劑,因為它們具有特殊的能力,能在化學反應過程中暫時容納電子或將它們提供給其它分子。這有助於鬆開分子中原子間的鍵結,因此使得尋常時候很強的鍵結可以被打破,形成新的鍵結。

然而,一些金屬催化劑的問題是它們對氧氣和水非常敏感。因此,要使這些試劑正常運作,它們需要一個無氧和無濕氣的環境,而這在大規模的產業界很難實現。此外,許多金屬催化劑都是重金屬,可能對環境有害。

生命的催化劑以驚人的精確度運作

第二種形式的催化劑屬於一些稱為酵素(或酶)的蛋白質。所有的生物都具有數以千計的不同酵素,來驅動生命所必需的化學反應。其中有許多酵素是不對稱催化方面的專家,原則上,總是只生成兩個可能的鏡像中的一個。它們也並肩工作;當一個酵素完成反應時,另一個就會接管。通過這種方式,它們能以驚人的準確度建構複雜的分子,例如膽固醇、葉綠素或稱為番木虌鹼(strychnine)的毒素,它是我們知道的分子中最複雜的物質之一(我們將回到這一點)。

-----廣告,請繼續往下閱讀-----

由於酶是如此有效的催化劑,1990 年代的研究人員試圖開發新的酵素變體,以驅動人類所需的化學反應。一個致力於此領域的,是總部設在美國加利福尼亞州南部的斯克里普斯(Scripps)研究所中,由已故的巴爾巴斯三世(Carlos F. Barbas III)所領導的研究小組。李斯特在巴爾巴斯的研究小組中獲得了博士後研究員的職位,此時一個絕妙的想法誕生了,從而導致今年諾貝爾化學獎其中的一項發現。

李斯特跨出了盒外來思考

李斯特在研究催化抗體(catalytic antibodies)。通常情況下,抗體會附著在外來病毒或我們體內的細菌之上,但斯克里普斯的研究人員重新設計了它們,使得它們反而可以驅動化學反應。

在研究催化抗體期間,李斯特開始思考酵素實際上是如何的運作。它們通常是由數百個胺基酸所構成的巨大分子,除了這些胺基酸,很大一部分的酵素也含有能幫助驅動化學反應的金屬。但是 —— 這就是重點 —— 許多酵素在沒有金屬幫助的情況下,也能催化化學反應。此外,反應只是由酶中的一個或幾個單獨的胺基酸所驅動的。李斯特跳脫出盒外所問的問題是:胺基酸是否必須是酶的一部分才能催化一個化學反應?或者一個單獨的胺基酸或其它類似的簡單分子,是否也可以達成同樣的工作?

產生具有革命性的結果

他知道 1970 年代初就有人研究過,用一種名為脯胺酸的胺基酸作為催化劑 —— 但那是 25 多年前的事了。當然,如果脯胺酸真的是一種有效的催化劑,當然有人會繼續研究它吧。

-----廣告,請繼續往下閱讀-----

這或多或少是李斯特的想法;他認為沒有人繼續研究這一現像的原因,是發現效果不是特別好。 在沒有任何真正的期待下,他測試了脯胺酸是否可以催化一種「醛醇反應」(aldol reaction),將其中來自兩個不同分子的碳原子結合在一起。這只是一個簡單的嘗試,但令人驚訝的是,它立即奏效。

李斯特確定了自己的未來

通過他的實驗,李斯特不僅證明了脯胺酸是一種有效的催化劑,而且還認為這種胺基酸可以驅動不對稱催化反應。在兩個可能的鏡像產物中,其中的一個比另一個更易生成。

與之前測試脯胺酸作為催化劑的研究人員不同,李斯特了解它可能具有的巨大潛力。與金屬和酵素相比,脯胺酸是一個化學家夢幻的工具。它是一種非常簡單、廉價且環保的分子。當他在 2000 年 2 月發表他的發現時,李斯特將使用有機分子進行的不對稱催化,描述為一個具有很多機會的新穎概念:"這些催化劑的設計和篩選是我們未來的目標之一"。

不過他並不孤單,在加利福尼亞北部的一個實驗室裡,麥克米蘭也在朝著同樣的目標努力。

-----廣告,請繼續往下閱讀-----

麥克米蘭將敏感的金屬拋諸腦後

兩年前,麥克米蘭剛從哈佛搬到加州大學伯克萊分校。他在哈佛曾致力於改善使用金屬的不對稱催化反應,那是一個受到許多研究人員關注的領域,但麥克米蘭注意到,為何研究人員開發的催化劑在工業界卻很少使用?他開始思考原因,並認為那是因為敏感的金屬使用起來很困難,而且太貴了。一些金屬催化劑所要求的無氧無濕氣的條件,在實驗室中運作相對簡單,但要在這種條件下進行大規模工業製造是很複雜的。

他的結論是,如果要讓他正在開發的化學工具有用,他需要一個新的思維。所以,當他搬到伯克萊時,他把金屬拋在腦後。

開發了一種型式更簡單的催化劑

取而代之,麥克米蘭開始設計簡單的有機分子 —— 就像金屬一樣 —— 可以暫時提供或容納電子。在這裡,我們需要定義什麼是「有機分子」 —— 簡而言之,那是建構所有生物的分子。他們擁有一個穩定的碳原子骨架,各種活性化學基團可附著在這個碳骨架上,它們通常含有氧、氮、硫或磷。

因此,有機分子是由簡單而常見的元素組成,但是,取決於它們是如何組合在一起的,它們可以具有複雜的性質。麥克米蘭的化學知識使得他認為,若要用有機分子來催化他感興趣的反應,它需要能夠形成一個「亞胺離子」(iminium ion),這個離子包含了一個氮原子,而且對電子具有天生的親和力。

-----廣告,請繼續往下閱讀-----

他選擇了幾種具有正確特性的有機分子,然後測試了它們驅動狄耳士-阿德爾(Diels-Alder)反應的能力,化學家用這個反應來建構碳原子環。正如他所期盼並相信的那樣,它們運作得非常出色。其中的一些有機分子,在不對稱催化方面的表現也很突出。在兩個可能的鏡像產物中,其中一個佔了 90% 以上。

麥克米蘭創造了有機催化一詞

當麥克米蘭準備發表他的結果時,他意識到自己發現的催化概念需要一個名字。事實上,研究人員雖早已成功地使用有機小分子催化化學反應,但這些都是個別單獨的例子,沒有人意識到這種方法可以被推廣。

 麥克米蘭希望找到一個術語來描述這個新方法,如此一來其他研究人員就能夠理解,尚有更多有機催化劑仍未被發現。他的選擇是「有機催化」(organocatalysis)。

於 2000 年 1 月,就在李斯特發表他的發現之前,麥克米蘭送出了他在科學期刊上發表的原稿。文章中的引言寫著:

-----廣告,請繼續往下閱讀-----

"在此,我們介紹了一種新的有機催化策略,而我們預計這個新策略將適用於一系列的不對稱轉化。"

有機催化應用的蓬勃發展

李斯特和麥克米蘭各自獨立地發現了一個全新的催化概念。從 2000 年至今此領域的發展幾乎可以比擬為淘金熱,其中李斯特和麥克米蘭保持著領先地位。他們設計了大量廉價且穩定的有機催化劑,可用於驅動各式各樣的化學反應。

有機催化劑不僅一般由簡單分子組成,在某些情況下 —— 就像自然界的酵素一樣 —— 它們可以在輸送帶上工作。以前,在化學生產過程中,需要對每個中間產物進行分離和純化,否則副產物的量會太多,這導致了在化學合成的每個步驟中都會有一些物質損失。

有機催化劑的寬容度則比較高,因為相對而言,合成過程中的幾個步驟可以連續進行,這稱為串級反應(cascade reaction),可以減少許多化學合成中的浪費。

番木虌鹼的合成效率提高了 7,000 倍

一個有機催化使分子建構更有效率的例子,是合成天然且極其複雜的番木虌鹼分子。許多人會從謀殺案件小說女王阿加莎・克莉絲蒂(Agatha Christie)的書中認出番木虌鹼。然而,對於化學家來說,番木虌鹼的合成就像一個魔術方塊:一個步驟越少越好的挑戰。

在 1952 年首次合成出番木虌鹼時,需要經過 29 種不同的化學反應步驟,只有 0.0009% 的起始物被轉換成產物,剩下的都浪費掉了。

到了 2011 年,研究人員能夠使用有機催化和串級反應,在僅僅 12 個步驟中建構番木虌鹼分子,生產過程的效率提高了 7,000 倍。

有機催化在藥物生產中最為重要

有機催化對經常需要不對稱催化的藥物研究產生了重大影響。在化學家可以進行不對稱催化之前,許多藥物分子都含有兩個鏡像的異構物。其中一個是有活性的,而另一個可能有時會產生不良的影響。一個災難性的例子是 1960 年代的沙利多邁(thalidomide)醜聞,沙利多邁藥物分子的一個鏡像,導致數千個發育中的人類胚胎產生嚴重畸形。

使用有機催化,研究人員現在可以相對簡單地製造大量不同的不對稱分子。例如,他們能以人工方式來合成具有治療潛力的物質,否則就只能從稀有植物或深海生物中,分離出微量的相同分子進行研究。

在製藥公司,這種方法還用於簡化已知藥物的生產。這方面的例子包括用於治療焦慮和抑鬱的帕羅西汀(paroxetine),以及用於治療呼吸道感染的抗病毒藥物克流感(oseltamivir)。

簡單的構想往往是最難設想的

我們可以很簡單地舉出數千個如何使用有機催化的例子 —— 但為什麼沒有人更早提出這種簡單、綠色且廉價的非對稱催化概念?這個問題有很多答案,其中一個是簡單的構想往往是最難設想的。我們的觀點被這個世界應該運作的模式,先入為主且強烈地遮蔽了,例如只有金屬或酵素才能驅動化學反應的想法。李斯特和麥克米蘭成功地打破了這些先入為主的想法,找到了困擾化學家數十年問題的巧妙解方。因此,有機催化劑才能夠 —— 在此時此刻 —— 為人類帶來莫大的裨益。

參考資料

-----廣告,請繼續往下閱讀-----
諾貝爾化學獎譯文_96
15 篇文章 ・ 23 位粉絲
「諾貝爾化學獎專題」系列文章,為臺大化學系名譽教授蔡蘊明等譯者,依諾貝爾化學獎委員會的新聞稿編譯而成。泛科學獲得蔡蘊明老師授權,將多年來的編譯文章收錄於此。 原文請參見:諾貝爾化學獎專題系列