0

7
2

文字

分享

0
7
2

【2021諾貝爾化學獎】化學史的革命性進展:簡單又環保的「不對稱有機催化」

諾貝爾化學獎譯文_96
・2021/10/27 ・5691字 ・閱讀時間約 11 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

本文轉載自諾貝爾化學獎專題系列,原文為《【2021諾貝爾化學獎】他們的工具帶給了建構分子的革命性發展

  • 譯者/曹一允|美國德州農工大學 Karen Wooley 教授指導下取得博士,現於日本萊雅公司進行研究。
  • 譯者/蔡蘊明|台大化學系名譽教授

他們的工具帶給了建構分子的革命性發展

化學家可以透過連接許多小的化學塊材來創造新分子,但控制這些看不見的物質,以所需的方式結合是很困難的。班傑明 • 李斯特(Benjamin List)和大衛 • 麥克米蘭(David MacMillan)獲得了 2021 年諾貝爾化學獎的桂冠,以表彰他們開發了一種新而巧妙的工具來建構分子:有機催化。它的用途包括研發新的藥物,以及使得化學更為環保。

許多行業和研究領域都須依賴化學家建構新功能分子的能力,那些可以是任何在太陽能電池中捕獲光或將能量儲存在電池中的物質,也可以是製造輕便跑鞋或抑制疾病在身體內進展的分子。

然而,如果我們將大自然建造化學物質的能力,與我們自己的能力進行比較,那我們就好像是長期的被困在石器時代一般。大自然的進化產生了令人難以置信的特殊工具,酵素(或稱酶),用於建構賦予生命形態的各種形狀、顏色和功能的分子複合物。最初,當化學家分離出這些化學傑作後,他們只能以崇敬的眼光看著。在他們自己的分子建構工具箱中的錘子和鑿子,顯得愚鈍和不可靠,所以當他們企圖複製大自然的產品時,往往最終會產生許多不需要的副產物。

精細化學的新工具

化學家添加到工具箱中的每一個新工具,都漸漸地提高了他們建構分子的精確度。緩慢但確實地,化學已經由用在石頭上的鑿子發展出許多精細的技藝。這對人類實在大有助益,而其中一些工具已經獲得諾貝爾化學獎的肯定。

獲得 2021 年諾貝爾化學獎的發現,已經將分子的建構拉到一個全新的水平。它不僅使化學更為環保,而且更容易製造不對稱分子。在化學分子的構築過程中,經常會出現一種狀況,就是可以形成兩種分子 —— 就像我們的手一樣 —— 是彼此的鏡像。尤其是在製造藥品時,化學家經常希望只得到這兩個鏡像中的一個,但卻很難找到有效的方法來做到這一點。李斯特和麥克米蘭為此研發出的概念 —— 不對稱有機催化 —— 既簡單又出色。實際上很多人都很納悶,為什麼我們沒有早點想到它。

真的,為什麼呢?這不是一個容易回答的問題,但在我們嘗試之前,需要快速地回顧一下歷史,我們將會定義「催化」(catalysis)和「催化劑」(catalyst)這兩個術語,並為 2021 年的化學諾貝爾獎奠定理解的基礎。

許多分子有兩種異構物存在,其中一種是另一種的鏡像,它們經常對身體產生完全不同的影響。例如,一種版本的檸檬烯分子具有檸檬香味,而其鏡像則聞起來像橘子。圖/諾貝爾獎官網

催化劑加速化學反應

在十九世紀,當化學家開始探索不同化學物質相互反應的方式時,他們有了一些奇怪的發現。例如,如果他們將銀放入含有過氧化氫(H2O2)的燒杯中,過氧化氫會突然開始分解成水(H2O) 和氧氣(O2)。但是促發這個過程的銀,似乎完全不會受到反應的影響。類似的,從發芽的穀物中獲得的一種物質,則可以將澱粉分解成葡萄糖。

1835 年,著名的瑞典化學家貝吉里斯(Jacob Berzelius)開始注意到其中的規律。在皇家瑞典科學院年度報告中,敘述物理和化學的最新進展時,他寫到了一種可以"產生化學活性"的新"力"。他列舉了幾個例子,其中只要有某一種物質的存在,就可讓化學反應發生,並指出這種現像似乎比以前認知的要普遍得多。他認為這種物質具有一種「催化力」,並稱這種現象為「催化作用」。

催化劑產生塑膠、香水和美味的食物

自貝吉里斯時代以來,大量的汗水流過了化學家的吸管,他們已經發現許多種催化劑,可以分解分子或將它們連接在一起。多虧了這些催化劑,他們現在可以開發出我們日常生活中使用的數千種不同的物質,例如藥品、塑膠、香水和食品調味劑。事實是,估計有世界 GDP 總量的 35%,在某種程度上涉及化學催化。

原則上,西元 2000 年之前發現的所有催化劑都屬於以下兩類之一:它們若不是金屬那就是酵素。金屬通常是極好的催化劑,因為它們具有特殊的能力,能在化學反應過程中暫時容納電子或將它們提供給其它分子。這有助於鬆開分子中原子間的鍵結,因此使得尋常時候很強的鍵結可以被打破,形成新的鍵結。

然而,一些金屬催化劑的問題是它們對氧氣和水非常敏感。因此,要使這些試劑正常運作,它們需要一個無氧和無濕氣的環境,而這在大規模的產業界很難實現。此外,許多金屬催化劑都是重金屬,可能對環境有害。

生命的催化劑以驚人的精確度運作

第二種形式的催化劑屬於一些稱為酵素(或酶)的蛋白質。所有的生物都具有數以千計的不同酵素,來驅動生命所必需的化學反應。其中有許多酵素是不對稱催化方面的專家,原則上,總是只生成兩個可能的鏡像中的一個。它們也並肩工作;當一個酵素完成反應時,另一個就會接管。通過這種方式,它們能以驚人的準確度建構複雜的分子,例如膽固醇、葉綠素或稱為番木虌鹼(strychnine)的毒素,它是我們知道的分子中最複雜的物質之一(我們將回到這一點)。

由於酶是如此有效的催化劑,1990 年代的研究人員試圖開發新的酵素變體,以驅動人類所需的化學反應。一個致力於此領域的,是總部設在美國加利福尼亞州南部的斯克里普斯(Scripps)研究所中,由已故的巴爾巴斯三世(Carlos F. Barbas III)所領導的研究小組。李斯特在巴爾巴斯的研究小組中獲得了博士後研究員的職位,此時一個絕妙的想法誕生了,從而導致今年諾貝爾化學獎其中的一項發現。

李斯特跨出了盒外來思考

李斯特在研究催化抗體(catalytic antibodies)。通常情況下,抗體會附著在外來病毒或我們體內的細菌之上,但斯克里普斯的研究人員重新設計了它們,使得它們反而可以驅動化學反應。

在研究催化抗體期間,李斯特開始思考酵素實際上是如何的運作。它們通常是由數百個胺基酸所構成的巨大分子,除了這些胺基酸,很大一部分的酵素也含有能幫助驅動化學反應的金屬。但是 —— 這就是重點 —— 許多酵素在沒有金屬幫助的情況下,也能催化化學反應。此外,反應只是由酶中的一個或幾個單獨的胺基酸所驅動的。李斯特跳脫出盒外所問的問題是:胺基酸是否必須是酶的一部分才能催化一個化學反應?或者一個單獨的胺基酸或其它類似的簡單分子,是否也可以達成同樣的工作?

產生具有革命性的結果

他知道 1970 年代初就有人研究過,用一種名為脯胺酸的胺基酸作為催化劑 —— 但那是 25 多年前的事了。當然,如果脯胺酸真的是一種有效的催化劑,當然有人會繼續研究它吧。

這或多或少是李斯特的想法;他認為沒有人繼續研究這一現像的原因,是發現效果不是特別好。 在沒有任何真正的期待下,他測試了脯胺酸是否可以催化一種「醛醇反應」(aldol reaction),將其中來自兩個不同分子的碳原子結合在一起。這只是一個簡單的嘗試,但令人驚訝的是,它立即奏效。

李斯特確定了自己的未來

通過他的實驗,李斯特不僅證明了脯胺酸是一種有效的催化劑,而且還認為這種胺基酸可以驅動不對稱催化反應。在兩個可能的鏡像產物中,其中的一個比另一個更易生成。

與之前測試脯胺酸作為催化劑的研究人員不同,李斯特了解它可能具有的巨大潛力。與金屬和酵素相比,脯胺酸是一個化學家夢幻的工具。它是一種非常簡單、廉價且環保的分子。當他在 2000 年 2 月發表他的發現時,李斯特將使用有機分子進行的不對稱催化,描述為一個具有很多機會的新穎概念:"這些催化劑的設計和篩選是我們未來的目標之一"。

不過他並不孤單,在加利福尼亞北部的一個實驗室裡,麥克米蘭也在朝著同樣的目標努力。

麥克米蘭將敏感的金屬拋諸腦後

兩年前,麥克米蘭剛從哈佛搬到加州大學伯克萊分校。他在哈佛曾致力於改善使用金屬的不對稱催化反應,那是一個受到許多研究人員關注的領域,但麥克米蘭注意到,為何研究人員開發的催化劑在工業界卻很少使用?他開始思考原因,並認為那是因為敏感的金屬使用起來很困難,而且太貴了。一些金屬催化劑所要求的無氧無濕氣的條件,在實驗室中運作相對簡單,但要在這種條件下進行大規模工業製造是很複雜的。

他的結論是,如果要讓他正在開發的化學工具有用,他需要一個新的思維。所以,當他搬到伯克萊時,他把金屬拋在腦後。

開發了一種型式更簡單的催化劑

取而代之,麥克米蘭開始設計簡單的有機分子 —— 就像金屬一樣 —— 可以暫時提供或容納電子。在這裡,我們需要定義什麼是「有機分子」 —— 簡而言之,那是建構所有生物的分子。他們擁有一個穩定的碳原子骨架,各種活性化學基團可附著在這個碳骨架上,它們通常含有氧、氮、硫或磷。

因此,有機分子是由簡單而常見的元素組成,但是,取決於它們是如何組合在一起的,它們可以具有複雜的性質。麥克米蘭的化學知識使得他認為,若要用有機分子來催化他感興趣的反應,它需要能夠形成一個「亞胺離子」(iminium ion),這個離子包含了一個氮原子,而且對電子具有天生的親和力。

他選擇了幾種具有正確特性的有機分子,然後測試了它們驅動狄耳士-阿德爾(Diels-Alder)反應的能力,化學家用這個反應來建構碳原子環。正如他所期盼並相信的那樣,它們運作得非常出色。其中的一些有機分子,在不對稱催化方面的表現也很突出。在兩個可能的鏡像產物中,其中一個佔了 90% 以上。

麥克米蘭創造了有機催化一詞

當麥克米蘭準備發表他的結果時,他意識到自己發現的催化概念需要一個名字。事實上,研究人員雖早已成功地使用有機小分子催化化學反應,但這些都是個別單獨的例子,沒有人意識到這種方法可以被推廣。

 麥克米蘭希望找到一個術語來描述這個新方法,如此一來其他研究人員就能夠理解,尚有更多有機催化劑仍未被發現。他的選擇是「有機催化」(organocatalysis)。

於 2000 年 1 月,就在李斯特發表他的發現之前,麥克米蘭送出了他在科學期刊上發表的原稿。文章中的引言寫著:

"在此,我們介紹了一種新的有機催化策略,而我們預計這個新策略將適用於一系列的不對稱轉化。"

有機催化應用的蓬勃發展

李斯特和麥克米蘭各自獨立地發現了一個全新的催化概念。從 2000 年至今此領域的發展幾乎可以比擬為淘金熱,其中李斯特和麥克米蘭保持著領先地位。他們設計了大量廉價且穩定的有機催化劑,可用於驅動各式各樣的化學反應。

有機催化劑不僅一般由簡單分子組成,在某些情況下 —— 就像自然界的酵素一樣 —— 它們可以在輸送帶上工作。以前,在化學生產過程中,需要對每個中間產物進行分離和純化,否則副產物的量會太多,這導致了在化學合成的每個步驟中都會有一些物質損失。

有機催化劑的寬容度則比較高,因為相對而言,合成過程中的幾個步驟可以連續進行,這稱為串級反應(cascade reaction),可以減少許多化學合成中的浪費。

番木虌鹼的合成效率提高了 7,000 倍

一個有機催化使分子建構更有效率的例子,是合成天然且極其複雜的番木虌鹼分子。許多人會從謀殺案件小說女王阿加莎・克莉絲蒂(Agatha Christie)的書中認出番木虌鹼。然而,對於化學家來說,番木虌鹼的合成就像一個魔術方塊:一個步驟越少越好的挑戰。

在 1952 年首次合成出番木虌鹼時,需要經過 29 種不同的化學反應步驟,只有 0.0009% 的起始物被轉換成產物,剩下的都浪費掉了。

到了 2011 年,研究人員能夠使用有機催化和串級反應,在僅僅 12 個步驟中建構番木虌鹼分子,生產過程的效率提高了 7,000 倍。

有機催化在藥物生產中最為重要

有機催化對經常需要不對稱催化的藥物研究產生了重大影響。在化學家可以進行不對稱催化之前,許多藥物分子都含有兩個鏡像的異構物。其中一個是有活性的,而另一個可能有時會產生不良的影響。一個災難性的例子是 1960 年代的沙利多邁(thalidomide)醜聞,沙利多邁藥物分子的一個鏡像,導致數千個發育中的人類胚胎產生嚴重畸形。

使用有機催化,研究人員現在可以相對簡單地製造大量不同的不對稱分子。例如,他們能以人工方式來合成具有治療潛力的物質,否則就只能從稀有植物或深海生物中,分離出微量的相同分子進行研究。

在製藥公司,這種方法還用於簡化已知藥物的生產。這方面的例子包括用於治療焦慮和抑鬱的帕羅西汀(paroxetine),以及用於治療呼吸道感染的抗病毒藥物克流感(oseltamivir)。

簡單的構想往往是最難設想的

我們可以很簡單地舉出數千個如何使用有機催化的例子 —— 但為什麼沒有人更早提出這種簡單、綠色且廉價的非對稱催化概念?這個問題有很多答案,其中一個是簡單的構想往往是最難設想的。我們的觀點被這個世界應該運作的模式,先入為主且強烈地遮蔽了,例如只有金屬或酵素才能驅動化學反應的想法。李斯特和麥克米蘭成功地打破了這些先入為主的想法,找到了困擾化學家數十年問題的巧妙解方。因此,有機催化劑才能夠 —— 在此時此刻 —— 為人類帶來莫大的裨益。

參考資料

文章難易度
諾貝爾化學獎譯文_96
15 篇文章 ・ 20 位粉絲
「諾貝爾化學獎專題」系列文章,為臺大化學系名譽教授蔡蘊明等譯者,依諾貝爾化學獎委員會的新聞稿編譯而成。泛科學獲得蔡蘊明老師授權,將多年來的編譯文章收錄於此。 原文請參見:諾貝爾化學獎專題系列

0

1
0

文字

分享

0
1
0
賀爾蒙藥物知多少?皮下注射須知及使用要點
careonline_96
・2022/11/29 ・1727字 ・閱讀時間約 3 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

在兒童內分泌科,有許多賀爾蒙相關藥物因為藥物成分結構的特殊性質,給藥途徑常常需要透過皮下注射,讓藥物能良好吸收並穩定發揮其效果。

使用較多、也較廣為人知的幾種藥物包含「胰島素」、「生長激素」與「類升糖素胜肽-1 受體促效劑(GLP-1 receptor agonist)(俗稱減肥針、瘦瘦針)」。

皮下注射藥物給藥裝置

林口長庚醫院兒童內分泌科邱巧凡醫師指出,大多數上述藥物,近年都以「筆型針」設計為主流。傳統以空針筒抽取玻璃瓶藥劑的方式已經逐漸被筆型針取代。相較於傳統方法,筆型針有許多優勢,包含操作時間短、步驟簡單、操作方便、劑量拿捏精確等。

另外,近幾年還有「無針注射器」的產品,透過高壓噴射原理,使藥物不須透過針頭即可進入皮下組織,目前適用於胰島素注射。

注射部位

皮下注射的部位包含:腹部、臀部、上臂、大腿外側。

這些部位在藥物吸收速度上略有差異,分別如下:

  • 吸收速度最快的部位: 腹部
  • 吸收速度其次為: 上臂
  • 吸收速度較慢: 大腿、臀部

其他會影響藥物吸收速度的因素還包含:

  1. 運動:剛剛運動完的一側肢體由於血流增加,藥物吸收速度也會加快。
  2. 溫度:較高的溫度,藥物吸收速度快;較低的溫度,藥物吸收速度較慢。(例如泡溫泉、熱水澡、按摩後)
  3. 注射部位深淺:
  • 注射太淺,未到皮下組織,容易產生疼痛感,藥物吸收速率也較差。
  • 注射太深,進到肌肉層,會加速藥物吸收速率。

邱巧凡醫師表示,基於上述對於藥物吸收速率的影響因素,在需要藥物快速或稍晚發揮功效的情境下,或當觀察到藥效發揮不如往常時,這樣的因素考量就相當重要。

皮下注射藥物使用要點

  1. 許多皮下注射藥物平時都是需要冷藏保存的,若剛從冷藏取出便立即注射,由於溫度較低,注射時疼痛感較明顯。建議可以提前拿出來,待溫度稍微回升,再執行注射。
  2. 務必養成習慣,每次注射前都要先確認藥物名稱、有效期限、劑量,並檢查藥水是否有雜質、變色、混濁等異常。
  3. 注射時避開感染、發炎、纖維化、凹陷、脂肪增生等處,以免影響藥效。
  4. 務必確實做好「注射部位」及「注射筆針頭銜接處」的清潔消毒。
  5. 針頭完全插入至注射部位後,再按壓注射按鈕。
  6. 輸注後在原處停留 6~10 秒,再拔出針頭,確保完全輸注並避免藥水洩漏。
  7. 注射部位要輪替,避免施打同一部位,造成腫塊的形成,影響藥物吸收。
  8. 針頭拔出後,輕壓注射處至不再出血即可。
  9. 注射部位「不要揉」,否則容易因此拉扯到皮下微血管造成出血或瘀青。
  10. 不與其他人共用針頭、筆型針,針頭也不要重複使用。
  11. 使用後的針頭請用「有瓶蓋」「堅硬不易被刺穿」的容器盛裝,並於容器標示清楚「內含廢棄針具」,栓緊瓶蓋,帶回原就診醫療院所或有「居家廢棄藥物檢收站」標章的社區藥局回收處理。

配合醫囑指示正確使用藥物,並掌握以上皮下注射藥物的注射要點,相信能讓藥物更加穩定且安全地發揮其最佳療效。

0

1
0

文字

分享

0
1
0
跨越五十年的醣化學之旅——翁啟惠院長專訪
研之有物│中央研究院_96
・2022/11/19 ・7078字 ・閱讀時間約 14 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

台灣知名科學家:翁啟惠院長

如果問民眾「臺灣有哪些知名的科學家?」翁啟惠肯定是經常出現的答案。翁啟惠是國際知名醣化學家,曾擔任兩屆中央研究院院長,任期內積極將基礎科學與生醫產業串連起來。另一方面,翁啟惠也是投身研究 50 年的資深學者與好老師,共培養超過 500 位優秀弟子;他同時也是中研院、美國國家科學院的院士,更獲得沃爾夫化學獎、威爾許化學獎、四面體化學獎等榮譽。中研院「研之有物」專訪院內基因體研究中心合聘特聘研究員翁啟惠院士,向讀者介紹他一路走來的心路歷程。

圖│研之有物(資料來源|翁啟惠)

從臺大、中研院到 MIT的化學之旅

翁啟惠學術能量依舊飽滿,他是斯克里普斯研究院(Scripps Research)與中研院合聘的研究人員,兩邊各自都有實驗室和學生,受訪當天他本人在美國加州,透過視訊與「研之有物」團隊連線。

至今已 74 歲的醣化學大師翁啟惠,他是嘉義出生的子弟,初中考上臺南一中,高中三年級本已保送清華大學化學系,不過因為想挑戰臺大醫學系而赴考,可惜生物不好,加上自己喜歡化學,便進了第二志願臺大農業化學系。大學畢業,退伍後他隨即投身於科學研究,算算日子,已經是漫長的 50 年時光。

翁啟惠原本就喜歡研究,他退伍後跟著恩師臺大化學系王光燦教授擔任助教一年後,再跟王教授來到中研院擔任助理,當時(1972 年)正值中研院生物化學研究所草創時期。後來翁啟惠升任「助理研究員」(類似大學的講師,目前已無此職位),前後服務長達 8 年,期間於 1977 年在職獲得碩士學位,碩論主要為臺灣蛇毒蛋白的合成,是翁啟惠多年來的研究成果。

王光燦(左)帶領翁啟惠(右)進入化學的研究殿堂,圖為 1999 年王光燦的退休餐會上,翁啟惠贈與恩師紀念品。
圖│翁啟惠

儘管翁啟惠出國前已發表超過 30 篇論文,小有所成,他依然希望更上層樓,因此 1979 年前往美國的麻省理工學院深造,接受恩師化學系教授喬治·懷特賽茲(George M. Whitesides)的指導。翁啟惠回憶,自己後來教育學生的理念與作法,多源自懷特賽茲的啟發。具備相當基礎之下,翁啟惠花費 3 年取得有機化學博士學位,又經歷 1 年哈佛大學的博士後研究,1983 年他就成為德州農工大學(Texas A&M University)的助理教授。

冷門且困難的「醣化學」

翁啟惠擅長的領域是「酵素化學」與「醣化學」,醣化學是什麼呢?翁啟惠解釋,維繫生命的蛋白質、核酸、脂質、醣類這些物質,以醣類最為複雜。除了材料化學的應用之外,翁啟惠選擇探索醣分子在生物醫學方面的應用。

醣類的結構變化多端,而且不容易人工合成。而翁啟惠的過人之處,正是出色的醣類合成能力!後來讓他奠定宗師地位的一鍋式酵素合成法程式化一鍋合成法醣晶片,到最近的廣效去醣化疫苗等研究主題,都歸功於他堅強的化學合成基礎。

我們已經知道翁啟惠是醣化學的先驅,不過其實到博士畢業前,他大部分仍著重於蛋白質的合成,直到獨當一面後,才正式投身醣類。因為在當時的學界,核酸、蛋白質才是顯學,醣化學是非常冷門的領域,即便今日也不算太熱門,更是難以想像應用於研究疾病。

因此,翁啟惠早期在美國當助理教授時,曾經無法申請到研究經費,甚至有計畫評審認為他誤入歧途,所幸他的前瞻理念於 1986 年受到美國總統年青化學家獎(Presidential Young Investigator in Chemistry)的賞識,支持他站穩腳步,1987 年升任教授,才有後來的持續突破。

使用「酵素」來合成醣類

過去醣類研究不但冷門,而且難以合成,翁啟惠為什麼有勇氣選擇如此困難的題材?他的信心來自「酵素」 ,也就是生物用來催化反應的特殊蛋白質。傳統化學手段難以合成的複雜產物,有機會利用酵素來克服。

翁啟惠提到,1970 年代分子生物學興起,新問世的基因改造潛力無窮,人造胰島素開啟生技產業的濫觴;但是 1980 年代時,化學家多半仍很少接觸基因重組技術。他算是首波使用基因重組酵素,實現醣分子的化學合成。

翁啟惠強調,很多新聞報導說他是生物醫學或生物科技專家,但其實他本質上一直是化學家,探索分子層次的操作,研究醣分子與醣蛋白的有機合成,只是醣化學研究的應用涉及生物醫學領域,介於化學和生物的交界。

做出過人成績後,翁啟惠成為各大研究機構爭邀合作的化學人才,本來預備前往加州的史丹佛大學。不過同樣在加州的斯克里普斯研究院(Scripps Research)半途冒出,院長勒納(Richer Lerner)親自邀請他過去瞧瞧。當時擅長生醫的 Scripps 想拓展至化學領域,正在招募人才,而涉足生物的化學專家翁啟惠正是合適人選。

Scripps 研究院是世界最好的研究機構之一,只收博士生,不僅有多位諾貝爾獎得主,更培育出不計其數的人才。翁啟惠回憶,他原本也對 Scripps 研究院不熟,Scripps 當時還沒有化學部門,但沒想到相談甚歡,1989 年他受邀擔任新成立的化學系講座教授,一做就做到 2006 年。現在,Scripps 研究院在化學生物領域是全美第一。

圖│翁啟惠

Scripps 研究院不僅環境怡人,學術資源也豐沛,讓翁啟惠能專注研究,而不必為經費擔憂。如今,他再度成為 Scripps 研究院的講座教授(Chair Professor),美國講座教授會有一筆來自民間的捐助基金,有充裕的學術資源可供自由運用。翁啟惠感慨地說,臺灣的學術捐款多為建造大樓等硬體,可是支持人才更重要, 這是未來臺灣值得學習的方向。

醣化學原本是乏人問津的領域,然而翁啟惠開創了醣分子的有機合成方法,讓醣化學逐漸受到重視,他也獲得一系列耀眼成就。翁啟惠 2002 年當選美國國家科學院的院士,接著又榮獲多項化學領域的一級大獎:2014 年得到沃爾夫獎(The Wolf Prize),2021 年是威爾許獎(Welch Award),2022 年又獲頒四面體獎(Tetrahedron Prize)。

翁啟惠近年在化學領域不斷獲獎,也讓許多人好奇,再來會是諾貝爾化學獎嗎?

對於這個問題,翁啟惠認為可遇不可求,得獎也講究機運。不過每次獲獎,他都覺得是很好的鼓勵,激勵他繼續往前走。更重要的是,翁啟惠不是單打獨鬥,每次獎項表揚的成就,背後都是整個團隊的努力,因此這些榮譽正是對他整個團隊的肯定。

教師之夢:遍布全世界的學生

說到培養人才,這也是翁啟惠的強項,可惜過去媒體報導翁啟惠時卻很少觸及教育。談論如何作育英才的心得,翁啟惠眼睛炯炯有神,隔著太平洋都能感受到湧出螢幕的教育熱情。

翁啟惠表示他小學時就想當老師,也是一輩子的志願。看到學生有成就,就會覺得很欣慰。他至今指導過的學生與博士後超過 500 位,遍及世界各地,包含美國、日本、韓國、英國、法國、德國、比利時等國家。儘管他自嘲也不是全世界都有,像是北韓就沒有學生。

翁啟惠對教學的想法,奠基於博士班老師懷特賽茲和自己長年的實踐經驗。談到臺灣學生,他特別指出必須加強兩點訓練:獨立思考與表達能力

表達為什麼重要?試想,一個人花費多年辛苦取得學位,去應徵工作,卻只有幾分鐘能夠展現。善於表達,才能讓人覺得你的工作重要,呈現意圖以實現目標。而翁老師的第一課,總是在他與學生第一次碰面立刻開始:「為什麼找我當指導教授?」。給他滿意的回答,才能成為他的學生,成績並非最優先的考量。

翁啟惠(左1)對教學的想法,奠基於博士班老師懷特賽茲(右1)和自己長年的實踐經驗。談到臺灣學生,他特別指出必須加強兩點訓練:獨立思考與表達能力。
圖│翁啟惠

培養學生獨立思考與研究的能力

翁啟惠的指導理念是「指示不要太詳細」,讓學生自己想問題、找資料、設計實驗。他只負責給大方向、從旁協助。因為講的太過具體,反而會限制學生獨立發展的空間。

翁啟惠更精闢地剖析: 由學生獨立完成的成果,才會認為是自己的成績。否則即使成果再好,學生也可能覺得那是老師的東西,不是自己的成就。當學生獲得成功經驗,對自己有信心,此後便能更加獨立,建立正向循環。

另一方面,由於學生有大片空白可以填補,所以想法和能力不會受到過去積習所影響。翁啟惠提到,他有很多超乎預期的重要研究,是來自學生自己的嘗試。例如,研發出自動化一鍋式合成醣分子的歐曼(Ian Ollmann),原本在博士班四年級仍苦無突破,翁啟惠建議他發揮寫程式的專長,果然順利完成發表,後來甚至還轉戰高科技龍頭蘋果公司,至今已工作超過 20 年。

不過,讓學生自己摸索,失敗怎麼辦?翁啟惠認為失敗為成功之基礎,學生經歷失敗,才能培養耐心,累積應付挫折的經驗,打下未來成功的基礎。做研究的關鍵在於興趣,只要保持興趣,失敗也能學到新東西,而成功則能增強信心,有利於繼續成功。翁啟惠也鼓勵學生,與其等待老師指導,不如勇於嘗試、放手去做。

程式化一鍋多醣合成技術示意圖。
圖│研之有物(資料來源|中研院基因體中心資訊組)

研究院院長時期:積極推動產學交流與合作

翁啟惠任職 Scripps 研究院的期間,茁壯為世界第一流學者,各國爭相合作。如此耀眼的旅外人才,自然也受到當時中研院院長李遠哲賞識,促成翁啟惠於 2003 年回到臺灣,並在 2006 年到 2016 年擔任了兩屆院長。

翁啟惠除了提升中研院的學術水準,他最重要的任務莫過於推動生物科技產業。因為翁啟惠認為產學互利共生很重要,有好的產業才能吸收廣泛的人才,例如臺灣的半導體產業,可以讓理工科系學生不愁出路,產生正向循環。

但另一方面,生物科技已成為各個科技大國的明星產業,臺灣每年有大批醫藥、生技的人才,卻沒有相應規模的產業,無法人盡其才。

為了推動生技產業,法規制度與產學合作園區都不可或缺。翁啟惠參考美國 1980 年的拜杜法案(Bayh-Dole Act),與專家合作完成臺灣版本的法規,將產學合作、技術轉移制度化。

法規的主要精神,就是由政府補助學術研究,做出初步成果後,再技術轉移給業者尋求商業化,後續再回饋給學術形成正向循環。園區方面,國家生技研究園區、中研院南部院區,都隨著翁啟惠的規劃步上軌道,讓基礎研究和產業創新能夠連結。

當然,產學間的轉換並不總是那麼順利。不過翁啟惠認為,如果學者發表的論文成果,同時也能促進產業,讓社會一同受益更好。這倒不是說所有學者都要投入產學合作,而是要慢慢建立起產學合作的文化,將研發成果回饋給社會。

往好處看,臺灣的生技產業與產值都持續進步中,而這條路依然任重而道遠。

產學合作的新潛力

翁啟惠是純學術研究出身,為什麼後來卻相當熟悉產學合作呢?時光要回溯到 1985 年。那時翁啟惠獲頒席艾勒學者生物醫學獎(Searle Scholar Award in Biomedical Sciences)——這是他少數獲得的生醫獎項之一,加上總統年青化學家獎,使他在美國學術界站穩腳步,也讓他有擔任企業顧問的機會。

從杜邦公司開始,初出茅廬的翁啟惠自認什麼都不懂,跟著前輩們邊看邊學,解決一家又一家企業的疑難雜症,而業界的顧問經驗同時也支持著自己想做的研究。翁啟惠逐漸累積產業經驗後,發現產學目標很不一樣,學者要優先發表論文,企業則是產品導向,講究解決問題。

訪談之中,翁啟惠回顧幾件很有意思的顧問經驗。例如,有公司希望解決可樂中代糖「阿斯巴甜」(Aspartame)在高溫下產生甲醇毒素的問題。也有公司想要改良汽車外層鍍膜,避免鳥糞腐蝕。

另外還有一個香菸公司的邀請讓翁啟惠印象深刻,那時很多重度菸癮者抽到頭痛,產品只能先緊急下架,菸商損失慘重;後來查明是製菸的紙漿中存在微量有害物質,若短時間抽很多根菸,大量攝取下會有立即危害。

這些顧問工作,很多都和翁啟惠醣化學的本業無關,卻帶給他開闊的視野與企業經驗。我們也可以注意到,美國政府與產業界相當有心培育有潛力的人才,即便尚無業界經驗,也願意讓新人去嘗試擔任顧問。

翁啟惠提到,美國東岸的新英格蘭周邊,是產業歷史最悠久的地區,也分佈許多老牌大企業;西岸的加州則不同,主要是新創小公司。不同地方各有特色,衍生出多變的產學文化。

相比之下,臺灣也具備潛力,就看經營出什麼文化。翁啟惠認為,我們已經建立民主自由的社會,若要更上層樓,臺灣萬萬不可孤立,要主動與國際交流,並發展自己的特色。

有交流,創意的火花才有可能碰撞,或許那個坐在你隔壁的人,就是未來的合作夥伴!翁啟惠提到,總部位於加州聖地牙哥,以基因定序闖出名號,至今仍蓬勃發展的因美納(Illumina)公司,其共同創辦人沃特(David Walt),正是他在麻省理工學院實驗室的同儕!有次邀請沃特到 Scripps 演講,剛好聽眾中有兩位感興趣的投資者,演講結束之後,沃特便與兩位投資者私下討論,就創辦了 Illumina 公司。

醣無所不在!未解的謎題還等著研究

儘管投身學術研究 50 年,醣化學將近 40 年,翁啟惠絲毫沒有停下腳步的意思。當訪問到「醣化學還有什麼潛力?」,一如談教育時的熱情,翁啟惠又展現出科學家對研究的熱愛。

在翁啟惠眼中,醣類有太多謎團等待解答。生物基因以 DNA 承載遺傳訊息,製作蛋白質行使功能,但是時常還要加上醣的參與,偏偏醣類不像核酸、蛋白質容易摸索。醣分子無法複製,只能用化學合成,細胞表面佈滿的醣分子結構不對,功能就不同。

以抗體為例,抗體是一種醣蛋白,我們知道抗體靠著專一性辨識去附著目標,消滅病毒。相對卻少有人意識到,抗體的一端附著目標後,另一端還要連接免疫細胞轉入後續反應才能消滅病毒,這步正是依靠醣分子,因此醣類會影響抗體的免疫功能

相對的,病毒需要依賴宿主細胞以便大量複製。不同細胞會賦予蛋白質產物不同的醣化修飾。研究發現即使遺傳物質相同的病毒,假如病毒外頭的醣化修飾不同,也會影響感染能力及免疫反應。由上呼吸道細胞產生的新冠病毒,感染力就比其他細胞更強。

對於開發疫苗,翁啟惠近年投入不少心血。疫苗刺激產生的抗體講究專一性,研發者要想辦法針對病毒結構來調整抗體及 T 細胞反應。翁啟惠與研究團隊的思路卻是另闢蹊徑,並非將病毒露出來的表面設為目標,而是要去掉病毒外層的「醣」衣,也就是「去醣化疫苗」。

因為病毒暴露在外的部分會持續改變,躲避特定抗體,但是被醣基包裹的位置不太會變,或許是人體免疫記憶更好的訓練對象。以此概念製成的蛋白質或 mRNA 疫苗,若是成功,便有機會成為所謂的「廣效疫苗」,接種一款疫苗就能應付病毒的多型變化,特別是難纏多變的流感病毒、冠狀病毒(例如 SARS-CoV-2)。

新冠病毒(SARS-CoV-2)的棘蛋白上面有醣化修飾(標示為橘色),醣基包裹的位置不太容易突變,因此去除表面的醣化修飾之後,可以進一步製成廣效疫苗。
圖│研之有物(資料來源|翁啟惠、中研院基因體中心)

除此之外,翁啟惠團隊也持續開發廣效癌症疫苗。用抗體對付癌症的想法十分誘人,其難處在於,疫苗刺激產生抗體,辨識外來入侵的異物加以攻擊;但是癌細胞是人體細胞變異産生,上頭存在的成分正常細胞常常也有,設定癌細胞打擊,反而會造成自體免疫的悲劇。

好消息是,癌細胞外頭有些醣化修飾,不同於正常細胞。翁啟惠的隊伍尋獲 Globo H 等幾個醣類分子,適合作為疫苗針對的目標。相關技術已經轉移給業者,正在進行第三期人體臨床試驗。這些圍繞醣分子作文章的創新疫苗令人期待,最終是否能投入實戰,仍有待分曉。

關於醣化學,翁啟惠將持續探究細胞表面醣分子所扮演的角色,以及醣分子和疾病的關係。

給年輕學生的話:「興趣是研究的動力

翁啟惠語重心長地提到,醣化學領域如今的樣貌取決於他們這些開拓者,未來則要看能否引發年輕人的興趣,因為未來是年輕人的。

現今教育強調跨領域,翁啟惠自己無疑也是跨領域的知名化學家,但是他提醒年輕人,跨領域絕對不等於什麼都要學、都要會。基礎還是要打好,跨領域的關鍵是有能力與其他領域的人互動合作。

翁啟惠近期便以國家生技醫療產業策進會會長的角色,積極促進醫界與電子業的對話。因為醫界知道市場需求,但不懂得製造;電子業擅長製造,但是對醫療需求沒有深刻理解。他希望營造合作交流的環境,創造新的可能性。

最後,翁啟惠提醒學生,做研究一定要長期投入,深入鑽研,若是短短幾年就轉換領域,只會愈來愈迷茫。興趣對研究生涯最重要,有興趣才有動力,而興趣的培養則來自日常的自我探索。

翁啟惠建議學生在跨領域之前,基礎還是要打好,而跨領域的關鍵是有能力與其他領域的人互動合作。
圖│翁啟惠
研之有物│中央研究院_96
253 篇文章 ・ 2217 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

2
0

文字

分享

0
2
0
【2005 諾貝爾化學獎】歧化 – 一個更換伴侶的舞蹈
諾貝爾化學獎譯文_96
・2022/09/13 ・5122字 ・閱讀時間約 10 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

今年的諾貝爾化學獎由三位化學家所共同獲得,他們是法國的 Yves Chauvin,以及兩位美國的學者 Robert H. Grubbs 及 Richard R. Schrock,得獎的原因在表彰他們發展歧化(metathesis)反應在有機合成上的運用所造成的卓越貢獻。得獎者的成就已經在化學工業上成為一項重要的方法,並在合成化合物上開啟了新的機會而將使工業上製造藥物、塑膠以及其它材料的生產更為方便,這些物質的價格會因此降低而且減少對環境的衝擊。

歧化 — 一個更換伴侶的舞蹈

什麼是歧化?

在化學的反應中,原子之間的鍵結會斷裂而新的鍵結會生成。今年諾貝爾化學獎的焦點是稱為"歧化"的反應,這個名詞具有"改變位置"的意義。如(圖1)所示,在烯(一種含有碳-碳雙鍵的化合物)的歧化反應中,形成雙鍵的兩個碳會與另外一組雙鍵的兩個碳交換伴侶,形成另一個新的組合。在所示的反應中,一個丙烯的分子將其中的一個 CH2 基團與另一分子的丙烯中之 CH3CH 交換,結果就產生了丁烯及乙烯。這個反應需要使用一個催化劑(催化劑是一個能使反應加速進行但卻不會成為產物的一部份的分子)才會發生。

(圖1)兩個丙烯藉著催化劑的幫助進行烯的歧化反應,產生兩個新的烯化物即丁烯和乙烯。

其實化學家早就知道可以透過這種反應來製造新的化合物,只是他們並不瞭解催化劑在這個反應中扮演的角色為何。Yves Chauvin 提出的反應機制在對這個反應的認知上跨出了一大步,因為他解釋了催化劑是如何的運作。此時,研究者獲得了一個新的挑戰機會,那就是如何的去創造一個新的且更有效的催化劑。緊接著,Robert H. Grubbs 及 Richard R. Schrock 的基礎研究進場,由於他們的貢獻,才有今日那些非常有用的催化劑可供使用。

有機化合物 — 豐富的多樣性

碳元素能與碳元素以及其它的元素如氫、氧、氯和硫形成很強的鍵結,碳原子能以單鍵、雙鍵或三鍵的方式與其它的原子結合,可得到直鏈或分岔的結構,又可生成具有各種型態和大小的環狀結構。這個領域的化學稱為有機化學,因為在地球上生命的存在都是基於碳的這種多樣性。

眾多的有機化合物中,目前其實只有一小部份被研究過,但即使如此,我們現在已經可以得到各種新的藥物、材料、塗料等等,這是幾年前所無法想像的。

有機合成

所謂的有機合成就是將不同的化合物以特定的方式反應而製造出其它的化合物;透過有機合成,我們可以從已知的化合物原料製造出新的化合物。許多的工業必需利用有機合成,例如製藥和生技的工業,以及纖維和特用化學品的工業。在(圖2)中,一個在癌症的研究中所需的化合物 A 需要用另一個化合物 B 來合成,而 B 又需要從別的分子來合成。在化合物 B 的結構中具有一個由碳原子所組成的長鏈,其中有一個碳原子被氧原子取代。在合成化合物 A 時,這個長鏈被轉變成了一個大環的結構,這個環狀的結構正是抗癌的活性所必需。

為了製造這個大環,催化性的歧化反應正好派上用場,而其使用的催化劑正是這次的諾貝爾獎得主之一所開發出來的。由化合物 B 的結構中之長鏈兩端的雙鍵(圖中圈出的部分),透過歧化反應可以製造出兩個新的雙鍵,其中一個雙鍵用在結合長鏈的兩端而形成大環,而另一個雙鍵則存在於另一個副產物乙烯當中。如果要用別的方法來形成這個大環,將需要非常複雜而冗長的步驟。

(圖2) 運用一個 Grubbs 催化劑進行的合成。在此透過歧化反應將化合物 B 中的長鏈結合成化合物 A 中的大環。化合物 A 被用在癌症的研究上,其中環狀的結構正是抗癌的活性所必需。

歧化反應是如何發現的

歧化反應的發現可回朔至 1950 年代,正如同許多有機化學反應的發現一般,它源自於工業界,有好些個專利描述了催化性的烯聚合反應,其中的一篇專利是由美國杜邦公司的 H. S. Eleuterio 在 1957 年所提出的,它描述了得到不飽和的碳鏈(鏈上具有許多雙鍵)的方法;在此之前,由乙烯聚合成聚乙烯只會得到飽和的碳鏈(鏈上不具雙鍵)。這個出人意外的發現造成了深遠的影響。

在同年,另一份專利顯示,當使用一個由三異丁基鋁(triisobutyl aluminum)與氧化鉬(molybdenum oxide)依附在氧化鋁上的催化系統時,丙烯可轉變成丁烯及乙烯,這個在(圖1)所示的反應被稱為菲利浦公司的三烯製程(Phillips triolefin process)。這兩個專利都成功的在工業界中使用。

在許多年之後,這兩個發現的關聯性才被固特異輪胎及橡膠公司的 N. Calderon 發現,他指出,在上述的兩種製程中所發生的是同一種型態的反應,並稱之為烯的歧化反應(olefin metathesis),只不過在分子的層次,其中的催化劑之結構及其運作的機制在當時仍屬未知,因而由此所啟動之精采的催化劑獵捕行動,只能在黑暗中透過隨意擲擊四處碰觸的方式盲目的摸索。

Chauvin 的機制

越來越多的化學家開始注意到到歧化反應可能提供給有機合成的高度潛力,不過可能沒有人料想到它會成為如此的重要。雖然有許多的研究者提出各種歧化反應如何發生的可能機制,但真正的突破要等到 1970 年 Yves Chauvin 所發表的一份研究報告,他和他的學生 Jean-Louis Herrison 指出其中的催化劑是一個金屬碳烯(metal carbene),這種化合物具有一個金屬與碳形成的雙鍵。在之後的文獻中,金屬碳烯也被稱為金屬亞烷基(metal alkylidine)。在更早些年 E. O. Fisher(1973年諾貝爾化學獎)也發現過一些其它的金屬碳烯。Chauvin 也提出了一個嶄新的機制來解釋這個金屬化合物在反應中扮演何種功能。他們所進行的一些新的實驗結果完全符合這個新機制的運作,而無法用之前所提出的各種機制來解釋。在(圖3)(a )中,一個金屬亞甲基做為催化劑,造成兩個雙鍵上的亞烷基之交換,導致兩個新的雙鍵生成(圖中金屬 M 上所用的中括號代表金屬除了與碳之間有一個雙鍵之外其上還有其它的基團)。

(圖3) (a)由金屬亞甲基做為催化劑的烯歧化反應。產物是兩個新的烯化物:乙烯及一個含有兩個 R’ 基團的烯化物,這兩個 R’ 基團分別接在雙鍵的兩個碳上,曲折線代表它們可以在雙鍵的同邊或反邊。 (b)Chauvin 提出的烯歧化反應機制。在這個催化的循環中,會生成一個含有三個碳和一個金屬的四元環。

(圖3)(b)所示為此反應的機制,在反應的第一階段,金屬亞甲基與一個烯形成一個四元環,這個環含有一個金屬和三個碳,相互以單鍵結合。在下一個階段,其中的兩個單鍵斷裂並形成一個新的烯(即乙烯)和一個新的金屬亞烷基。在第三步驟,這個新的金屬亞烷基又與原先的烯結合成一個新的四元環。在最後的步驟中,這個含有金屬的四元環裂解產生歧化的產物並同時重新得回原先的金屬亞甲基,這個重新得回的金屬亞甲基又繼續投入另一個歧化反應的循環當中。這個反應的最終結果就是兩個烯的分子交換了它們的亞烷基,也就是進行了歧化反應(圖3)(a)。Chauvin 的機制一舉解釋了所有早先文獻中的結果,他的機制也得到了 Robert H. Grubbs、Thomas J. Katz 以及 Richard R. Schrock 等研究團隊的實驗之強烈支持,現已廣為大家所接受。

(圖4)一個有趣的歧化之舞。

上面所描述的 Chauvin 機制可以視為一種舞蹈(圖4),其中催化劑與烯這兩組在舞蹈中交換舞伴。金屬和他的舞伴雙手相牽,當碰到烯隊時這兩組人馬結合成一個圈圈跳舞,隔了一會兒,他們與原先的同伴鬆手然後與新的伴侶湊成一對共舞。現在新形成的金屬隊又開始尋找新的烯隊,再次組成圈圈跳舞,換句話說,金屬隊成為一個分歧化的媒介者。

研發新的催化劑

到此時更多的化學家開始體認到,如果能找到更有效而可靠的催化劑,將可以使得這個反應在有機合成上成為一個極為重要的方法。早先所使用的催化劑結構並不明確,對空氣及濕氣極為敏感,穩定度很差而只能短暫的存在。一個好的催化劑必須是穩定的,並具有確定的結構,其化學活性要能針對需要而做調整,此外它們必須具有選擇性,也就是說只會與雙鍵反應而不會作用到分子上的其它部位。Chauvin 的研究結果顯示了有效率的催化劑可以如何的建立,但問題是在所有結構很明確的已知金屬亞烷基中,沒有一個可以成功的運用在烯的歧化反應上。雖然有好些位化學家在研發歧化反應的催化劑及其運用,並且也有重要的貢獻,不過,在此研究領域中關鍵性的進展則出自於 Robert H. Grubbs 及 Richard R. Schrock 的團隊。

Schrock 的第一個實用的催化劑

Schrock 在 1970 年代初期開始研究新的金屬亞烷基錯合物,但是到底哪一種金屬最適合製造出最有效的催化劑呢?他嘗試了含有鉭(tantalum)、鎢及鉬的催化劑,逐漸的掌握了哪些金屬可以使用以及它們如何的運作。對 Schrock 而言,鎢及鉬很快的顯示出是最適當的金屬,雖然用這些金屬合成了一些催化劑,但對於在金屬上到底要放上什麼基團才能製造出穩定而活性又高的催化劑仍不確定。在 1990 年,Schrock 的團隊終於得到突破而發表了一系列活性又高而結構又很明確的含鉬之催化劑(圖5)。

(圖5)一個 Schrock 的含鉬催化劑。藉著選擇適當的基團接在金屬上可以得到極高的化學活性。在此 i-Pr 代表異丙基,Ph 代表苯基。

由於他的發現,化學家開始體認到烯的歧化反應可以普遍的運用在有機合成上,歧化反應越來越受到那些活躍的有機合成化學家們的注意,他們發現歧化反應可以取代許多傳統的合成方法,而在同時也提供了一種嶄新的方式來合成有機化合物。在(圖5)中所示的含鉬催化劑雖然對氧氣及濕氣是很敏感的,但只要透過適當的處理方式,不失為一個在有機合成上威力強大的工具。

一種由 Grubbs 所研發的通用催化劑

另一個突破則發生在 1992 年,Robert Grubbs 的研究團隊報導了他們所發現的一個含釕(ruthenium)的催化劑,它在空氣中是穩定的,表現出很高的化學選擇性,但是化學活性較 Schrock 的催化劑為低,這個新的催化劑可以在醇、水及有機酸的存在下催化歧化反應(參考圖2),在此之後 Grubbs 進一步的改進了他的催化劑,在(圖6)中所示的是幾個很有效而又容易合成的催化劑中的一個。

(圖6) 一個由 Grubbs 開發的含釕的催化劑。在此 Cy 代表環己基。

Grubbs 的催化劑已成為在普通的實驗室中,被普遍使用在歧化反應上,而且功能明確的催化劑。在(圖6)中所示的催化劑被稱為 Grubbs 催化劑,並成為一個被其它新的催化劑用來比對的標準。Grubbs 催化劑的通用性導致其後在有機合成上新的展望。Grubbs 對催化劑的設計是基於詳細的反應機制研究,他持續的開發以釕為基礎的催化劑,朝著製造合成上最具威力的催化劑而努力,這些合成包括了具有特殊性質的聚合物。

運用以及影響

這幾位諾貝爾獎得主所發展的合成方法,已經在學術研究上迅速的成為普遍使用的工具。為了製造新化合物所設計的工業製程,在這方面也有熱烈的發展,利用催化性的歧化反應可以縮短合成的步驟,得到更高的產率及更少的廢物,這導致更乾淨而對環境衝擊較小的製程。這種反應開啟了更多的機會去探索更多樣性的有機分子。除了他們之外,許多其他的研究者也提供了重要的貢獻,並持續的為了解決特定的問題例如合成複雜的天然物及其類似物,而開發新的歧化反應催化劑。

歧化反應在製藥工業、生技工業及食品工業上具有極大的商業潛力;新的催化劑亦可廣泛的運用在聚合物的合成上,雖然截至目前許多最有用的聚合物仍然是用傳統的方式來合成,但最近在聚合物合成的研究顯示,某些歧化反應催化劑在合成具有特殊性質的聚合物方面具有光明的前景。

雖然 Schrock 與 Grubbs 所發展的催化劑問世不過短短數年,但是他們所發展的應用性之深入的確是令人驚訝,這包括了昆蟲費洛蒙、除草劑、聚合物和燃料的添加劑、具有特殊性質的聚合物以及各種在藥物發展上很有潛力的各種分子之合成。有關一些可以對付各種人體疾病所發展的各種分子尤其值得一提,因為許多的研究者正投入於製造可能的藥物來治療各種狀況,例如細菌感染、C 型肝炎、癌症、阿茲海默症、唐氏症、骨質疏鬆、風濕、發炎、纖維症、HIV/AIDS、偏頭痛等等,歧化反應也因此成為一項重要的武器來尋找新的藥物以治療這世界上許多主要的疾病。

參考資料

蔡蘊明譯自諾貝爾化學獎委員會公佈給大眾的參考資料:

http://nobelprize.org/chemistry/laureates/2005/info.html

若要參考更深入的說明請見:

http://nobelprize.org/chemistry/laureates/2005/adv.html

諾貝爾化學獎譯文_96
15 篇文章 ・ 20 位粉絲
「諾貝爾化學獎專題」系列文章,為臺大化學系名譽教授蔡蘊明等譯者,依諾貝爾化學獎委員會的新聞稿編譯而成。泛科學獲得蔡蘊明老師授權,將多年來的編譯文章收錄於此。 原文請參見:諾貝爾化學獎專題系列