Loading [MathJax]/extensions/tex2jax.js

1

0
0

文字

分享

1
0
0

影像欣賞:在雲縫中搶拍的月全食

臺北天文館_96
・2011/06/16 ・801字 ・閱讀時間約 1 分鐘 ・SR值 465 ・五年級

由於臺北地區天氣不佳,於初虧後沒多久,雲就一朵接一朵的現身,觀測條件很差;不知道您是否也有看到紅色的月亮呢?以下照片是臺北天文館同仁在雲縫中搶拍的成果,與大家分享。

臺北天文館周紹孔先生於淡水拍攝的紅色月全食和月掩蛇夫座51星的景象。
臺北天文館周紹孔先生於淡水拍攝的紅色月全食和月掩蛇夫座51星的景象。

臺北天文館林琦峰先生拍的偏食階段景象。
臺北天文館林琦峰先生拍的即將接近食既的偏食階段景象。

臺北天文館張桂蘭小姐所拍攝的初虧過後影像。
臺北天文館張桂蘭小姐所拍攝的初虧過後影像。

-----廣告,請繼續往下閱讀-----

臺北天文館李瑾先生所拍攝的半影食過程中的月亮。
臺北天文館李瑾先生所拍攝的半影食過程中的月亮。


下方照片為清華大學天文所江國興教授提供的月全食及掩星景象。江教授表示:新竹地區今天凌晨一直有薄雲,但不影響月食觀測,直到3:30左右食既之後,月亮才被雲層掩蓋而無法觀測。感謝江教授提供月食照片給大家欣賞,本圖版權屬江國興教授所有,如需利用,請逕洽江教授。

清大江國興教授拍攝的2011.06.16月全食照片

下方為另一幅江國興教授提供的月全食影像,拍攝時間為3:25,恰在食既之後,也就是月球已完全進入地球本影中。但仍可明顯見到左上方較接近地球本影中心的地方,比右下角較接近地影邊緣的地方還暗許多,整個月球的顏色與亮度都差異頗大。感謝江教授提供月食照片給大家欣賞,本圖版權屬江國興教授所有,如需利用,請逕洽江教授。

本文引用自臺北天文館之網路天文館網站

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
臺北天文館_96
482 篇文章 ・ 44 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!

0

1
0

文字

分享

0
1
0
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

4
0

文字

分享

0
4
0
數位攝影搖身一變黑科技,CIS 成長無止盡,遇上異常該如何 DEBUG?
宜特科技_96
・2023/06/05 ・4124字 ・閱讀時間約 8 分鐘

一個女子用手機在進行自拍
圖/宜特科技

從小時候的底片相機,發展到數位相機,如今手機就能拍出許多高清又漂亮的照片,你知道都是多虧了 CIS 晶片嗎?

本文轉載自宜特小學堂〈CIS晶片遇到異常 求助無門怎麼辦〉,如果您對半導體產業新知有興趣,歡迎按下右邊的追蹤,就不會錯過宜特科技的最新文章!

CIS 晶片又稱 CMOS 影像感測器(CMOS Image Sensor),最早是在 1963 年由美國一家半導體公司發明出來的積體電路設計,隨著時代進步,廣泛應用在數位攝影的感光元件中。而人們對攝影鏡頭解析度需求不斷增加,渴望拍出更精美的畫質。

CIS 已從早期數十萬像素,一路朝億級像素邁進,有賴於摩爾定律(Moore’s Law)在半導體微縮製程地演進,使得訊號處理能力顯著提升。如今的 CIS 已經不僅適用於消費型電子產品,在醫療檢測、安防監控領域等應用廣泛,近幾年智慧電車興起,先進駕駛輔助系統(ADAS, Advanced Driver. Assistance Systems)已成為新車的安全標配,未來車用 CIS 的市場更是潛力無窮。

然而,越精密、越高階的 CIS 晶片由於結構比較薄,加上特殊的 3D 堆疊結構,使得研發難度大大提升,當遇到異常(Defect)現象時,想透過分析找出故障的真因也更為困難了。

-----廣告,請繼續往下閱讀-----

本文將帶大家認識三大晶片架構,並以案例說明當 CIS 晶片遇到異常,到底我們可以利用那些工具或手法,成功 DEBUG?

一、認識 CIS 三大晶片架構

現今 CIS 晶片架構,可概分為三大類,(一)前照式(Front Side illumination,簡稱FSI);(二)背照式 (Back Side illumination,簡稱 BSI);(三)堆疊式 CIS(Stacked CIS)

(一)前照式(FSI)CIS

為使 CIS 晶片能符合半導體製程導入量產,最初期的 CIS 晶片為前照式 (Front Side illumination,簡稱 FSI) CIS;其感光路徑係透過晶片表面進行收光,不過,前照式 CIS 在效能上的最大致命傷為感光路徑會因晶片的感光元件上方金屬層干擾,而造成光感應敏度衰減。

(二)背照式(BSI)CIS

為使 CIS 晶片能有較佳的光感應敏度,背照式(Back Side illumination ,簡稱 BSI)CIS 技術應運而生。此類型產品的感光路徑,係由薄化至數微米後晶片背面進行收光,藉此大幅提升光感應能力。

而 BSI CIS 的前段製程與 FSI CIS 類似,主要差別在於後段晶片對接與薄化製程。BSI CIS 的製程是在如同 FSI CIS 一般製程後,會將該 CIS 晶片正面與 Carrier wafer 對接。對接後的晶片再針對 CIS 晶片背面進行 Backside grinding 製程至數微米厚度以再增進收光效率,即完成 BSI CIS。

(三)堆疊式(Stacked)CIS

隨著智慧型手機等消費電子應用的蓬勃發展,人們對於拍攝影像的影像處理功能需求也大幅增加,使製作成本更親民與晶片效能更能有效提升,利用晶圓級堆疊技術,將較成熟製程製作的光感測元件(Sensor Chip)晶片,與由先進製程製作、能提供更強大計算能力的特殊應用 IC(Application Specific Integrated Circuit,簡稱 ASIC)晶片、或是再進一步與記憶體(DRAM)晶片進行晶圓級堆疊後,便可製作出兼具高效能與成本效益的堆疊式 CIS(Stacked CIS)晶片(圖一),也是目前最主流的晶片結構。

-----廣告,請繼續往下閱讀-----
堆疊式(Stacked) CIS晶片示意圖
《圖一》堆疊式(Stacked)CIS 晶片示意圖。圖/宜特科技

二、如何找堆疊式(Stacked)CIS 晶片的異常點(Defect)呢?

介紹完三大類 CIS 架構,我們就來進入本文重點:「如何找到堆疊式(Stacked)CIS 晶片的異常點(Defect)?」

由於這類型的 CIS 晶片結構相對複雜,在進行破壞性分析前,需透過電路專家電路分析或熱點(Hot Spot)故障分析,鎖定目標、縮小範圍在 Stacked CIS 晶片中的其一晶片後,針對可疑的失效點/失效層,進行該 CIS 樣品破壞性分析,方可有效地呈現失效點的失效狀態以進行進一步的預防修正措施。

接著,我們將分享宜特故障分析實驗室,是如何(一)利用電性熱點定位;(二)移除非鎖定目標之晶粒(Die),並針對鎖定目標晶粒(Die)逐層分析;(三)電性量測分析;(四)超音波顯微鏡(SAT)分析等四大分析手法交互應用,進行 Stacked CIS 晶片進行故障分析,順利找到異常點(Defect)。

(一)透過電性熱點定位找故障點(Hot Spot)

當CIS晶片具有高阻值(High Resistance)、短路(Short)、漏電(Leakage)或是功能失效(Function Failure)等電性失效時,可依據不同的電性失效模式,經由直流通電或上測試板通電,並透過選擇適合的電性故障分析(EFA, Electrical Failure Analysis)工具來進行電性定位分析。

設備OBIRCHThermal EMMIInGaAs
偵測目標電晶體/金屬層金屬層/封裝/印刷電路板電晶體/金屬層
失效模式漏電/短路/高阻值漏電/短路/高阻值漏電/短路/開路
各設備適合使用的選擇時機

包括雷射光束電阻異常偵測(Optical Beam Induced Resistance Change,簡稱 OBIRCH)熱輻射異常偵測顯微鏡(Thermal EMMI)(圖二)、砷化鎵銦微光顯微鏡(InGaAs),藉由故障點定位設備找出可能的異常熱點(Hot Spot)位置,以利後續的物性故障(PFA, Physical Failure Analysis)分析。

-----廣告,請繼續往下閱讀-----
透過Thermal EMMI找到電性失效的故障點位置
《圖二》透過 Thermal EMMI 找到電性失效的故障點位置。圖/宜特科技

(二)移除非鎖定目標之晶粒,並針對鎖定目標晶粒逐層分析

接著,依照上述電性分析縮小可能的異常範圍至光感測元件晶片、ASIC 或記憶體晶片區後,根據 Stacked CIS 晶片堆疊的結構特性,需先將其一側的矽基材移除,方可進行逐層去除(Layer by layer),或層層檢查。

再者,透過特殊分析手法,移除不需保留的晶粒結構,進而露出目標晶粒之最上層金屬層(圖三)。接著,透過逐層去除(Layer by layer),最終在金屬層第一層(Metal 1)找到燒毀現象的異常點(defect) (圖四)。

搭配特殊手法,將CIS待測樣品不需保留之晶粒部分,完整移除
《圖三》搭配特殊手法,將 CIS 待測樣品不需保留之晶粒部分,完整移除。圖/宜特科技
對照Hot Spot分析範圍,進行鎖定目標晶粒進行逐層去除,發現燒毀現象
《圖四》對照Hot Spot分析範圍,進行鎖定目標晶粒進行逐層去除,發現燒毀現象。圖/宜特科技

(三)電性量測分析:導電性原子力顯微鏡(C-AFM, Conductive Atomic Force Microscopy)與奈米探針系統(Nano-prober)的應用

當逐層去除(Layer by Layer)過程當中,除利用電子顯微鏡(SEM) 於故障點區域進行 VC(Voltage Contrast)的電性確認與金屬導線型態觀察外,亦可搭配導電原子力顯微鏡(Conductive Atomic Force Microscopy,簡稱C-AFM)快速掃描該異常區域,以獲得該區域電流分布圖(Current map)(圖五),並量測該接點對矽基板(Si Substrate)的電性表現,進而確認該區域是否有漏電 / 開路等電性異常問題。

C-AFM異常分析結果圖
《圖五 (左)》C-AFM 異常分析結果圖。圖五 (左): 外加正電壓 (+1V) 時的 Current map 異常電性發生;
《圖五 (右)》外加負電壓 (-1V) 時的 Current map 異常電性發生 (黃圈處)。圖/宜特科技

在完成C-AFM分析後,若有相關疑似異常路徑需要進一步進行電性量測與定位,可使用奈米探針電性量測(Nano-Prober)進行更精準的異常點定位分析,包括電子束感應電流(EBIC , Electron Beam Induced Current)、電子束吸收電流(EBAC, Electron Beam Absorbed Current)、與電子束感應阻抗偵測(EBIRCH , Electron Beam Induced Resistance Change)等定位法。而Nano-Prober亦可針對電晶體進行電性量測,如Vt、 IdVg、IdVd等基本參數獲取(圖六)。

-----廣告,請繼續往下閱讀-----

當透過上述分析手法精準找到異常點後,亦可再透過雙束聚焦離子束(Dual-beam FIB,簡稱DB-FIB)或是穿透式電子顯微鏡(Transmission Electron Microscopy,簡稱TEM)來對異常點進行結構確認,以釐清失效原因(圖七)。

EBIC分析結果圖
《圖六》EBIC分析結果圖。圖/宜特科技
TEM分析結果圖
《圖七》TEM分析結果圖。圖/宜特科技

(四)超音波顯微鏡(Scanning Acoustic Tomography,簡稱SAT)分析:於背照式(BSI)/堆疊式(Stacked)CIS晶圓對接製程的應用

超音波顯微鏡(SAT)

超音波顯微鏡(SAT)為藉由超音波於不同密度材料反射速率及回傳能量不同的特性來進行分析,當超音波遇到不同材料的接合介面時,訊號會部分反射及部分穿透,但當超音波遇到空氣(空隙)介面時,訊號則會 100% 反射,機台就會接收這些訊號組成影像。
超音波顯微鏡(SAT)原理圖
超音波顯微鏡(SAT)原理圖。圖/宜特科技

在背照式(BSI)與堆疊式(Stacked)CIS 製程中晶圓與晶圓對接(bonding)製程中,SAT 可作為偵測晶圓與晶圓之間接合不良造成存在空隙的重要利器(圖八)。

圖八: 透過超音波顯微鏡(SAT),找到晶圓與晶圓對接(bonding)之鍵合空隙位置
《圖八》透過超音波顯微鏡(SAT),找到晶圓與晶圓對接(bonding)之鍵合空隙位置。圖/宜特科技

半導體堆疊技術的蓬勃發展,加上人們對影像感測器在消費性電子、車用電子、安控系統等應用,功能需求大幅度增加,CIS 未來將繼續進化,無論是晶圓級對接的製程穩定度分析,或是堆疊式(Stacked)CIS 故障分析,都可以透過宜特實驗室豐富的分析手法,與一站式整合服務精準地分析、加速產品開發、改善產品品質。

-----廣告,請繼續往下閱讀-----
宜特科技_96
15 篇文章 ・ 4 位粉絲
我們了解你想要的不只是服務,而是一個更好的自己:) iST宜特自1994年起,以專業獨家技術,為電子產業的上中下游客戶, 提供故障分析、可靠度實驗、材料分析和訊號測試之第三方公正實驗室

1

0
0

文字

分享

1
0
0
影像欣賞:在雲縫中搶拍的月全食
臺北天文館_96
・2011/06/16 ・801字 ・閱讀時間約 1 分鐘 ・SR值 465 ・五年級

由於臺北地區天氣不佳,於初虧後沒多久,雲就一朵接一朵的現身,觀測條件很差;不知道您是否也有看到紅色的月亮呢?以下照片是臺北天文館同仁在雲縫中搶拍的成果,與大家分享。

臺北天文館周紹孔先生於淡水拍攝的紅色月全食和月掩蛇夫座51星的景象。
臺北天文館周紹孔先生於淡水拍攝的紅色月全食和月掩蛇夫座51星的景象。

臺北天文館林琦峰先生拍的偏食階段景象。
臺北天文館林琦峰先生拍的即將接近食既的偏食階段景象。

臺北天文館張桂蘭小姐所拍攝的初虧過後影像。
臺北天文館張桂蘭小姐所拍攝的初虧過後影像。

-----廣告,請繼續往下閱讀-----

臺北天文館李瑾先生所拍攝的半影食過程中的月亮。
臺北天文館李瑾先生所拍攝的半影食過程中的月亮。


下方照片為清華大學天文所江國興教授提供的月全食及掩星景象。江教授表示:新竹地區今天凌晨一直有薄雲,但不影響月食觀測,直到3:30左右食既之後,月亮才被雲層掩蓋而無法觀測。感謝江教授提供月食照片給大家欣賞,本圖版權屬江國興教授所有,如需利用,請逕洽江教授。

清大江國興教授拍攝的2011.06.16月全食照片

下方為另一幅江國興教授提供的月全食影像,拍攝時間為3:25,恰在食既之後,也就是月球已完全進入地球本影中。但仍可明顯見到左上方較接近地球本影中心的地方,比右下角較接近地影邊緣的地方還暗許多,整個月球的顏色與亮度都差異頗大。感謝江教授提供月食照片給大家欣賞,本圖版權屬江國興教授所有,如需利用,請逕洽江教授。

本文引用自臺北天文館之網路天文館網站

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
臺北天文館_96
482 篇文章 ・ 44 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!

0

1
0

文字

分享

0
1
0
抓住光的男人:達蓋爾與他的攝影術——《資訊大歷史》
azothbooks_96
・2022/07/03 ・3530字 ・閱讀時間約 7 分鐘

路易.雅克.馬克.達蓋爾

路易.雅克.馬克.達蓋爾(Louis-Jacques-Mandé Daguerre),1787 年 11 月 18 日−1851 年 7 月 1 日。

記錄下真實的影像,將彼時的美好場景長久留存——攝影技術,載著人類幾千年來如夢幻般的希冀越走越遠,一步步幫我們達成所願。

    

達蓋爾出生於法國,學過建築、戲劇設計和全景繪畫,在舞台幻境製作領域聲譽卓著。 1839 年,他宣布達蓋爾攝影法獲得了圓滿成功,從此,作為攝影術的最後一個發明人,他便以銀版攝影法發明者的身份為後人所知。

「我抓住了光,我捕捉到了它的飛行」

一九四五年八月十四日傍晚,日本無條件投降的消息傳到美國,整個美國都沸騰了,紐約的人們紛紛湧向時代廣場慶賀戰爭的結束。一位海軍士兵難以抑制自己喜悅的心情,摟住路過的一位護士小姐就親吻起來。

這個場景被當時在場的兩位記者捕捉到了,他們用手邊的徠卡相機記錄下這一令人難忘的歷史性時刻。一張照片的表達力勝過千言萬語。在人類付出了近一億人的生命代價之後,和平終於再次回到了這個世界上,這種發自內心的喜悅是難以用文字形容的。

時過境遷,今天我們大多數人雖然沒有經歷過那場戰爭,但依然能從這些精彩的照片中深刻地體會到當時人們狂喜的心情。

世界上的任何事情,只要發生過,就會留下或多或少的痕跡。對於這些痕跡的記錄,以前只有筆。雖然也有繪畫,但是繪畫無法在瞬間完成,因此很多描繪歷史性大事件的名畫,都是畫家後來參考文字記載,然後憑藉著想像而創作的。那些畫作再現了當時人們所能夠看到的一些視覺資訊,畫家也難免會按照自我意願對資訊內容進行添加或者刪改。

-----廣告,請繼續往下閱讀-----

比如,反映美國獨立戰爭最著名的油畫《華盛頓橫渡特拉華河》,就有多處和歷史事實不一致。比如,華盛頓身邊的門羅(美國第五任總統)當時根本就不在船上,甚至畫作中還出現了當時並不存在的星條旗。這些都是畫家在半個多世紀後憑自己的想像加進去的,這種人為因素,讓繪畫很難做到真實地記錄歷史事實。

延伸閱讀:從此有了攝影:達蓋爾誕辰|科學史上的今天:11/18

《華盛頓橫渡特拉華河》由德國畫家埃瑪紐埃爾·洛伊茨(Emanuel Leutze)於1851年所創作,描繪了美國獨立戰爭。圖/Wikipedia

要做到對真實畫面的記錄,就需要發明一種儀器來自動進行記錄,而不是人們主觀地進行繪製,這種儀器就是我們今天所說的照相機。當然,要想得到照片,光有照相機是遠遠不夠的,還需要一整套工藝將照片處理沖洗出來。這一整套的工藝流程,被稱為攝影術(照相術)。

今天,法國科學院確認的攝影術發明人是法國藝術家路易.雅克.馬克.達蓋爾(Louis-Jacques-Mandé Daguerre)。和很多重大發明的榮譽給予了最後一個發明人一樣,達蓋爾是攝影術的最後一個發明人,而非第一個。在他之前另一名法國人涅普斯(Joseph Nicéphore Nièpce)已經在一八二六年拍攝出一張永久性的照片,但是涅普斯使用的裝置與後續處理技術和後來大家普遍使用的攝影術,沒有什麼關係。

再往前,針孔成像的原理在中國古代的《墨子》中就有了相關記載,但是我們顯然無法把發明攝影術的功勞給予墨子。達蓋爾和前人不同的是,他不是設法得到一張照片,而是發明了一整套設備和一系列工藝流程,這就使得我們能夠通過攝影術記錄下真實的場景資訊,並且能夠以照片的形式完美地呈現出來。

-----廣告,請繼續往下閱讀-----
世界上第一張照片《在萊斯格拉的窗外景色》,由涅普斯拍攝。圖/Wikipedia

達蓋爾發明攝影術,並不僅僅為了記錄資訊,而是為了能夠取代當時十分流行的肖像油畫。達蓋爾本人是一位非常著名的建築設計師和全景畫家,他發明了建築繪圖的全景透視法,也就是從兩個(或多個)視角來觀察一個三維的物件(比如一棟大樓),然後將它畫在同一個畫面中。

這和布魯內萊斯基所發明的單點透視法不同。當時畫一幅油畫要花很長時間,如果要在戶外繪畫,更是一件十分困難和艱苦的事情,因為人們還沒有發明出牙膏管裝的油畫顏料,一罐罐的顏料既不好攜帶,也不便於保存。

因此,達蓋爾想,如果能夠發明一種方法自動將所看到的圖像「畫」下來,這樣可以省去一筆一筆畫油畫的麻煩。

當得知涅普斯用很複雜的方法得到了一張可以永久保存的照片後,達蓋爾就找到他決定一起合作研製攝影術。涅普斯則看中了達蓋爾在繪畫界的巨大影響力,作為出版商的他希望能夠借此賣出更多的畫冊,於是十分爽快地答應了。雖然一開始兩個人是各取所需,目的不同,但是因為目標一致,合作也算順暢。

然而不幸的是,當時已經六十四歲高齡的涅普斯沒幾年就去世了,而他們在攝影術方面的研究才剛剛開始。接下來,達蓋爾只好自己一個人繼續摸索研究。

-----廣告,請繼續往下閱讀-----

涅普斯最早是用瀝青作為感光材料。因為瀝青在強光的照耀下會逐漸變硬,這樣就能夠把攝影物件的輪廓迅速地描下來,但這樣照相至少要在陽光下曝光幾個小時甚至長達幾天。

一個偶然的機會,達蓋爾瞭解到一百多年前化學家所發現的銀鹽具有感光的特點,將銀鍍在銅版上,然後在碘蒸氣中形成一層碘化銀,碘化銀在感光後就會在銅版上留下影像。這和後來膠捲上塗溴化銀的原理是一樣的。達蓋爾用這種方法將原來涅普斯需要幾個小時才能完成的曝光過程縮短到了幾十分鐘,後來又縮短到幾分鐘。

一八三八年末(或者一八三九年初),達蓋爾將他的照相機擺在自己家的視窗,拍了一張街景照片——《坦普爾大街街景》。

《坦普爾大街街景》。圖/漫遊者文化提供

這張照片拍攝得非常清晰。達蓋爾在處理完照片後,極其興奮地對人們說:「我抓住了光,我捕捉到了它的飛行!」他的這個說法非常形象化,這是人類第一次發明實用的、以圖片方式記錄現實景象的技術。

-----廣告,請繼續往下閱讀-----

在這張照片中,這條大道顯得非常寂靜,實際上達蓋爾拍照時,大道上車水馬龍,人來人往,熙熙攘攘,非常繁華。照片之所以沒有能夠記錄下這些人和車輛是因為曝光的時間長達十分鐘之久,移動的人和車輛只能留下淡淡的陰影。當時摩斯看到照片中的巴黎街頭居然沒有人,感到非常吃驚。

今天的攝影家依然採用這種長時間曝光的手法來濾除鬧市中過多的閒人。不過如果你仔細觀察這張照片,就會在左下角發現一個擦皮鞋的人,由於他一直站在那裡不動,因此被拍了進去。這個人成為被攝影術記錄下來的第一個人。

從一七一七年德國人舒爾策(Johann Heinrich Schulze)發現銀鹽的感光效果,到達蓋爾用這種原理記錄下影像,中間經過了一個多世紀的時間。為什麼在這麼長的時間裡沒有人想到用銀鹽感光的性質來記錄影像?

因為這項技術雖然原理並不複雜,但是要變成一個可以記錄影像的工藝過程卻不是那麼簡單。銀鹽感光背後的原因是它們在光照下會分解,其中的銀會以細微的粉末狀出現,這就是人們在感光銅版上看到的黑色部分。但是這些銀粉一碰就掉,不可能形成一張能永久保存的照片。而且由於被感光部分是黑色的,未被感光的部分是白色的,和我們眼睛所看到的景物亮度正好相反(它們也被稱為負片),所以我們難以直接欣賞,還需要想辦法把它還原成我們肉眼所習慣看到的照片。

-----廣告,請繼續往下閱讀-----

這個記錄和還原圖像的過程有很多環節而且非常複雜。

達蓋爾最為了不起的地方,就在於他不只簡單發現了一種記錄圖像的現象,或者一個照相機,而是發明了一整套記錄圖像資訊的工藝過程。特別是在成像之後需要用水銀和食鹽在銅版底片上進行顯影和定影。這個過程有很多複雜的技術難題,都被達蓋爾成功地解決了。

今天「銀版攝影術」(又稱為達蓋爾銀版法)一詞,就是以他的名字命名的。

延伸閱讀:第四種元素:銀 —《改變世界的七種元素》

——本文摘自《資訊大歷史:人類如何消除對未知的不確定》,2022 年 6 月,漫遊者文化,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
azothbooks_96
55 篇文章 ・ 21 位粉絲
漫遊也許有原因,卻沒有目的。 漫遊者的原因就是自由。文學、人文、藝術、商業、學習、生活雜學,以及問題解決的實用學,這些都是「漫遊者」的範疇,「漫遊者」希望在其中找到未來的閱讀形式,尋找新的面貌,為出版文化找尋新風景。

1

0
0

文字

分享

1
0
0
影像欣賞:在雲縫中搶拍的月全食
臺北天文館_96
・2011/06/16 ・801字 ・閱讀時間約 1 分鐘 ・SR值 465 ・五年級

-----廣告,請繼續往下閱讀-----

由於臺北地區天氣不佳,於初虧後沒多久,雲就一朵接一朵的現身,觀測條件很差;不知道您是否也有看到紅色的月亮呢?以下照片是臺北天文館同仁在雲縫中搶拍的成果,與大家分享。

臺北天文館周紹孔先生於淡水拍攝的紅色月全食和月掩蛇夫座51星的景象。
臺北天文館周紹孔先生於淡水拍攝的紅色月全食和月掩蛇夫座51星的景象。

臺北天文館林琦峰先生拍的偏食階段景象。
臺北天文館林琦峰先生拍的即將接近食既的偏食階段景象。

臺北天文館張桂蘭小姐所拍攝的初虧過後影像。
臺北天文館張桂蘭小姐所拍攝的初虧過後影像。

-----廣告,請繼續往下閱讀-----

臺北天文館李瑾先生所拍攝的半影食過程中的月亮。
臺北天文館李瑾先生所拍攝的半影食過程中的月亮。


下方照片為清華大學天文所江國興教授提供的月全食及掩星景象。江教授表示:新竹地區今天凌晨一直有薄雲,但不影響月食觀測,直到3:30左右食既之後,月亮才被雲層掩蓋而無法觀測。感謝江教授提供月食照片給大家欣賞,本圖版權屬江國興教授所有,如需利用,請逕洽江教授。

清大江國興教授拍攝的2011.06.16月全食照片

下方為另一幅江國興教授提供的月全食影像,拍攝時間為3:25,恰在食既之後,也就是月球已完全進入地球本影中。但仍可明顯見到左上方較接近地球本影中心的地方,比右下角較接近地影邊緣的地方還暗許多,整個月球的顏色與亮度都差異頗大。感謝江教授提供月食照片給大家欣賞,本圖版權屬江國興教授所有,如需利用,請逕洽江教授。

本文引用自臺北天文館之網路天文館網站

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
臺北天文館_96
482 篇文章 ・ 44 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!