Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

一半一半:寧姆猩斯基的故事

林書帆
・2013/07/01 ・2361字 ・閱讀時間約 4 分鐘 ・SR值 497 ・六年級

-----廣告,請繼續往下閱讀-----

文 / 林書帆

萬一身為人類的我被告知,在動物實驗中是以人類標準來測定動物的反應,那我會覺得受到侮辱。真正低能的是實驗本身。設計實驗的行為主義派宣稱,唯獨經由抽象模組的設計,才具有理解能力,並進而應用這些模組來反對現實。這多麼荒謬啊!我們是藉由讓自我和自我的智慧沉浸在複雜的事物中,來理解事物的。自然科學的行為主義學說,卻畏怯錯綜複雜的生命現象,反倒退著走,這實在有點愚蠢。

──J. M. Coetzee《伊莉莎白‧卡斯特洛》

 
在野外時常遇到許多敏感的蝶,在我好不容易接近到拍攝距離時突然振翅飛去,每每讓我發出孩子氣的抱怨,話雖如此,我對各式各樣的誘蝶手段全無興趣,因為若是用誘餌吸引他們,要如何判斷蝴蝶是否樂意讓我留存他們的影像呢?畢竟暫時停止呼吸、放輕腳步,深怕驚動什麼的心情,是我唯一能和他們建立某種聯繫的方法,即便那可能只是一廂情願的幻覺。

但話說回來,我是真心希望自己能跟蝴蝶溝通嗎?如果我跟昆蟲有共通語言,他們說不定會乾脆告訴我「不准拍」,而我並不確定自己是否會真的就此收手。《猩猩心事》的作者荷絲(Elizabeth Hess)引述《動物》一書作者Erica Fudge所言:「如果我們聽得到動物說話,牠們說的可能是我們不想聽的。這是最危險的地方。」

我們既渴望能跟動物說話,同時卻又把我們跟牠們沒有共通語言的事實當作人類高動物一等的證據。語言學者杭士基(Noam Chomsky)也是把語言當作人與野獸分界的思想家之一,他認為人類天生就有才能使用與生俱來的文法和語法結構,這樣的能力來自內在,無法教導給其他物種。杭士基學術上的對手,行為主義心理學家史金納(B. F. Skinner)則持相反意見。史金納的學生泰瑞斯(Herbert S. Terrace)企圖挑戰杭士基的論點:唯有人類具有與生俱來的語言天賦。他認為如果能按照人類學習語言的方式讓黑猩猩學會美式手語,就能證明杭士基錯了,這就是語言學和靈長類動物學史上最有名的實驗「寧姆計畫(Project Nim)」的發端。泰瑞斯把找來的黑猩猩命名為Nim Chimpsky,正是在開杭士基名字的玩笑。

-----廣告,請繼續往下閱讀-----

泰瑞斯想藉寧姆計畫證明語言不是人類和其他物種的界線,想要證明人類能做到的事,其他動物也能做到,看似隱含了提高動物地位的動機。然而,擁有語言能力的生物比較高等,畢竟也是人類訂下的標準,如果我們相信所有生物皆有內具價值,黑猩猩又何須證明自己會說話以換取「跟人類相近」的地位?杭士基覺得,「要證明猿猴有語言能力,就像有座島上還有一種不會飛的鳥兒在等人類去教牠們飛翔。」換個角度,或許我們可以想像地球的統治者變成鳥類,人變成次等公民,如果想證明自己跟鳥一樣高等,就得學會光靠揮動手臂就能飛起來。說到底,要求黑猩猩學會「人類定義下的語言」根本還是一種人類中心的思維模式。

雖然泰瑞斯並不真的同意人猿是我們的血親,但在寧姆計畫之前,所有的實驗動物都被關在籠子裡,荷絲指出,寧姆計畫的意義,是把一隻黑猩猩從尋常的科學枷鎖中解放出來。然而,在寧姆一生的故事中,最諷刺也最弔詭的一點,就是牠被人類強加的所謂「人性」最後成了牠的護身符,使牠免於淪為醫學實驗品的命運,而其他一生都生活在籠子裡、不會比手語的黑猩猩卻不見得有這樣的運氣。可是,即便我認為「因為牠們跟人很像,所以我們應該保護牠」這樣的邏輯很難說得上是整全的倫理觀,但它的確也是人們開始思考動物權利的起點,代表我們同理心的擴充。

靈長類動物學家德瓦爾(Frans de Waal)認為,人類可能是地球上所有生物中內在衝突最激烈的物種,我們自尋煩惱還不夠,還把其他動物推向這種境地。寧姆有個綽號叫「一半一半」,非常貼切的點出所有(曾)被當成人類的猿猴的尷尬處境,猩猩的「人形」可能帶來疼愛、掌聲、一時的「光榮」,但當人們發現無法掌控牠們的「獸性」時,又以動物的標準對待牠們,如此反而造成牠們更大的身心創傷,這恐怕是人猿關係中最令人難以承受的一點。《猩猩心事》有很大的部分也在探討「一半一半」的矛盾,比如我們需要安全的疫苗,但把一隻會比手語的黑猩猩送去做醫學實驗「就像把小鹿斑比做成狗食」;研究人員必須和猩猩建立關係才能進行語言研究,但又因此受制於海森堡的測不準原理。如同《雄性暴力》點出的人猿觀察者困境:「一方面相信人猿有複雜的心智活動,另一方面又覺得很難向人證明這樣的事。」如果我們不會要求情人為他們的愛提出「科學證據」,那是否也該反思這種「倒退」?

寧姆生命中的最後幾年是在動保人士艾莫利(Cleveland Amory)的牧場度過的,負責照顧牠的管理員彭恩相信寧姆聽得懂他說的話,他們會透過眼神和身體傳達情感,但泰瑞斯以實驗為目的灌輸給寧姆的手語和他們的友誼無關。荷絲提到,寧姆計畫在進行時,實驗者對語言構成的要素其實完全沒有共識。是動物不會說話,還是我們不願聆聽?我想起Gordon Hempton在《一平方英吋的寂靜》中寫到,他從他錄到的鷦鷯鳴唱聲中隨意選出一秒鐘,將其放大為十二秒,結果發現牠們的歌曲就跟座頭鯨一樣複雜。我倒想知道,杭士基對此會有什麼感想。

-----廣告,請繼續往下閱讀-----

泰瑞斯曾經期望寧姆有一天能「談論內心世界,牠的情緒和夢想」,但在1979年發表的研究結果中,他徹底推翻了先前的信念,認為寧姆學到的詞彙只是「純粹的操練。語言仍是人類很重要的定界。」然而有趣的是,他在同年出版了一本就叫《寧姆》的書,完全立基於個人情感,與他在《科學》雜誌發表的結論互相矛盾,在這本書中,寧姆的語言能力「就像傑克的魔豆般迅速成長。泰瑞斯就像個溺愛的父親般,驕傲地看著寧姆的成就」。這本書簡直就像人類學的馬凌諾斯基日記。我們費盡心思想知道動物在想什麼,然而到頭來實際上能做到的,也只能是談論「我們自己」的內心世界、情緒和夢想吧。

-----廣告,請繼續往下閱讀-----
文章難易度
林書帆
15 篇文章 ・ 1 位粉絲
在東華大學華文所發現自己對科普書的興趣,相信E.O.Wilson說的「科學和人文藝術是由同一個紡織機編織出來的」。就像為蝴蝶命名這件事,誰能肯定林奈將「金色之馬」(Chrysippus)做為樺斑蝶的種名時,沒有一點文學想像呢?

0

2
1

文字

分享

0
2
1
「融合蛋白」如何全方位圍剿狡猾癌細胞
鳥苷三磷酸 (PanSci Promo)_96
・2025/11/07 ・5944字 ・閱讀時間約 12 分鐘

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

我們知道癌症是台灣人健康的頭號公敵。 為此,我們花了很多時間介紹最新、最有效的抗癌方法之一:免疫療法

免疫療法中最重要的技術就是抗體藥物。科學家會人工製造一批抗體去標記癌細胞。它們就像戰場上的偵察無人機,能精準鎖定你體內的敵人——癌細胞,為它們打上標記,然後引導你的免疫系統展開攻擊。

這跟化療、放射線治療那種閉著眼睛拿機槍亂掃不同。免疫療法是重新叫醒你的免疫系統,為身體「上buff (增益) 」來抗癌,副作用較低,因此備受好評。

-----廣告,請繼續往下閱讀-----

但尷尬的是,經過幾年的臨床考驗,科學家發現:光靠抗體對抗癌症,竟然已經不夠用了。

事情是這樣的,臨床上醫生與科學家逐漸發現:這個抗體標記,不是容易損壞,就是癌細胞同時設有多個陷阱關卡,只靠叫醒免疫細胞,還是難以發揮戰力。

但好消息是,我們的生技工程也大幅進步了。科學家開始思考:如果這台偵察無人機只有「標記」這一招不夠用,為什麼不幫它升級,讓它多學幾招呢?

這個能讓免疫藥物(偵察無人機)大進化的訓練器,就是今天的主角—融合蛋白(fusion protein)

-----廣告,請繼續往下閱讀-----
融合蛋白(fusion protein)/ 圖片來源:wikipedia

融合蛋白是什麼?

免疫療法遇到的問題,我們可以這樣理解:想像你的身體是一座國家,病毒、細菌、腫瘤就是入侵者;而抗體,就是我們派出的「偵察無人機」。

當我們透過注射放出這支無人機群進到體內,它能迅速辨識敵人、緊抓不放,並呼叫其他免疫單位(友軍)一同解決威脅。過去 20 年,最強的偵查機型叫做「單株抗體」。1998年,生技公司基因泰克(Genentech)推出的藥物赫賽汀(Herceptin),就是一款針對 HER2 蛋白的單株抗體,目標是治療乳癌。

這支無人機群為什麼能對抗癌症?這要歸功於它「Y」字形的小小抗體分子,構造看似簡單,卻蘊藏巧思:

  • 「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」。
  • 「Y」 字形的「尾巴」就是我們說的「標籤」,它能通知免疫系統啟動攻擊,稱為結晶區域片段「Fc 區域」。具體來說,當免疫細胞在體內巡邏,免疫細胞上的 Fc 受體 (FcR) 會和 Fc區域結合,進而認出病原體或感染細胞,接著展開清除。

更厲害的是,這個 Fc 區域標籤還能加裝不同功能。一般來說,人體內多餘的分子,會被定期清除。例如,細胞內會有溶酶體不斷分解多餘的物質,或是血液經過肝臟時會被代謝、分解。那麼,人造抗體對身體來說,屬於外來的東西,自然也會被清除。

-----廣告,請繼續往下閱讀-----

而 Fc區域會與細胞內體上的Fc受體結合,告訴細胞「別分解我」的訊號,阻止溶酶體的作用。又或是單純把標籤做的超大,例如接上一段長長的蛋白質,或是聚乙二醇鏈,讓整個抗體分子的大小,大於腎臟過濾孔的大小,難以被腎臟過濾,進而延長抗體在體內的存活時間。

偵測器(Fab)加上標籤(Fc)的結構,使抗體成為最早、也最成功的「天然設計藥物」。然而,當抗體在臨床上逐漸普及,一個又一個的問題開始浮現。抗體的強項在於「精準鎖定」,但這同時也是它的限制。

「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」/ 圖片來源:shutterstock

第一個問題:抗體只能打「魔王」,無法毀掉「魔窟」。 

抗體一定要有一個明確的「標的物」才能發揮作用。這讓它在針對「腫瘤」或「癌細胞本身」時非常有效,因為敵人身上有明顯標記。但癌細胞的形成與惡化,是細胞在「生長、分裂、死亡、免疫逃脫」這些訊號通路上被長期誤導的結果。抗體雖然勇猛,卻只能針對已經帶有特定分子的癌細胞魔王,無法摧毀那個孕育魔王的系統魔窟。這時,我們真正欠缺的是能「調整」、「模擬」或「干擾」這些錯誤訊號的藥物。

-----廣告,請繼續往下閱讀-----

第二個問題:開發產線的限制。

抗體的開發,得經過複雜的細胞培養與純化程序。每次改變結構或目標,幾乎都要重新開發整個系統。這就像你無法要求一台偵測紅外線的無人機,明天立刻改去偵測核輻射。高昂的成本與漫長的開發時間,讓新產線難以靈活創新。

為了讓免疫藥物能走向多功能與容易快速製造、測試的道路,科學家急需一個更工業化的藥物設計方式。雖然我們追求的是工業化的設計,巧合的是,真正的突破靈感,仍然來自大自然。

在自然界中,基因有時會彼此「融合」成全新的組合,讓生物獲得額外功能。例如細菌,它們常仰賴一連串的酶來完成代謝,中間產物要在細胞裡來回傳遞。但後來,其中幾個酶的基因彼此融合,而且不只是基因層級的合併,產出的酶本身也變成同一條長長的蛋白質。

-----廣告,請繼續往下閱讀-----

結果,反應效率大幅提升。因為中間產物不必再「跑出去找下一個酶」,而是直接在同一條生產線上完成。對細菌來說,能更快處理養分、用更少能量維持生存,自然形成適應上的優勢,這樣的融合基因也就被演化保留下來。

科學家從中得到關鍵啟發:如果我們也能把兩種有用的蛋白質,「人工融合」在一起,是否就能創造出更強大的新分子?於是,融合蛋白(fusion protein)就出現了。

以假亂真:融合蛋白的HIV反制戰

融合蛋白的概念其實很直覺:把兩種以上、功能不同的蛋白質,用基因工程的方式「接起來」,讓它們成為同一個分子。 

1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。

-----廣告,請繼續往下閱讀-----

我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。

麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。

一旦成功結合,就會啟動一連串反應,讓病毒外殼與細胞膜融合。HIV 進入細胞內後會不斷複製並破壞免疫細胞,導致免疫系統逐漸崩潰。

為了逆轉這場悲劇,融合蛋白 CD4 免疫黏附素登場了。它的結構跟抗體類似,由由兩個不同段落所組成:一端是 CD4 假受體,另一端則是剛才提到、抗體上常見的 Fc 區域。當 CD4 免疫黏附素進入體內,它表面的 CD4 假受體會主動和 HIV 的 gp120 結合。

-----廣告,請繼續往下閱讀-----

厲害了吧。 病毒以為自己抓到了目標細胞,其實只是被騙去抓了一個假的 CD4。這樣 gp120 抓不到 CD4 淋巴球上的真 CD4,自然就無法傷害身體。

而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。

不過,這裡有個關鍵細節。

在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。

從 DNA 藍圖到生物積木:融合蛋白的設計巧思

融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。

我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。

不過,如果你只是單純把兩段基因硬接起來,那失敗就是必然的。因為兩個蛋白會互相「打架」,導致摺疊錯亂、功能全毀。

這時就需要一個小幫手:連接子(linker)。它的作用就像中間的彈性膠帶,讓兩邊的蛋白質能自由轉動、互不干擾。最常見的設計,是用多個甘胺酸(G)和絲胺酸(S)組成的柔性小蛋白鏈。

設計好這段 DNA 之後,就能把它放進細胞裡,讓細胞幫忙「代工」製造出這個融合蛋白。接著,科學家會用層析、電泳等方法把它純化出來,再一一檢查它有沒有摺疊正確、功能是否完整。

如果一切順利,這個人工設計的融合分子,就能像自然界的蛋白一樣穩定運作,一個全新的「人造分子兵器」就此誕生。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一。而且現在的融合蛋白,早就不只是「假受體+Fc 區域」這麼單純。它已經跳脫模仿抗體,成為真正能自由組裝、自由設計的生物積木。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一 / 圖片來源:wikipedia

融合蛋白的強項,就在於它能「自由組裝」。

以抗體為骨架,科學家可以接上任何想要的功能模組,創造出全新的藥物型態。一般的抗體只能「抓」(標記特定靶點);但融合蛋白不只會抓,還能「阻斷」、「傳遞」、甚至「調控」訊號。在功能模組的加持下,它在藥物設計上,幾乎像是一個分子級的鋼鐵蜘蛛人裝甲。

一般來說,當我們選擇使用融合蛋白時,通常會期待它能發揮幾種關鍵效果:

  1. 療效協同: 一款藥上面就能同時針對多個靶點作用,有機會提升治療反應率與持續時間,達到「一藥多效」的臨床價值。
  2. 減少用藥: 原本需要兩到三種單株抗體聯合使用的療法,也許只要一種融合蛋白就能搞定。這不僅能減少給藥次數,對病人來說,也有機會因為用藥減少而降低治療成本。
  3. 降低毒性風險: 經過良好設計的融合蛋白,可以做到更精準的「局部活化」,讓藥物只在目標區域發揮作用,減少副作用。

到目前為止,我們了解了融合蛋白是如何製造的,也知道它的潛力有多大。

那麼,目前實際成效到底如何呢?

一箭雙鵰:拆解癌細胞的「偽裝」與「內奸」

2016 年,德國默克(Merck KGaA)展開了一項全新的臨床試驗。 主角是一款突破性的雙功能融合蛋白──Bintrafusp Alfa。這款藥物的厲害之處在於,它能同時封鎖 PD-L1 和 TGF-β 兩條免疫抑制路徑。等於一邊拆掉癌細胞的偽裝,一邊解除它的防護罩。

PD-L1,我們或許不陌生,它就像是癌細胞身上的「偽裝良民證」。當 PD-L1 和免疫細胞上的 PD-1 受體結合時,就會讓免疫系統誤以為「這細胞是自己人」,於是放過它。我們的策略,就是用一個抗體或抗體樣蛋白黏上去,把這張「偽裝良民證」封住,讓免疫系統能重新啟動。

但光拆掉偽裝還不夠,因為癌細胞還有另一位強大的盟友—一個起初是我軍,後來卻被癌細胞收買、滲透的「內奸」。它就是,轉化生長因子-β,縮寫 TGF-β。

先說清楚,TGF-β 原本是體內的秩序管理者,掌管著細胞的生長、分化、凋亡,還負責調節免疫反應。在正常細胞或癌症早期,它會和細胞表面的 TGFBR2 受體結合,啟動一連串訊號,抑制細胞分裂、減緩腫瘤生長。

但當癌症發展到後期,TGF-β 跟 TGFBR2 受體之間的合作開始出問題。癌細胞表面的 TGFBR2 受體可能突變或消失,導致 TGF-β 不但失去了原本的抑制作用,反而轉向幫癌細胞做事

它會讓細胞骨架(actin cytoskeleton)重新排列,讓細胞變長、變軟、更有彈性,還能長出像觸手的「偽足」(lamellipodia、filopodia),一步步往外移動、鑽進組織,甚至進入血管、展開全身轉移。

更糟的是,這時「黑化」的 TGF-β 還會壓抑免疫系統,讓 T 細胞和自然殺手細胞變得不再有攻擊力,同時刺激新血管生成,幫腫瘤打通營養補給線。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」。就像 1989 年的 CD4 免疫黏附素用「假受體」去騙 HIV 一樣,這個融合蛋白在體內循環時,會用它身上的「陷阱」去捕捉並中和游離的 TGF-β。這讓 TGF-β 無法再跟腫瘤細胞或免疫細胞表面的天然受體結合,從而鬆開了那副壓抑免疫系統的腳鐐。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」/ 情境圖來源:shutterstock

告別單一解方:融合蛋白的「全方位圍剿」戰

但,故事還沒完。我們之前提過,癌細胞之所以難纏,在於它會發展出各種「免疫逃脫」策略。

而近年我們發現,癌細胞的「偽良民證」至少就有兩張:一張是 PD-L1;另一張是 CD-47。CD47 是癌細胞向巨噬細胞展示的「別吃我」訊號,當它與免疫細胞上的 SIRPα 結合時,就會抑制吞噬反應。

為此,總部位於台北的漢康生技,決定打造能同時對付 PD-L1、CD-47,乃至 TGF-β 的三功能生物藥 HCB301。

雖然三功能融合蛋白聽起來只是「再接一段蛋白」而已,但實際上極不簡單。截至目前,全球都還沒有任何三功能抗體或融合蛋白批准上市,在臨床階段的生物候選藥,也只佔了整個生物藥市場的 1.6%。

漢康生技透過自己開發的 FBDB 平台技術,製作出了三功能的生物藥 HCB301,目前第一期臨床試驗已經在美國、中國批准執行。

免疫療法絕對是幫我們突破癌症的關鍵。但我們也知道癌症非常頑強,還有好幾道關卡我們無法攻克。既然單株抗體在戰場上顯得單薄,我們就透過融合蛋白,創造出擁有多種功能模組的「升級版無人機」。

融合蛋白強的不是個別的偵查或阻敵能力,而是一組可以「客製化組裝」的平台,用以應付癌細胞所有的逃脫策略。

Catch Me If You Can?融合蛋白的回答是:「We Can.」

未來癌症的治療戰場,也將從尋找「唯一解」,轉變成如何「全方位圍剿」癌細胞,避免任何的逃脫。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
解密機器人如何學會思考、觸摸與變形
鳥苷三磷酸 (PanSci Promo)_96
・2025/09/09 ・6820字 ・閱讀時間約 14 分鐘

本文與 Perplexity 合作,泛科學企劃執行

「Hello. I am… a robot.」

在我們的記憶裡,機器人的聲音就該是冰冷、單調,不帶一絲情感 。它們的動作僵硬,肢體不協調,像一個沒有靈魂的傀儡,甚至啟發我們創造了機械舞來模仿那獨特的笨拙可愛。但是,現今的機器人發展不再只會跳舞或模仿人聲,而是已經能獨立完成一場膽囊切除手術。

就在2025年,美國一間實驗室發表了一項成果:一台名為「SRT-H」的機器人(階層式手術機器人Transformer),在沒有人類醫師介入的情況下,成功自主完成了一場完整的豬膽囊切除手術。SRT-H 正是靠著從錯誤中學習的能力,最終在八個不同的離體膽囊上,達成了 100% 的自主手術成功率。

-----廣告,請繼續往下閱讀-----

這項成就的意義重大,因為過去機器人手術的自動化,大多集中在像是縫合這樣的單一「任務」上。然而,這一場完整的手術,是一個包含數十個步驟、需要連貫策略與動態調整的複雜「程序」。這是機器人首次在包含 17 個步驟的完整膽囊切除術中,實現了「步驟層次的自主性」。

這就引出了一個讓我們既興奮又不安的核心問題:我們究竟錯過了什麼?機器人是如何在我們看不見的角落,悄悄完成了從「機械傀儡」到「外科醫生」的驚人演化?

這趟思想探險,將為你解密 SRT-H 以及其他五款同樣具備革命性突破的機器人。你將看到,它們正以前所未有的方式,發展出生物般的觸覺、理解複雜指令、學會團隊合作,甚至開始自我修復與演化,成為一種真正的「準生命體」 。

所以,你準備好迎接這個機器人的新紀元了嗎?

-----廣告,請繼續往下閱讀-----

只靠模仿還不夠?手術機器人還需要學會「犯錯」與「糾正」

那麼,SRT-H 這位機器人的外科大腦,究竟藏著什麼秘密?答案就在它創新的「階層式框架」設計裡 。

你可以想像,SRT-H 的腦中,住著一個分工明確的兩人團隊,就像是漫畫界的傳奇師徒—黑傑克與皮諾可 。

  • 第一位,是動口不動手的總指揮「黑傑克」: 它不下達具體的動作指令,而是在更高維度的「語言空間」中進行策略規劃 。它發出的命令,是像「抓住膽管」或「放置止血夾」這樣的高層次任務指令 。
  • 第二位,是靈巧的助手「皮諾可」: 它負責接收黑傑克的語言指令,並將這些抽象的命令,轉化為機器手臂毫釐不差的精準運動軌跡 。

但最厲害的還不是這個分工,而是它們的學習方式。SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。但這還只是開始,研究人員在訓練過程中,會刻意讓它犯錯,並向它示範如何從抓取失敗、角度不佳等糟糕的狀態中恢復過來 。這種獨特的訓練方法,被稱為「糾正性示範」 。

SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。 / 圖片來源:shutterstock

這項訓練,讓 SRT-H 學會了一項外科手術中最關鍵的技能:當它發現執行搞砸了,它能即時識別偏差,並發出如「重試抓取」或「向左調整」等「糾正性指令」 。這套內建的錯誤恢復機制至關重要。當研究人員拿掉這個糾正能力後,機器人在遇到困難時,要不是完全失敗,就是陷入無效的重複行為中 。

-----廣告,請繼續往下閱讀-----

正是靠著這種從錯誤中學習、自我修正的能力,SRT-H 最終在八次不同的手術中,達成了 100% 的自主手術成功率 。

SRT-H 證明了機器人開始學會「思考」與「糾錯」。但一個聰明的大腦,足以應付更混亂、更無法預測的真實世界嗎?例如在亞馬遜的倉庫裡,機器人不只需要思考,更需要實際「會做事」。

要能精準地與環境互動,光靠視覺或聽覺是不夠的。為了讓機器人能直接接觸並處理日常生活中各式各樣的物體,它就必須擁有生物般的「觸覺」能力。

解密 Vulcan 如何學會「觸摸」

讓我們把場景切換到亞馬遜的物流中心。過去,這裡的倉儲機器人(如 Kiva 系統)就像放大版的掃地機器人,核心行動邏輯是極力「避免」與周遭環境發生任何物理接觸,只負責搬運整個貨架,再由人類員工挑出包裹。

-----廣告,請繼續往下閱讀-----

但 2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan。在亞馬遜的物流中心裡,商品被存放在由彈性帶固定的織物儲物格中,而 Vulcan 的任務是必須主動接觸、甚至「撥開」彈性織網,再從堆放雜亂的儲物格中,精準取出單一包裹,且不能造成任何損壞。

2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan / 圖片引用:https://www.aboutamazon.com/news

Vulcan 的核心突破,就在於它在「拿取」這個動作上,學會了生物般的「觸覺」。它靈活的機械手臂末端工具(EOAT, End-Of-Arm Tool),不僅配備了攝影機,還搭載了能測量六個自由度的力與力矩感測器。六個自由度包含上下、左右、前後的推力,和三個維度的旋轉力矩。這就像你的手指,裡頭分布著非常多的受器,不只能感測壓力、還能感受物體橫向拉扯、運動等感觸。

EOAT 也擁有相同精確的「觸覺」,能夠在用力過大之前即時調整力道。這讓 Vulcan 能感知推動一個枕頭和一個硬紙盒所需的力量不同,從而動態調整行為,避免損壞貨物。

其實,這更接近我們人類與世界互動的真實方式。當你想拿起桌上的一枚硬幣時,你的大腦並不會先計算出精準的空間座標。實際上,你會先把手伸到大概的位置,讓指尖輕觸桌面,再沿著桌面滑動,直到「感覺」到硬幣的邊緣,最後才根據觸覺決定何時彎曲手指、要用多大的力量抓起這枚硬幣。Vulcan 正是在學習這種「視覺+觸覺」的混合策略,先用攝影機判斷大致的空間,再用觸覺回饋完成最後精細的操作。

-----廣告,請繼續往下閱讀-----

靠著這項能力,Vulcan 已經能處理亞馬遜倉庫中約 75% 的品項,並被優先部署來處理最高和最低層的貨架——這些位置是最容易導致人類員工職業傷害的位置。這也讓自動化的意義,從單純的「替代人力」,轉向了更具建設性的「增強人力」。

SRT-H 在手術室中展現了「專家級的腦」,Vulcan 在倉庫中演化出「專家級的手」。但你發現了嗎?它們都還是「專家」,一個只會開刀,一個只會揀貨。雖然這種「專家型」設計能有效規模化、解決痛點並降低成本,但機器人的終極目標,是像人類一樣成為「通才」,讓單一機器人,能在人類環境中執行多種不同任務。

如何教一台機器人「舉一反三」?

你問,機器人能成為像我們一樣的「通才」嗎?過去不行,但現在,這個目標可能很快就會實現了。這正是 NVIDIA 的 GR00T 和 Google DeepMind 的 RT-X 等專案的核心目標。

過去,我們教機器人只會一個指令、一個動作。但現在,科學家們換了一種全新的教學思路:停止教機器人完整的「任務」,而是開始教它們基礎的「技能基元」(skill primitives),這就像是動作的模組。

-----廣告,請繼續往下閱讀-----

例如,有負責走路的「移動」(Locomotion) 基元,和負責抓取的「操作」(Manipulation) 基元。AI 模型會透過強化學習 (Reinforcement Learning) 等方法,學習如何組合這些「技能基元」來達成新目標。

舉個例子,當 AI 接收到「從冰箱拿一罐汽水給我」這個新任務時,它會自動將其拆解為一系列已知技能的組合:首先「移動」到冰箱前、接著「操作」抓住把手、拉開門、掃描罐子、抓住罐子、取出罐子。AI T 正在學會如何將這些單一的技能「融合」在一起。有了這樣的基礎後,就可以開始來大量訓練。

當多重宇宙的機器人合體練功:通用 AI 的誕生

好,既然要學,那就要練習。但這些機器人要去哪裡獲得足夠的練習機會?總不能直接去你家廚房實習吧。答案是:它們在數位世界裡練習

NVIDIA 的 Isaac Sim 等平台,能創造出照片級真實感、物理上精確的模擬環境,讓 AI 可以在一天之內,進行相當於數千小時的練習,獨自刷副本升級。這種從「模擬到現實」(sim-to-real)的訓練管線,正是讓訓練這些複雜的通用模型變得可行的關鍵。

-----廣告,請繼續往下閱讀-----

DeepMind 的 RT-X 計畫還發現了一個驚人的現象:用來自多種「不同類型」機器人的數據,去訓練一個單一的 AI 模型,會讓這個模型在「所有」機器人上表現得更好。這被稱為「正向轉移」(positive transfer)。當 RT-1-X 模型用混合數據訓練後,它在任何單一機器人上的成功率,比只用該機器人自身數據訓練的模型平均提高了 50%。

這就像是多重宇宙的自己各自練功後,經驗值合併,讓本體瞬間變強了。這意味著 AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。

AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。/ 圖片來源:shutterstock

不再是工程師,而是「父母」: AI 的新學習模式

這也導向了一個科幻的未來:或許未來可能存在一個中央「機器人大腦」,它可以下載到各種不同的身體裡,並即時適應新硬體。

這種學習方式,也從根本上改變了我們與機器人的互動模式。我們不再是逐行編寫程式碼的工程師,而是更像透過「示範」與「糾正」來教導孩子的父母。

NVIDIA 的 GR00T 模型,正是透過一個「數據金字塔」來進行訓練的:

  • 金字塔底層: 是大量的人類影片。
  • 金字塔中層: 是海量的模擬數據(即我們提過的「數位世界」練習)。
  • 金字塔頂層: 才是最珍貴、真實的機器人操作數據。

這種模式,大大降低了「教導」機器人新技能的門檻,讓機器人技術變得更容易規模化與客製化。

當機器人不再是「一個」物體,而是「任何」物體?

我們一路看到了機器人如何學會思考、觸摸,甚至舉一反三。但這一切,都建立在一個前提上:它們的物理形態是固定的。

但,如果連這個前提都可以被打破呢?這代表機器人的定義不再是固定的形態,而是可變的功能:它能改變身體來適應任何挑戰,不再是一台單一的機器,而是一個能根據任務隨選變化的物理有機體。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院特別具有代表性,該學院的仿生機器人實驗室(Bioinspired Robotics Group, BIRG)2007 年就打造模組化自重構機器人 Roombots。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院(EPFL)特別具有代表性。該學院的仿生機器人實驗室(BIRG)在 2007 年就已打造出模組化自重構機器人 Roombots。而 2023 年,來自 EPFL 的另一個實驗室——可重組機器人工程實驗室(RRL),更進一步推出了 Mori3,這是一套把摺紙藝術和電腦圖學巧妙融合的模組化機器人系統。

2023 年來自 EPFL 的另一個實驗室—可重組機器人工程實驗室(RRL)推出了 Mori3 © 2023 Christoph Belke, EPFL RRL

Mori3 的核心,是一個個小小的三角形模組。別看它簡單,每個模組都是一個獨立的機器人,有自己的電源、馬達、感測器和處理器,能獨立行動,也能和其他模組合作。最厲害的是,它的三條邊可以自由伸縮,讓這個小模組本身就具備「變形」能力。

當許多 Mori3 模組連接在一起時,就能像一群活的拼圖一樣,從平面展開,組合成各種三維結構。研究團隊將這種設計稱為「物理多邊形網格化」。在電腦圖學裡,我們熟悉的 3D 模型,其實就是由許多多邊形(通常是三角形)拼湊成的網格。Mori3 的創新之處,就是把這種純粹的數位抽象,真正搬到了現實世界,讓模組們化身成能活動的「實體網格」。

這代表什麼?團隊已經展示了三種能力:

  • 移動:他們用十個模組能組合成一個四足結構,它能從平坦的二維狀態站立起來,並開始行走。這不只是結構變形,而是真正的協調運動。
  • 操縱: 五個模組組合成一條機械臂,撿起物體,甚至透過末端模組的伸縮來擴大工作範圍。
  • 互動: 模組們能形成一個可隨時變形的三維曲面,即時追蹤使用者的手勢,把手的動作轉換成實體表面的起伏,等於做出了一個會「活」的觸控介面。

這些展示,不只是實驗室裡的炫技,而是真實證明了「物理多邊形網格化」的潛力:它不僅能構建靜態的結構,還能創造具備複雜動作的動態系統。而且,同一批模組就能在不同情境下切換角色。

想像一個地震後的救援場景:救援隊帶來的不是一台笨重的挖土機,而是一群這樣的模組。它們首先組合成一條長長的「蛇」形機器人,鑽入瓦礫縫隙;一旦進入開闊地後,再重組成一隻多足的「蜘蛛」,以便在不平的地面上穩定行走;發現受困者時,一部分模組分離出來形成「支架」撐住搖搖欲墜的橫樑,另一部分則組合成「夾爪」遞送飲水。這就是以任務為導向的自我演化。

這項技術的終極願景,正是科幻中的概念:可程式化物質(Programmable Matter),或稱「黏土電子學」(Claytronics)。想像一桶「東西」,你可以命令它變成任何你需要的工具:一支扳手、一張椅子,或是一座臨時的橋樑。

未來,我們只需設計一個通用的、可重構的「系統」,它就能即時創造出任務所需的特定機器人。這將複雜性從實體硬體轉移到了規劃重構的軟體上,是一個從硬體定義的世界,走向軟體定義的物理世界的轉變。

更重要的是,因為模組可以隨意分開與聚集,損壞時也只要替換掉部分零件就好。足以展現出未來機器人的適應性、自我修復與集體行為。當一群模組協作時,它就像一個超個體,如同蟻群築橋。至此,「機器」與「有機體」的定義,也將開始動搖。

從「實體探索」到「數位代理」

我們一路見證了機器人如何從單一的傀儡,演化為學會思考的外科醫生 (SRT-H)、學會觸摸的倉儲專家 (Vulcan)、學會舉一反三的通才 (GR00T),甚至是能自我重構成任何形態的「可程式化物質」(Mori3)。

但隨著機器人技術的飛速發展,一個全新的挑戰也隨之而來:在一個 AI 也能生成影像的時代,我們如何分辨「真實的突破」與「虛假的奇觀」?

舉一個近期的案例:2025 年 2 月,一則影片在網路上流傳,顯示一台人形機器人與兩名人類選手進行羽毛球比賽,並且輕鬆擊敗了人類。我的第一反應是懷疑:這太誇張了,一定是 AI 合成的影片吧?但,該怎麼驗證呢?答案是:用魔法打敗魔法。

在眾多 AI 工具中,Perplexity 特別擅長資料驗證。例如這則羽球影片的內容貼給 Perplexity,它馬上就告訴我:該影片已被查證為數位合成或剪輯。但它並未就此打住,而是進一步提供了「真正」在羽球場上有所突破的機器人—來自瑞士 ETH Zurich 團隊的 ANYmal-D

接著,選擇「研究模式」,就能深入了解 ANYmal-D 的詳細原理。原來,真正的羽球機器人根本不是「人形」,而是一台具備三自由度關節的「四足」機器人。

如果你想更深入了解,Perplexity 的「實驗室」功能,還能直接生成一份包含圖表、照片與引用來源的完整圖文報告。它不只介紹了 ANYmal-D 在羽球上的應用,更詳細介紹了瑞士聯邦理工學院發展四足機器人的完整歷史:為何選擇四足?如何精進硬體與感測器結構?以及除了運動領域外,四足機器人如何在關鍵的工業領域中真正創造價值。

AI 代理人:數位世界的新物種

從開刀、揀貨、打球,到虛擬練功,這些都是機器人正在學習「幫我們做」的事。但接下來,機器人將獲得更強的「探索」能力,幫我們做那些我們自己做不到的事。

這就像是,傳統網路瀏覽器與 Perplexity 的 Comet 瀏覽器之間的差別。Comet 瀏覽器擁有自主探索跟決策能力,它就像是數位世界裡的機器人,能成為我們的「代理人」(Agent)

它的核心功能,就是拆解過去需要我們手動完成的多步驟工作流,提供「專業代工」,並直接交付成果。

例如,你可以直接對它說:「閱讀這封會議郵件,檢查我的行事曆跟代辦事項,然後草擬一封回信。」或是直接下達一個複雜的指令:「幫我訂 Blue Origin 的太空旅遊座位,記得要來回票。」

接著,你只要兩手一攤,Perplexity 就會接管你的瀏覽器,分析需求、執行步驟、最後給你結果。你再也不用自己一步步手動搜尋,或是在不同網站上重複操作。

AI 代理人正在幫我們探索險惡的數位網路,而實體機器人,則在幫我們前往真實的物理絕境。

立即點擊專屬連結 https://perplexity.sng.link/A6awk/k74… 試用 Perplexity吧! 現在申辦台灣大哥大月付 599(以上) 方案,還可以獲得 1 年免費 Perplexity Pro plan 喔!(價值 新台幣6,750)

◆Perplexity 使用實驗室功能對 ANYmal-D 與團隊的全面分析 https://drive.google.com/file/d/1NM97…

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

7
1

文字

分享

0
7
1
「痛、很痛、超級痛!」你有多痛?疼痛有客觀標準嗎?哪些因素會影響疼痛感受?——《痛:牛津非常短講》
左岸文化_96
・2024/03/25 ・6573字 ・閱讀時間約 13 分鐘

測量疼痛

疼痛程度能被客觀測量嗎?

在二十世紀的前半,設計來檢測人類痛覺的機制主要是呼應從純粹身體觀點量測痛覺組成的需求。痛的主觀特質(或更直接地稱為由受測者本人提供的證據)若是遭到忽視還算最好的情況,在最糟的情況下甚至會遭到貶抑。疼痛程度應該要可以客觀量測出來,或說這就是大家進行相關研究的基本依據;一個人感受自己疼痛的方式與個性、道德觀,或甚至性別及種族有關。

再加上醫學的主要功能就是要檢測出傷病並尋求醫治的這種想法持久不衰,疼痛便成為次要的關注重點,只被視為反映出「眞正」問題的指標。疼痛的測量及客觀性因此被刻意保持著疏離、冷淡的狀態,與其說是缺乏同情的立論基礎,還不如說是完全置身於同情的範疇之外。

醫學的主要功能就是要檢測出傷病並尋求醫治的這種想法持久不衰,疼痛便成為次要的關注重點。
圖|pixabay

研究者主要想建立的是痛覺敏感度指數。他們希望知道人體的疼痛要到什麼程度才可以被偵測出來。一般而言,在受控的條件下,不同的疼痛程度顯然可以反映出受試者的文明程度、犯罪傾向,又或者相對「野蠻」的狀態。大家一直都知道,每個人的疼痛閾値——痛無法再被忍受下去的臨界點——差異甚大,不過痛在每個人身上可以被感受出來的最低程度是否具有根本性差異仍是重要議題。

痛的現代史是建立在主張特定「種類」的人不是對痛的刺激更為敏感、就是更難以忍受疼痛的研究之上。這對尋求專業醫療協助的疼痛患者造成了實質上嚴重的後果。他們獲得治療的程度——包括施加的麻醉劑劑量和醫護人員提供的同情心——可能都會跟種族、年紀和性別直接相關。

-----廣告,請繼續往下閱讀-----

疼痛敏感度能成為犯罪證據?忽視痛覺主觀性,能幫助醫生更精準診斷嗎?

相當令人感到奇怪的是,生產可以測量疼痛敏感度的設備——痛覺計(algometer)或測痛儀(dolorimeter)——是心理學家和生理學家範疇內的工作。龍勃羅梭(一八三五─一九○九)因為在著作《犯罪人》(一八七六)中提出了犯罪類型分類而聞名,他採用了德國生理學家杜布瓦-雷蒙(一八一八-一八九六)開發的設備,透過電流刺激測量個體的疼痛敏感度及疼痛閾値。根據他的結論,成為罪犯的人對痛覺的「感受度較不敏銳,有時甚至完全感受不到」。而疼痛測量儀的數據就可以提供證據。

龍勃羅梭認為成為罪犯的人對痛覺的「感受度較不敏銳,有時甚至完全感受不到」。
圖|stocksnap

龍勃羅梭的研究是基於犯罪特質可以透過遺傳而來的理論,而且強調相關跡象都可以在人體上發現。他決心要透過比較(無論死活的)罪犯以及非罪犯之間的特質來證明這項理論,而獲得的結果非常驚人、具有高度影響力,但卻又毫無根據可言。不過他的例子可以反映出當時更為廣泛的趨勢。痛覺測量在機械領域的推進讓心理學家不再推敲心靈方面的非物質性運作,而改為追求物質性且具體可測的皮膚敏感度,並藉此探討大腦處理痛覺的各種相關能力(跟心靈完全不同的領域)。

另外在一九四○年的紐約醫院進行了一個計畫,他們將一盞燈的熱度聚焦在患者皮膚的一塊區域,然後記錄患者會開始感到疼痛的溫度,以及此疼痛到什麼程度會變得無法忍受。這是想將痛覺變成客觀可測量性質的一項新嘗試,其中帶有兩層意涵。

首先,痛覺若是可以被精準地測量出來,或許就能更有效地治療疼痛。其次,如果痛覺可以被測量,醫療體系就能更精準地評估患者對痛覺的反應(或可以無視哪些反應)。擁有機械測量的痛覺數據可以幫助臨床醫生超越(或甚至消滅)痛覺帶有各種隱喻且不甚精確的主觀性質。有些人就是會喜歡高報或低報自己受苦的程度,而這類傾向可以不再對醫療體系處理疼痛的藥物造成影響。

-----廣告,請繼續往下閱讀-----
痛覺若是可以被精準地測量出來,或許就能更有效地治療疼痛。其次,如果痛覺可以被測量,醫療體系就能更精準地評估患者對痛覺的反應(或可以無視哪些反應)。
圖|stocksnap

可是問題在於這個痛覺量測系統不管用,至少任何一個實驗室的結果都無法在其他實驗室複製出來,因為受測對象可以在受過訓練後忍受不同程度的疼痛。外界刺激在受控條件下首先被人感知到的數値至少算是有找到共同的範圍,但疼痛閾値卻因為各種理由而出現各式各樣的差異,更何況個體實在很少(甚至不知道是否可能有)處於不受任何外在條件影響的「中性」狀態。

各種機械理論

人類的所有特質、體驗都能被測量及量化?

如果說與疼痛相關的機械性研究大多得算是笛卡兒的功勞,那是因為他被認定說過一些話,而那些話又顯然能讓後人從中發現一種透過「疼痛路徑」運作的特定機制。若是遵循這樣的笛卡兒觀點,人類這架機器被認定內建一個特定的痛覺系統,此系統將皮膚的神經末梢連結到脊椎,再連結到大腦中的「痛覺中心」。十九世紀以降的生理學家在勤奮不懈的努力下開始尋找特定的痛覺接收神經,或說所謂的「傷害感受器」(nociceptor)。

人類這架機器被認定內建一個特定的痛覺系統,此系統將皮膚的神經末梢連結到脊椎,再連結到大腦中的「痛覺中心」。
圖|pexels

他們認定所有形式的人類特質及體驗都可以被測量及量化,於是透過大腦秤重的數據建立起以種族、性別為指標的智商系統、透過頭骨的測量顯示文明化的程度,甚至利用各種精良的技巧拍攝臉部後描繪出「犯罪可能性等級」。另外還有一些「疼痛纖維」(pain fibres)被描述成跟特定種類的疼痛有關、又或者跟不同規模的疼痛有關。根據這種方式,大腦只是用來接受特定疼痛輸入訊號的接收器。於是自一九六○年代以來,疼痛量表等級可能跟傷勢程度呈正相關的基本前提已被確信是明顯錯誤的想法。

將疼痛以機械性解釋有哪些侷限?

沒有被這種機械性簡化手段抹消並在當代神經科學中獲得進一步探究的部分,是科學家依據刺激的種類及程度,將受激發的不同神經末梢做出分類。我們現在知道,人的體驗和神經刺激之間沒有絕對的相關性。雖然我們還是會用「傷害感受器」這個詞,但它們發出的訊號在成為痛覺前必須先通過大腦的解讀。機械性簡化看法的另一個問題在於,儘管這種說法用來描述一個人將腳放進火堆的情況看似合適,卻無法解釋那些無視特定神經損傷或直接刺激程度而出現的疼痛。於是又有更進一步的機械性解釋來試圖解決這個謎團。

-----廣告,請繼續往下閱讀-----

為了解釋跟初始神經刺激不成比例的巨大疼痛反應,一八八○到一九五○年代出現了各種「(痛覺刺激及反應)模式」理論。有人假設一定是在脊髓中發生了某種反應,而且這個由原本末梢神經接收刺激所啟動的反應可以自我維持或甚至自我加強。隨著神經系統機制愈來愈常使用電機工程學的語言來比喻(而且使用的程度驚人),人們開始可以想像神經元在脊髓的「線路」中產生「反饋迴路」,因而「引起共振」並激發鄰近的其他神經元。正如原本那幅插圖所暗示,這種神經啟動的模式可以永無休止地延續下去,就算接受過治療或甚至原初起因已消失也沒關係(例如幻肢痛)。

機械性簡化看法的另一個問題在於,儘管這種說法用來描述一個人將腳放進火堆的情況看似合適,卻無法解釋那些無視特定神經損傷或直接刺激程度而出現的疼痛。於是又有更進一步的機械性解釋來試圖解決這個謎團。
圖|pexels

這個觀點的問題在於,這種帶有反饋迴路的電路板比喻想像起來容易,眞正要在實驗中發現卻有其難度。同樣地,疼痛方面的病變一直以來都被想像成一個「正常」的疼痛「電路系統」出現問題的結果,若要類比,就像是有訊號在特定種類的疼痛纖維中受到增強。在當代神經科學及疼痛管理領域中,這些理論的許多元素後來都證明在建構更全面性的疼痛體驗理論時很有幫助,但同時也必須超越「刺激帶來體驗」這種純然的機械性關係。

機械性關係以外的其他觀點?

直到一九六○年代,科學機構內外才開始出現批評的聲音——最有名的批評者是孔恩(一九二二-一九九六)和之後的拉圖(一九四七-)——這些人指出社會脈絡在科學工作中所扮演的重要角色,以及埋藏在社會脈絡中的各種想法及預設。到了更近期,達斯頓和蓋里森在他們的著作《客觀性》(二○○七)中重建了「客觀性」的概念。現在,所謂的「事實」已會被許多人視為透過特定框架後建構而來的偏頗資訊。這種不確定性為相關研究開展了全新的寬敞大道,但眞正的改變卻很慢才出現。

早在一八九四年,美國心理學家馬歇爾(一八五二-一九二七)曾有力地指出,快樂和痛苦都是心理狀態的不同特質;兩者是與情緒、感官、心靈和身體相連的「意識元素」,不過就在目睹摩根生產出行為主義式「定律」的這一年,這種全面性的思考觀點卻幾乎沒產生什麼漣漪。當痛的研究在一九七○年代確實開啟了痛覺的情緒及社會組成的相關探討之際,在醫療實務上對於能夠確切測量、判斷並診斷的既存需求,卻讓痛覺和傷害之間的機械關係得以續命。

-----廣告,請繼續往下閱讀-----
馬歇爾曾有力地指出,快樂和痛苦都是心理狀態的不同特質;兩者是與情緒、感官、心靈和身體相連的「意識元素」。
圖|pexels

傷害的意象

第一份讓患者掌握自身疼痛體驗內涵的醫療評估問卷?

臨床醫生數十年來都帶著對痛的多面向理解在實務現場工作。梅爾扎克(一九二九-)和托格森(一九二四-一九九九)在一九七一年開發出了麥吉爾疼痛問卷。那是為了讓患者足以掌握自身疼痛體驗內涵的第一個精密醫療評估工具。疼痛問卷將痛的形容詞及比喻根據痛的強度進行分組,然後依照「感覺」、「情感」、「評價」和「其他相關」四種項目進行分類,再搭配圖表指出身體上的疼痛位置,另外還會針對其他症狀及一般生活方式進行整體評估。

此問卷的前提在許多案例中獲得證實,也就是受疼痛所苦之人會用類似的詞彙來描述特定的疼痛症候群。因此,疼痛問卷帶來的質化觀點對臨床醫療人員很有幫助,能讓他們在一開始更有機會根據患者對自身疼痛狀況的評估做出正確診斷。

梅爾扎克和托格森在一九七一年開發出了麥吉爾疼痛問卷。那是為了讓患者足以掌握自身疼痛體驗內涵的第一個精密醫療評估工具。
圖|stocksnap

當言語無法精準描述,我們如何形容疼痛感受?

乍看之下,這是將疼痛體驗的情感特質重新導入醫療體系的成功應對方式,並因此讓臨床評估朝新的方向前進,但這種做法還是有其限制。疼痛問卷被翻譯成許多其他語言時使用了同樣的武器修辭,或說同樣有關受傷、割傷、刺傷、射傷、揍傷或壓傷的各種比喻。許多學者都指出,這些用來描述人類疼痛體驗的比喻被使用的時間久得驚人,彷彿我們沒有足以訴說疼痛的直接用詞,所以非得求助於這些傷害意象。

不過,這種顯而易見的限制掩蓋了存在於人們陳述中的驚人豐富性及深度。隨著時間過去,武器的種類當然改變了,描述武器對人類造成的傷害種類也出現了更多具有想像力的比喻性說法。此外,隨著語言的改變,人們會發現無論是問卷中的表達方式、代表意義及所處脈絡,都具有難以將其中分類普遍化的細微差異。翻譯的政治(更別說是做法)總是會引發誰的用語足以建立起基本分類架構的疑慮:我們應該要採用患者、醫生,還是譯者的用語?

-----廣告,請繼續往下閱讀-----
為了聽見疼痛的主觀陳述而定下語言框架的嘗試,反而造成了將痛客觀化的效應。
圖|pexels

一旦語言被認定為一個人描述主觀體驗的重要資訊載體,我們就很難將其限制在事先規範好的定義及分類中。疼痛問卷成功地將許多當時在英文中常用的疼痛描述整理在一起,不過也可能限縮了人們在未來描述疼痛的用詞。當醫療人員把一連串描述性用詞交給患者並要求他們找出「符合」自身痛感的詞彙時,這種做法很可能會被視為一種具有高度暗示性及影響力的策略,因為這份用詞淸單暗示了這些詞彙已捕捉到了疼痛的本質。

這種做法對某些人來說可能有用,但有些人即便感覺不太對勁,仍得努力將這些用詞硬套到自身的感受上。另外還有些人在覺得這些用詞完全無法用來描述自己的狀況時,甚至會開始質疑自己的疼痛是否眞實存在。為了聽見疼痛的主觀陳述而定下語言框架的嘗試,反而造成了將痛客觀化的效應。

說到底,一九七○和八○年代在尋求痛的情感特質時,是放入由固定價値觀所掌控的基模(schema)中,就像身體的疼痛値也是由機械主導的客觀數値來決定。患者的聲音並不是沒被聽見,但也受到既有的量測方式取代。

受教育程度會影響疼痛體驗嗎?疼痛分類因文化不同有所差異?

根據一份由哈里森所進行的研究指出,當麥吉爾疼痛問卷在科威特被翻譯成阿拉伯文時,編纂者非常淸楚意識到,即便是在當地社群內部也出現了溝通上的語言偏差。受過教育的科威特人因為懂英文而擁有較多字彙量,因此可用「對一般患者而言過於深奧」的詞彙來描述他們的痛覺。難道這代表他們的疼痛體驗也就因此有所不同嗎?我們很可能永遠不會知道,因為這類描述被有意識地迴避掉了。

-----廣告,請繼續往下閱讀-----

有意思的是,阿拉伯文譯者也迴避了對慢性疼痛患者伸出援手,因為「他們的痛覺評分標準跟那些……經歷急性疼痛的人相比有系統性的不同」。如果有人記得的話,麥吉爾疼痛問卷一開始的設計是要嘗試深入理解疼痛症候群的疼痛體驗——也就是完全以受到慢性疼痛所苦的人為目標——因此我們可以認定這個翻譯策略反而阻礙了這項量測工具原本的概念性目標。

受過教育的科威特人因為懂英文而擁有較多字彙量,因此可用「對一般患者而言過於深奧」的詞彙來描述他們的痛覺。難道這代表他們的疼痛體驗也就因此有所不同嗎?
圖|unsplash

二十世紀醫學對於調查對象必須在各項數値方面完全中立的需求,阻礙了我們去探索疼痛體驗中的一項核心元素,因為那個核心元素本身就是作為一種情感的主觀値。疼痛情感的語言表述——人們針對自身感受說出的話——本身抗拒任何精確的製表及分類作為。科威特的那些譯者對此擁有第一手體驗,他們發現原本在英文中被歸類為「感覺」的詞彙,在翻譯後更接近「情感」或「評價」的類別。

這些作者後來做出結論,「我們有很充足的理由認定,疼痛分類會因為不同文化而有所差異。」比如他們就找不出翻譯「射傷」(shooting)這種痛覺的詞彙。在此同時,義大利文把「射傷」這種痛覺翻譯成「像是床墊彈簧反彈」的痛。

整體而言,根據二○○九年由雪梨的喬治國際健康研究所做的研究,麥吉爾疼痛問卷被翻譯成了二十六種語言,研究發現這些翻譯後的問卷效力普遍不佳,並建議必須謹愼使用這些「非英語版本」的問卷。這些不同版本的問卷中描述疼痛的詞彙從四十二到一百七十六個不等,反映出了人類口中疼痛體驗的豐富程度。這些疼痛反抗或拒絕被分類列表的特質只顯示了人們不是(或說至少不完全是)機器。

-----廣告,請繼續往下閱讀-----

——本文摘自《:牛津非常短講 012》,2024 年 02 月,左岸文化出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
左岸文化_96
39 篇文章 ・ 11 位粉絲
左岸的出版旨趣側重歷史(文明史、政治史、戰爭史、人物史、物質史、醫療史、科學史)、政治時事(中國因素及其周邊,以及左岸專長的獨裁者)、社會學與人類學田野(大賣場、國會、工廠、清潔隊、農漁村、部落、精神病院,哪裡都可以去)、科學普通讀物(數學和演化生物學在這裡,心理諮商和精神分析也在這裡)。