Loading [MathJax]/extensions/tex2jax.js

0

1
0

文字

分享

0
1
0

19 世紀的微觀之眼:顯微繪圖師韋斯特

顯微觀點_96
・2024/12/12 ・6365字 ・閱讀時間約 13 分鐘

本文轉載自顯微觀點

Fourty Three Single Cellular And Multi Cellular Animals. Colour Wood Engraving By E. Evans After T. West

攝影之前的顯微傳播

在顯微鏡已是博物學家必備工具的 19 世紀中葉,銀版攝影技術才剛發明不久,結合兩者的顯微攝影(photomicrograph)隨之邁出第一步。但顯微攝影直到 19 世紀末才真正普及化、以客觀與速度成為自然科學研究的技術。

在此之前,由繪圖師在顯微鏡前臨摹描繪是顯微影像 200 年來的記錄與傳播方法,從休閒式的顯微圖鑑,到科學界的分類學文獻,都有賴精細可信的顯微繪圖。當時的分類學家或解剖學家經常培養出顯微繪圖能力,但與顯微繪圖師分工可以提升效率與美學。儘管有投影描繪器(camera lucida)可作為素描輔助,每個顯微繪圖師的筆觸還是會呈現鮮明的技巧與個人風格差異。

韋斯特(Tuffen West)是維多利亞時代最為人稱道的顯微繪圖師之一,職業生涯長達四十年,以精美版畫將成千上萬種生物型態傳達讀者眼前。他的顯微繪圖可見於醫學、動植物與微生物的科學著作與期刊,並在後世被評論為藝術品,盛年時往往受到最負盛名的博物學家與科普作家雇用。同時,他也是積極的博物學家和顯微技術推廣者。

-----廣告,請繼續往下閱讀-----

失去聽力 放大視覺

1823 年,韋斯特出生於英格蘭約克郡。父親是個熱衷化學實驗的藥師,在不列顛科學促進會 ( British Association for Advancements of Science ) 位居要職。韋斯特從小就展現對自然與博物學的興趣,他一面按照父親的安排習醫,一面維持蒐集動植物標本的愛好,他 19 歲時發表的鳥類比較解剖學論文贏得了一筆可觀的獎金。

韋斯特 22 歲那年,他的醫學生涯戛然而止。他在父親的化學實驗室遭遇爆炸,幾乎完全失聰,失去行醫的基本能力。但他繼續使用顯微鏡觀察樣本,並開始練習版畫技術;在 25 歲時完成第一幅署名的版畫,並在 27 歲受女王學院雇用,為矽藻進行一系列顯微繪圖。

石版印刷:科普浪潮的技術基礎

Half Hours With The Microscope Coutresy Of Nih
韋斯特兄弟為 《顯微鏡前的半小時》 繪製的自然樣本顯微版畫。 Coutresy of NIH National Library of Medicine

韋斯特的弟弟威廉(William West)是在倫敦執業的版畫家及印刷匠,曾為達爾文繪製《物種起源》第一版的物種樹狀圖(也是該版唯一的圖片)。兄弟兩人經常合作為醫學著作繪畫製版,通常是韋斯特繪畫,威廉製版。儘管最後韋斯特的科學繪圖作品豐碩許多,但他最初的版畫技術很可能是由威廉傳授。

這對兄弟對版畫內容的志趣可能不同,但對美學有著共同的堅持。他們經常在作品下方註明,使用彩色平版印刷(Chromolithography)技術,而非新穎的技術競爭對手—石板淡彩畫(Lithotint)。

-----廣告,請繼續往下閱讀-----

1796 年發明的石版印刷,在新世紀成為廣受歐洲各國歡迎的大量圖片複製技術,科學刊物中的印刷版畫,無不經過「繪圖、製版、印刷」三道工序。其中製版的工藝關乎圖畫如何呈現在出版物上,對美感與技術的需求不下於繪製原圖。

19 世紀早期流行的彩色平版印刷中,每一種顏色需要一塊獨立的石板,每一塊石板的圖案必須精準對齊,以繁複的工藝堆疊出豐富亮眼的色澤。而石板淡彩畫每一幅圖畫則只需一塊石板,效率高、成本低,但能表現的顏色有限。韋斯特兄弟堅持較費工夫,色彩美感更為豐厚的彩色平版印刷。

醫學與公衛潮流中嶄露頭角

韋斯特在解剖學繪圖成名的一系列作品也源自其家族成員,他的連襟、口腔醫學之父哈欽森(J. Hutchinson)。哈欽森出版的眾多創新醫學著作包含壁蝨、梅毒、豬囊蟲感染病徵的顯微圖像,都由韋斯特兄弟繪製。他們持續為哈欽森創立的新希德南協會(New Sydenham Society)出版物作畫,合作直到威廉過世。

透過著重翻譯歐陸醫學文獻的新希德南協會,韋斯特兄弟得以觀察、繪製當時嶄新的顯微解剖構造。例如,荷蘭精神疾病與癲癇研究奠基者:施洛德范德柯克(J. Schroeder van der Kolk)涵蓋脊髓到延腦的解剖學報告。韋斯特兄弟的工藝描繪出繁複寫實的神經細胞、腦葉解剖圖,將歐陸最新醫學知識帶到英國讀者眼前。

-----廣告,請繼續往下閱讀-----
Brain Wests
韋斯特兄弟為新西德南協會繪製、印刷的腦部解剖圖,這是從腦部下方觀察的角度。Courtesy of P. Paisley

韋斯特的生涯起步階段深受 19 世紀英國的重大瘟疫與食安議題影響。他曾參與公衛先驅哈索爾(A. H. Hassall)的病源調查任務,在 1855 年倫敦霍亂疫情後,出版檢驗市內民生用水的《各處水質顯微檢驗》。

水質檢驗報告中生動的微生物繪圖,皆由繪圖師前輩米勒(H. Miller)作畫,韋斯特製版。透過精細均衡的版畫成品和大眾對水質的關注,韋斯特奠定了技術細膩的名聲。

後來,哈索爾以《刺胳針》期刊曝光當時常見的食品摻假惡行時,持續與小有名氣的韋斯特合作繪圖,以寫實顯微圖像向大眾呈現來自倫敦四處商販的食品樣本。

直到食品摻假報告集結成冊,哈索爾才在序言說明,他多年前的醫學成名作《人體的顯微解剖:疾病與健康》也包含許多韋斯特的畫作,那是韋斯特參與的第一個科學顯微繪圖作品,合作期間哈索爾還讓初出茅廬的韋斯特住在自己家裡,在充沛的支援下工作。可惜的是,哈索爾的主要著作中,多數顯微繪圖都沒有畫家署名,因此無法判斷哪些繪圖是由韋斯特繪圖或製版。

-----廣告,請繼續往下閱讀-----
Serpentine Water Hyde Park小圖
哈索爾、米勒、韋斯特合作的倫敦水質研究版畫:Serpentine Water of Hyde Park. Courtesy of Wellcome Collection.

畫筆風靡大洋兩岸

醫學領域以外,韋斯特也用鮮明精密的畫風描繪博物學圖像。史密斯(W. Smith)所著《不列顛矽藻概要》裡面層次豐富、色彩飽滿的顯微繪圖,使韋斯特作品在博物學家、科普讀者間一時洛陽紙貴。

韋斯特因此受到海洋生物學先驅、水族館創始人葛斯(P. H. Gosse)邀請,合作出版科普讀物。身為博物學家的葛斯具備出眾的顯微繪畫技能,甚至比 19 世紀末聞名歐洲的博物學兼繪畫家海克爾(E. Haeckel)更具聲望。受到葛斯邀請繪圖,表示韋斯特已躋身當時最傑出的顯微繪圖師行列。

葛斯的著作《顯微鏡前的夜晚》 是當年大西洋兩岸最受歡迎的科普著作。書中以創造論解釋生物型態多樣性的宗教觀念、鮮明多樣的生物插圖廣受歐美讀者歡迎。韋斯特與著名的解剖學家兼科學畫家福特(G. H. Ford)合作為本書繪圖,但兩人都沒有署名,難以分辨書中精湛的繪圖分屬哪位作者。

Lead Technologies Inc. V1.01
葛斯本人是畫工出色的科普作家,但他仍雇用韋斯特為其著作繪畫。圖為葛斯在《不列顛海葵與珊瑚》中自行繪製的 5 種海葵。Courtesy of Wikimedia

韋斯特也曾為當時最熱門科普作家伍德(J. G. Wood)巨著《博物學》作畫。伍德的作品包含從藻類、草履蟲到寵物犬等生物萬象,他的文字和韋斯特的繪圖深刻影響讀者對生物多樣性與人類起源的想像。當時知名文學家如馬克.吐溫和柯南.道爾都曾在小說中引用伍德的科普內容。

-----廣告,請繼續往下閱讀-----

離開顯微鏡,韋斯特的巨觀博物學繪圖依然出色,尤其是針對節肢動物。蛛形動物學開拓者,布萊克沃(J. Blackwall)的《不列顛與愛爾蘭蜘蛛史》、維多利亞時代罕見的女性昆蟲學家史戴維利(E.F. Staveley)的《不列顛蜘蛛》都由韋斯特繪製版畫。栩栩如生的細節、緊密的版面,彰顯了韋斯特博物學繪圖的特色。

韋斯特受雇進行顯微繪圖時,通常由博物學家郵寄為他特製的顯微玻片,讓他自行細細觀察、從容描繪。令人好奇的是,韋斯特的蜘蛛博物學版畫上,總是註明 ”sc. ad nat.” 表示他觀察自然樣本(after nature)進行描繪,而非臨摹他人作品。或許,這些蜘蛛也是由郵差送到韋斯特手上的。

Blackwall Spiders
韋斯特兄弟為布萊克沃所著圖鑑繪製的蜘蛛版畫,從針對眼睛、足部的細節可見當時顯微鏡觀察實體樣本的能力。Image source: Bee, L., Oxford et al.

圖文交織,拓展微觀

除了陸地生物,韋斯特為專書、期刊描繪的主題包括有孔蟲、單細胞動物、從海葵到鯨豚等海洋生物,栩栩如生的彩色圖畫拓展了大眾對博物學的興趣。

其中一群可能受彩色圖畫吸引而親近博物學的目標讀者,就是維多利亞時代的中上階層女性。她們雖曾受高等教育、具備社會地位與經濟資本,卻無法加入學會,也罕有機會研究自然、從事博物學相關職位。

-----廣告,請繼續往下閱讀-----

例如,倫敦雅典娜俱樂部(The Athenaeum Club),這個以希臘女神為名、服從英國女王的組織,在19世紀初成立時,已經是科學、藝文、法政菁英紳士踴躍參與的知性俱樂部,卻直到2002年才開放女性成為會員。當年俱樂部中的動物學家如瓊斯(T. R. Jones)就強調利用「女性感興趣的」的自然題材、韋斯特栩栩如生的繪圖來吸引維多利亞時代女性讀者。

在林奈學會記錄中,韋斯特謙稱自己是顯微繪圖師,博物學只是業餘愛好。但是他在顯微技術推廣的成果,遠遠超出單純繪圖師的工作範疇。

韋斯特曾推出一系列的顯微知識專欄文章,分享自己的研究心得。1860年代在《休閒科學》(Recreative Science)上著重於他早期對矽藻的蒐集與觀察。1880至1890年代的〈顯微鏡前的一小時〉〈顯微鏡前的30分鐘〉(專欄命名顯然是模仿暢銷書《顯微鏡前的半小時》)則大幅擴展,包含微生物、種子、昆蟲器官的顯微素描以及顯微鏡操作技巧等。

經常以郵件接收顯微樣本的韋斯特在 1875 年成為「郵政顯微協會」(Postal Microscopical Society)主席。該組織建立各地顯微愛好者交流樣本與知識的平台,並在月刊上評析會員們郵寄分享的最新玻片。韋斯特對樣本的縝密觀察與評論,是當時會員們最為珍視的回饋。

-----廣告,請繼續往下閱讀-----
Tongues And Other Microscopic Parts Of Snails. Colour Wood Engraving By E. Evans After T. West After W. F. Maples
韋斯特依據博物學家梅波(W. Maples)原畫繪製而成的蝸牛口器顯微木板畫,後交由埃凡斯印刷。由此可見當時博物學繪圖的多層分工。

全能的科學傳播者

推廣顯微知識的行動中,韋斯特不僅從事評析或繪圖。在他參與的兩本暢銷科普讀物《顯微鏡前的半小時》《顯微鏡下的常見物體》中,他負責篩選樣本、精工製圖,科普作家再以這些顯微繪圖為核心寫作。韋斯特的選樣和繪圖決定了整本書的走向。

《顯微鏡前的半小時》文字作者蘭卡斯特(E. Lankester)在第二版序文中,感謝韋斯特精采的顯微版畫,搭配「作者」的後續著述介紹,在市場上大受歡迎。蘭卡斯特認為韋斯特佔據首要功勞。

與科普作家伍德合著《顯微鏡下的常見物體》時,韋斯特不僅擔任挑選顯微樣本、繪製版畫(此步驟決定了後續文字的走向),也負責印刷的校樣,責任比文字作者更加吃重。此書獲得讀者們熱愛,持續再版直到20世紀。

主導了兩本堪稱史上最受歡迎的顯微科普書,韋斯特卻不曾以作者名義出版專書。他曾在科學期刊發表數篇博物學論文,涵蓋植物、昆蟲、矽藻的顯微構造,採樣與觀察、寫作與繪圖都由他一手包辦。

Half Hours With The Microscope Coutresy Of Nih 2
韋斯特為《顯微鏡前的半小時》所繪的植物博物學版畫。Courtesy of NIH National Library of Medicine

據佚名資料,蒼蠅足部型態的比較形態學研究是韋斯特最得意之作。韋斯特在 1860 年代發表的矽藻博物學與蒼蠅足部論文,在西元 2020 年後依然有科學家引用。

在《顯微鏡下的常見物體》的出版過程中位居要角的韋斯特,在初版書名頁與印刷者並列,重要性僅次於作者伍德。但隨著版本演進,在 1949 年的再版中,韋斯特的名字已完全消失了。

同樣熱銷的科普圖書《顯微鏡前的半小時》出版歷程中,韋斯特也遭逢一樣的命運。儘管文字作者蘭卡斯特曾表示韋斯特的貢獻最為重要,但是他的名字卻在 1876 年及其後的各版本付之闕如,此時韋斯特的顯微繪圖與科學寫作工作也幾乎停擺。

空白與堅持

韋斯特在 1864 年前後,以及整個 1870 年代都遭遇生產力低落的問題,問世的畫作與文章寥寥無幾。直到 1882 年後,韋斯特才穩定地為期刊作畫並刊載科普專欄,但再也沒有產出研究論文或專書版畫。

創作死寂的階段,正是韋斯特頻繁進出精神療養院的歲月。他的症狀缺少明確醫療記錄,但研究者認為,頻繁的住院符合躁鬱症的週期特徵。

1862 年起,壯年的韋斯特病況不斷起伏,不時住院。即使到他退休後,依然無法逃脫精神症狀的折磨,1879 到 1883 年間,花甲之年的韋斯特在精神療養院裡度過了 31 個月。從首次入院到 1891 年過世,他在療養院居住的時間總和超過 60 個月。

韋斯特在逝世前 6 年寄信給林奈學會,表示自己受困於健康狀況,無法進行科學活動,只能滿懷遺憾地自請退出。

在文明劇烈變遷的 19 世紀後半葉,不少知名藝術家深受精神症狀所苦。梵谷(V. van Gogh)、孟克(E. Munch)和韋斯特的同胞,愛貓畫家韋恩(L. Wain)。這些藝術家的精神症狀影響繪畫風格,但並未阻止他們繼續創作,甚至成就他們名留青史的傑作。

可惜的是,定位自己為「顯微藝術家」(microscopic artist)而非傳統藝術家的韋斯特,沒能找到精神失調與繪畫結合的創作出口。

Image
韋斯特 1886 出版文章搭配的繪圖,品質與早年作品頗有落差。Courtesy of Dolan J. R.

繪圖與研究的生產力遠非韋斯特失去的最重要事物,他在即將成為醫師時失去聽力;他在新婚三年後(1860年)不幸喪妻,並在不久後開始進出精神療養院;在 1875 年,他青春期的兒子離開人世。

造化弄人的是,韋斯特分別在喪妻與喪子的年份,獲選為林奈學會成員與郵政顯微協會主席。遭遇精神疾病之後,他的科學繪圖產量從未恢復,但也不曾放棄推廣顯微科學,直到 1891 年逝世前,他仍在持續整理、刊登過去的顯微素描與筆記。

玻片之後的隱形人

58 歲就自稱退休的韋斯特留下不到 1000 件署名作品,沒有水彩畫展、自畫像的紀錄。以當時顯微版畫行情來看,韋斯特很難平衡他的家庭開支,但他留下 500 英鎊的遺產,表示他的報酬可能高出其他顯微繪圖師甚多,或者他還有許多未署名的畫作在維多利亞時代流傳。

如同韋斯特的貢獻在解剖學教科書出版多年後才被哈索爾公布,或是在科普暢銷書的再版生命中逐漸湮沒,功勞被忽略似乎是維多利亞時代顯微繪圖師的常態。隨著科技演進,顯微繪圖這個職業在 20 世紀初不可避免地被顯微攝影取代。

從 19 世紀的博物學到現代學術工作,在科學上得到信賴、美學上得到讚賞的顯微影像,都由許多人的技術與心力交織而成。當精彩的顯微影像映入眼簾,不妨也看看研究主持者之外,還有哪些猶如現代顯微繪圖師的影像技術人員隱藏在這幅微觀風景之後。

Image 1
韋斯特最得意的博物學論文中,關於矽藻和蒼蠅足部構造的繪圖。Courtesy of Dolan J. R.

參考資料

  • Dolan, J. R. (2021). Tuffen West FLS, FRMS (1823-1891): artist of the microscopic, naturalist, and populiser of microscopy. Arts et sciences5(1).
  • Paisley, P (2015).The Tuffen you probably missed, and some you’ve never seen. microscopy-uk.org
  • Paisley, P (2016). More Tuffen you possibly didn’t notice. microscopy-uk.org

查看原始文章

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

顯微觀點_96
32 篇文章 ・ 6 位粉絲
從細微的事物出發,關注微觀世界的一切,對肉眼所不能見的事物充滿好奇,發掘蘊藏在微觀影像之下的故事。

0

2
0

文字

分享

0
2
0
「別來無恙」不只是招呼
顯微觀點_96
・2025/04/12 ・2349字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自顯微觀點

圖/照護線上

我最親愛的 你過的怎麼樣  沒我的日子 你別來無恙   -張惠妹《我最親愛的》

常常聽到「別來無恙」的問候,其中的「恙」就是指「恙蟲」。在唐朝顏師古的《匡謬正俗》一書中便提到:「恙,噬人蟲也,善食人心。古者草居,多移此害,故相問勞,曰無恙。」用以關心久未見面的朋友沒有染讓恙蟲病、一切安好。

而清明節一到,衛福部疾管署便會提醒民眾上山掃墓或是趁連假到戶外踏青,要小心「恙蟲病」,就是因為每年恙蟲病的病例數從4、5月,也就是清明假期左右開始上升;到6、7月達最高峰。

Qingming Or Ching Ming Festival, Also Known As Tomb Sweeping Day In English, A Traditional Chinese Festival Vector Illustration.
圖/照護線上

但恙蟲病到底是什麼樣的疾病呢?恙蟲病古時被稱為沙虱,早在晉朝葛洪所著的醫書《肘後方》提及,「初得之,皮上正赤,如小豆黍米粟粒;以手摩赤上,痛如刺。三日之後,令百節強,疼痛寒熱,赤上發瘡。」

-----廣告,請繼續往下閱讀-----

恙蟲病是一種病媒傳播的人畜共通傳染病,致病原為恙蟲病立克次體(Orientia tsutsugamushi或Rickettsia tsutsugamushi),被具傳染性的恙蟎叮咬,經由其唾液使人類感染立克次體。而感染立克次體的恙蟎,會經由卵性遺傳代傳立克次體,並在每個發育期中,包括卵、幼蟲、若蟲、成蟲各階段均保有立克次體,成為永久性感染。

感染恙蟲病可能引起危及生命的發燒感染。常見症狀為猝發且持續性高燒、頭痛、背痛、惡寒、盜汗、淋巴結腫大;恙蟎叮咬處出現無痛性的焦痂、一週後皮膚出現紅色斑狀丘疹,有時會併發肺炎或肝功能異常。 恙蟲病的已知分佈範圍不斷擴大,大多數疾病發生在南亞和東亞以及環太平洋地區的部分地區;台灣則以花東地區、澎湖縣及高雄市為主要流行區。

比細菌還小的立克次體

立克次體算是格蘭氏陰性菌,有細胞壁,無鞭毛,革蘭氏染色呈陰性。但它雖然是細菌,但是嚴格來說,更像是細胞內寄生生命體,生態特徵多和病毒一樣。例如不能在培養基培養、可以藉由陶瓷過濾器過濾、只能在動物細胞內寄生繁殖等。大小介於細菌和病毒之間,呈球狀或接近球形的短小桿狀直徑只有0.3-1μm,小於絕大多數細菌。

最早發現的立克次體感染症的是洛磯山斑疹熱(Rocky mountain spotted fever);由美國病理學家立克次(Howard Taylor Ricketts,1871-1910)所發現。

-----廣告,請繼續往下閱讀-----

1906年立克次到蒙大拿州度假,發現當地正在流行一種叫做洛磯山斑疹熱的傳染病,病患會出現頭痛、肌肉痛、關節疼痛的症狀,之後皮膚會出現出血性斑塊。當時沒有人知道是什麼原因造成這個疾病。

立克次一開始以顯微鏡觀察病患血液,發現一種接近球形的短小桿菌,但卻無法體外培養。而他將帶有「短小桿菌」的血液注射進天竺鼠體內,或是以壁蝨吸食患者血液再咬天竺鼠,發現天竺鼠也會染病。另外,他試驗各種節肢動物來做為媒介,發現只有壁蝨能夠成為傳染窩進行傳播。

立克次釐清了洛磯山斑疹熱的成因與傳染途徑,但因為無法在體外培養基培養這個病原菌,他並未加以命名。

後來其他研究者從斑疹傷寒等其他疾病也發現無法在培養基生長、必須絕對寄生宿主細胞的類似細菌,並為了紀念立克次的貢獻,而命名為「立克次體」。

-----廣告,請繼續往下閱讀-----

而立克次體不只一種,因此引起的疾病也不只有恙蟲病。在台灣列為法定傳染病的還有由普氏立克次體(Rickettsia prowazekii )引起的流行性斑疹傷寒,透過體蝨在人群間傳播;由斑疹傷寒立克次氏體(Rickettsia typhi)造成的地方性斑疹傷寒,由鼠蚤傳播至人體。另外還有由立氏立克次體(Rickettsia rickettsii)所引致的洛磯山斑疹熱等。

立克次體透過傳統革蘭氏染色的效果非常弱;因此常用一種對卵黃囊塗片中立克次體進行染色的方法,以利光學顯微鏡觀察。現在,這項技術常用於監測細胞的感染狀態。

受限於光學顯微鏡的解析度,許多科學家也使用電子顯微鏡來對立克次體與宿主細胞相互作用的精細結構進行分析。例如分別引起流行性斑疹傷寒、洛磯山斑疹熱和恙蟲病的立克次體,外膜組織就能透過電子顯微鏡看到些許的差別,有的外膜較厚,有的則是外膜內葉和外葉倒置。

立克次
卵黃囊塗片立克次體的顯微影像,其尺寸範圍為 0.2μ x 0.5μ 至 0.3μ x 2.0μ。立克次體通常需要使用特殊的染色方法,例如Gimenez染色。圖片來源:CDC Public Health Image Library

做好預防就能別來無「恙」

根據疾管署統計,今(2024)年至 4 月 1 日恙蟲病確定病例已累計至 2 8例,高於去年同期。

-----廣告,請繼續往下閱讀-----

立克次菌無法在一般培養基培養,雖然可用接種天竺鼠或雞胚胎來分離病原確診,但基於實驗室生物安全操作規定,通常以免疫螢光法、間接血球凝集、補體結合等檢查抗體的方式來檢驗。

恙蟲病可用抗生素治療,若不治療死亡率達 60%。但最好的預防方式還是避免暴露於恙蟎孳生的草叢環境,掃墓或是戶外活動最好穿著長袖衣褲、手套、長筒襪及長靴等衣物避免皮膚外露。離開草叢後也要盡速沐浴和更換全部衣物,以防感染。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

1
0

文字

分享

0
1
0
腸道與聽力的神秘連結:你的聽覺健康可能藏在腸胃裡?
雅文兒童聽語文教基金會_96
・2025/02/20 ・3665字 ・閱讀時間約 7 分鐘

  • 作者 / 雅文基金會聽語科學研究中心 研究員|羅明

腸道的狀態會影響身體的健康,是現代人熟悉的保健觀念,就像廣告台詞所說的:胃腸顧好,人就快好。腸道狀態的影響力,可能比我們想像的多更多。已經有愈來愈多的研究報告指出,腸道狀態與聽覺系統之間,其實也有某種關聯。聽的好不好跟肚子好不好,究竟有什麼關係?讓我們繼續看下去。

腸腦軸線是什麼

開始之前,要先介紹「腸腦軸線」(gut-brain axis)的概念。研究證實,大腦的運作與腸道中的微生物群有所關聯。腸道若出現微生態失調(gut dysbiosis),除了生活品質水準降低 [1],大腦功能與外在行為也會受到影響。例如:容易無法集中精神 [2] [3]、睡眠品質不佳 [4],甚至是心理功能失調 [5] 等種種情況。

同時也有研究發現,某些大腦方面的失序和疾病,會伴隨腸道微生態失調的情況 [6]。例如:認知功能方面出現障礙的阿茲海默症(Alzheimer’s disease; [7] [8]),以及在疾病早期常先出現行動功能障礙的帕金森症 (Parkinson’s disease; [9] )。

大腦的運作與腸道中的微生物群有所關聯。圖/AI 創建

至於腸道與大腦是如何互相影響彼此,目前的研究告訴我們,大致上是透過幾條途徑:
1. 迷走神經(vagus nerve)
2. 下視丘-腦垂體-腎上腺系統(hypothalamic-pituitary-adrenal axis,簡稱 HPA 軸)
3. 免疫系統(immune system)
4. 神經傳導素(neurotransmitters)
5. 細菌代謝物(bacterial metabolites)

-----廣告,請繼續往下閱讀-----

總之,腸道菌相與身心健康之間,不論是在生理或心理的層面,都息息相關。而有另一批研究的結果指出,不只是大腦所在的中樞系統,這種關聯性還擴及到了「聽覺」所在的感官系統。尤其是迷走神經與免疫系統,我們將會提到它們在聽覺系統運作中的角色。

近年研究新發現:耳腸腦軸線

聽的好不好,也就是聽覺系統是否功能良好,同樣是身心健康重要的一環。聽覺系統本身可再分為周邊(含外耳、中耳、內耳)與中樞(含延腦、橋腦、中腦、大腦)等兩個子系統,而聲音一開始從外界進入聽覺系統,到最後能否解讀成功,取決於兩個子系統是否都能順利運作。

直到最近,種種間接顯示腸道狀態影響聽覺功能的資訊,引起了一些研究者的注意。例如,有一種基因同時與腸道和耳朵的發育有關,而先天性巨結腸症(或稱赫司朋氏症,Hirschsprung disease)的動物研究發現,這種基因的突變可能導致聽力損失 [10]

由於相關的資訊愈來愈多,近來有研究者進行了系統性的回顧,並根據得到的結果指出,人體中很可能還有一種可稱之為「耳腸腦軸線」(ear-gut-brain axis)的系統 [11] [12] [13] [14]。接下來,讓我們看看有哪些研究,支持著人體存在耳腸腦軸線的想法。

-----廣告,請繼續往下閱讀-----

人體中很可能存在一種「耳腸腦軸線」系統。圖/AI創建

迷走神經串接耳與腸

人類的腦神經中,迷走神經最長也分布最廣。這組神經起於延腦,而後下行至頸、胸、腹等部位。它在自主神經系統(autonomic nervous system)有著重要的角色,其中之一是自動調節消化系統的活動。觸及腸道與大腦的神經纖維中,訊息是雙向往返的,約有 10% 至 20% 的部分是從大腦往腸道傳送,而有 80% 至 90% 的部分則是從腸道送往大腦 [15]

迷走神經有許多分支,其中一支延伸到外耳之上,稱爲迷走神經耳分支(auricular branch)。有一個對象是成年女性的研究發現,如果在迷走神經耳分支施予刺激,會有助於消解發炎性腸道疾病(inflammatory bowel disease,簡稱 IBD)的疼痛感,以及減低症狀的嚴重程度 [16]。而這一類刺激方法,用於治療耳鳴(tinnitus)似乎也有效果,例如:減少耳鳴相關的症狀,以及舒緩耳鳴帶來的壓力感 [17] [18]

發炎性腸道疾病除了引發疼痛感,也可能伴隨耳鳴相關症狀。圖/AI 創建

發炎也會讓人聽的不好

我們在文章開頭時提到,由於腸腦軸線的存在,腸道失調與大腦異常顯現出清楚的關聯性。如果沿著相同的思路,則可預期腸道一旦出現異狀,透過耳腸腦軸線的作用,聽覺系統應該也會連帶發生問題。實際上, 在 IBD 這一類疾病的觀察中,的確不同的研究也有著類似的發現。

-----廣告,請繼續往下閱讀-----

無論是在外耳、中耳或內耳,都有研究資料顯示,這些部位的某些異狀會跟 IBD 有所關聯 [19]。尤其是感音性聽力損失,是 IBD 患者最常見的耳科疾病。有研究者回溯了32位IBD病患者的資料,結果發現其中的 22 位兼有感音性聽損,比例將近七成,而且在之中的 19 位,並無法找到其他能夠解釋聽損的原因 [20]

還有進一步比較潰瘍性結腸炎(ulcerative colitis)與克隆氏症(Crohn’s desease)兩群患者的研究也報告了一致的發現 [21]。相較於身體健康的對照組,感音性聽損在這一群患者有著較高的盛行率,而顯示聽損的聲音頻率則在 2000Hz、4000Hz 與 8000Hz 等高頻的範圍。值得注意的是,研究者也指出這些患者的聽力損失與年齡之間並沒有顯著的關係。

感音性聽力損失是發炎性腸道疾病患者最常見的耳科疾病。圖/AI 創建

此外,大腦中的微膠細胞(microglia)在活化時會釋放發炎物質,而聽力功能的異常也可能與這種發炎反應有關。已有動物研究指出,在噪音環境引起耳鳴與聽力損失之後,中樞聽覺系統的微膠細胞出現了較高的活化狀態 [22]

聽覺與消化的你來我往

就如迷走神經的研究指出的,聽覺與消化之間的關係,可能也是一種雙向的互動。除了聽力損失伴隨腸道發炎出現之外,新近的研究還透露出,聽音樂,對於腸道來說也有著補充益生菌的效果。研究者在實驗室餵養 30 天的老鼠身上發現,餵養期間也接觸音樂的老鼠們,在第 25 天的體重,顯著高於沒有接觸音樂的老鼠;不僅如此,那些每天固定聽音樂六個小時的老鼠們,腸道裡的壞菌減少了,腸道的菌相也因此變得更好了 [23]。沒想到,聽覺系統不只是接收訊息的管道而已,還可能在無形中影響著消化系統的運作。

-----廣告,請繼續往下閱讀-----

「耳腸腦軸線」的想法,對於聽力保健而言,或許帶來另一個思考的角度:除了瞭解如何避免聽覺系統的器官受到損傷,多加留意消化系統是否正常運作,也可能是同樣重要的事情。如此一來,除了「胃腸顧好,人就快好」,未來還可以再說:腸道好,「聽」也好。

  1. Gracie, D. J., Williams, C. J., Sood, R., Mumtaz, S., Bholah, M. H., Hamlin, P. J., et al. (2017). Negative effects on psychological health and quality of life of genuine irritable bowel syndrome–type symptoms in patients with inflammatory bowel disease. Clinical Gastroenterology and Hepatology, 15, 376–384. https://doi.org/ 10.1016/j.cgh.2016.05.012
  2. van Langenberg, D. R., & Gibson, P. R. (2010). Systematic review: Fatigue in inflammatory bowel disease. Alimentary Pharmacology and Therapeutics, 32, 131–143.
  3. D’Silva, A., Fox, D. E., Nasser, Y., Vallance, J. K., Quinn, R. R., Ronksley, P. E., & Raman, M. (2022). Prevalence and risk factors for fatigue in adults with inflammatory bowel disease: A systematic review with meta-analysis. Clinical gastroenterology and hepatology: the official clinical practice. journal of the American Gastroenterological Association, 20(5), 995–1009.e7. https://doi.org/10.1016/j.cgh.2021.06.034
  4. Van Langenberg, D. R., Yelland, G. W., Robinson, S. R., and Gibson, P. R. (2017). Cognitive impairment in Crohn’s disease is associated with systemic inflammation, symptom burden and sleep disturbance. United European Gastroenterology Journal, 5, 579–587. https://doi.org/10.1177/2050640616663397
  5. Ng, J. Y., Chauhan, U., Armstrong, D., Marshall, J., Tse, F., Moayyedi, P., et al. (2018). A comparison of the prevalence of anxiety and depression between uncomplicated and complex Ibd patient groups. Gastroenterology Nursing, 41, 427–435. https://doi.org/10.1097/ SGA.0000000000000338
  6. Tremlett, H., Bauer, K. C., Appel-Cresswell, S., Finlay, B. B., & Waubant, E. (2017). The gut microbiome in human neurological disease: a review. Annals of Neurology, 81, 369–382. https://doi.org/10.1002/ana.24901
  7. Vogt, N. M., Kerby, R. L., Dill-Mcfarland, K. A., Harding, S. J., Merluzzi, A. P., Johnson, S. C., et al. (2017). Gut microbiome alterations in Alzheimer’s disease. Scientific Reports, 7, 1–11. https://doi.org/10.1038/s41598-017-13601-y
  8. Haran, J. P., Bhattarai, S. K., Foley, S. E., Dutta, P., Ward, D. V., Bucci, V., et al. (2019). Alzheimer’s disease microbiome is associated with dysregulation of the anti- inflammatory P-glycoprotein pathway. mBio, 10, e00632–e00619. https://doi.org/10.1128/ mBio.00632-19
  9. Romano, S., Savva, G. M., Bedarf, J. R., Charles, I. G., Hildebrand, F., & Narbad, A. (2021). Meta-analysis of the Parkinson’s disease gut microbiome suggests alterations linked to intestinal inflammation. npj Parkinson’s Disease, 7, 1–13. https://doi.org/10.1038/s41531-021-00156-z
  10. Ohgami, N., Ida-Eto, M., Shimotake, T., Sakashita, N., Sone, M., Nakashima, T., et al. (2010). C-ret–mediated hearing loss in mice with Hirschsprung disease. Proceedings of the National Academy of Sciences, 107, 13051–13056. https://doi.org/10.1073/pnas.1004520107
  11. Denton, A. J., Godur, D. A., Mittal, J., Bencie, N. B., Mittal, R., & Eshraghi, A. A. (2022). Recent advancements in understanding the gut microbiome and the inner ear Axis. Otolaryngologic Clinics of North America, 55, 1125–1137. https://doi.org/10.1016/j.otc.2022.07.002
  12. Graham et al., 2023
    Graham, A. S., Ben-Azu, B., Tremblay, M. È., Torre, P., 3rd, Senekal, M., Laughton, B., van der Kouwe, A., Jankiewicz, M., Kaba, M., & Holmes, M. J. (2023). A review of the auditory-gut-brain axis. Frontiers in Neuroscience, 17, 1183694. https://doi.org/10.3389/fnins.2023.1183694
  13. Kociszewska, D., & Vlajkovic, S. M. (2022). The association of inflammatory gut diseases with neuroinflammatory and auditory disorders. Frontiers in Bioscience-Elite, 14:8. https://doi.org/10.31083/j.fbe1402008
  14. Megantara, I., Wikargana, G. L., Dewi, Y. A., Permana, A. D., & Sylviana, N. (2022). The role of gut Dysbiosis in the pathophysiology of tinnitus: a literature review. International Tinnitus Journal, 26, 27–41. https://doi.org/10.5935/0946-5448.20220005
  15. Breit, S., Kupferberg, A., Rogler, G., and Hasler, G. (2018). Vagus nerve as modulator of the brain–gut axis in psychiatric and inflammatory disorders. Frontiers in Psychiatry, 9:44. https://doi.org/10.3389/fpsyt.2018.00044
  16. Mion, F., Pellissier, S., Garros, A., Damon, H., Roman, S., and Bonaz, B. (2020). Transcutaneous auricular vagus nerve stimulation for the treatment of irritable bowel syndrome: a pilot, open-label study. Bioelectronics in Medicine, 3, 5–12. https://doi.org/10.2217/ bem-2020-0004
  17. Lehtimäki, J., Hyvärinen, P., Ylikoski, M., Bergholm, M., Mäkelä, J. P., Aarnisalo, A., et al. (2013). Transcutaneous vagus nerve stimulation in tinnitus: a pilot study. Acta Oto-Laryngologica, 133, 378–382. https://doi.org/10.3109/00016489.2012.750736
  18. Ylikoski, J., Markkanen, M., Pirvola, U., Lehtimäki, J. A., Ylikoski, M., Jing, Z., et al. (2020). Stress and tinnitus; transcutaneous auricular vagal nerve stimulation attenuates tinnitus-triggered stress reaction. Frontiers in Psychology, 11:2442. https://doi.org/10.3389/ fpsyg.2020.570196
  19. Fousekis, F. S., Saridi, M., Albani, E., Daniel, F., Katsanos, K. H., Kastanioudakis, I. G., et al. (2018). Ear involvement in inflammatory bowel disease: a review of the literature. Journal of Clinical Medicine Research, 10(8), 609–614. https://doi.org/10.14740/jocmr3465w
  20. Karmody, C. S., Valdez, T. A., Desai, U., & Blevins, N. H. (2009). Sensorineural hearing loss in patients with inflammatory bowel disease. American Journal of Otolaryngology, 30, 166–170.
  21. Akbayir, N., Çaliş, A. B., Alkim, C., Sökmen, H. M. M., Erdem, L., Özbal, A., et al. (2005). Sensorineural hearing loss in patients with inflammatory bowel disease: A subclinical extraintestinal manifestation. Digestive Diseases and Sciences, 50, 1938–1945. https://doi.org/10.1007/ s10620-005-2964-3
  22. Wang, W., Zhang, L. S., Zinsmaier, A. K., Patterson, G., Leptich, E. J., Shoemaker, S. L., et al. (2019). Neuroinflammation mediates noise-induced synaptic imbalance and tinnitus in rodent models. PLoS Biology, 17:e3000307. https://doi.org/10.1371/ journal.pbio.3000307
  23. Niu, J., Xu, H., Zeng, G. et al. (2023). Music-based interventions in the feeding environment on the gut microbiota of mice. Scientific Reports, 13, 6313. https://doi.org/10.1038/s41598-023-33522-3
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

雅文兒童聽語文教基金會_96
62 篇文章 ・ 223 位粉絲
雅文基金會提供聽損兒早期療育服務,近年來更致力分享親子教養資訊、推動聽損兒童融合教育,並普及聽力保健知識,期盼在家庭、學校和社會埋下良善的種子,替聽損者營造更加友善的環境。

0

1
0

文字

分享

0
1
0
任意添加光學元件 為研究打開大門的無限遠光學系統
顯微觀點_96
・2025/01/30 ・1763字 ・閱讀時間約 3 分鐘

本文轉載自顯微觀點

圖 / 顯微觀點

顯微鏡在科學發展中扮演關鍵的角色,讓人們得以突破肉眼的限制,深入微觀的世界探索。而隨著時間推進,顯微技術也日新月異,其中現代顯微鏡設計了所謂的「無限遠光學系統」(Infinity Optical Systems),更是提升了顯微鏡性能和突破過去的觀察瓶頸。因此主要的顯微鏡製造商現在都改為無限遠校正物鏡,成為顯微鏡的技術「標配」。

1930 年代,相位差顯微技術出現,利用光線在穿過透明的樣品時產生的微小的相位差造成對比,使透明樣本需染色就能更容易被觀察。1950 年左右,則出現使用兩個 Nomarski 稜鏡,將光路分割再合併產生 干涉效應的 DIC 顯微技術,讓透明樣本立體呈現、便於觀察。

在傳統「有限遠系統」中,單純的物鏡凸透鏡構造,會直接將光線聚焦到一個固定距離處,再經過目鏡放大成像。也因此過去顯微鏡的物鏡上通常會標示適用的鏡筒長度,通常以毫米數(160、170、210 等)表示。

-----廣告,請繼續往下閱讀-----

而在過渡到無限遠校正光學元件之前,選用的物鏡和鏡筒長度必須匹配才能獲得最佳影像,且大多數物鏡專門設計為與一組稱為補償目鏡的目鏡一起使用,來幫助消除橫向色差。

但是問題來了!當這些光學配件要添加到固定鏡筒長度的顯微鏡光路中,原本已完美校正的光學系統的有效鏡筒長度大於原先設定,顯微鏡製造商必須增加管長,但可能導致放大倍率增加和光線減少。因此廠商以「無限遠」光學系統來解決這樣的困境。

德國顯微鏡製造商 Reichert 在 1930 年代開始嘗試所謂的無限遠校正光學系統,這項技術隨後被徠卡、蔡司等其他顯微鏡公司採用,但直到 1980 年代才變得普遍。

無限遠系統的核心在於其物鏡光路設計。穿透樣本或是樣本反射的光線透過無限遠校正物鏡,從每個方位角以平行射線的方式射出,將影像投射到無限遠。

-----廣告,請繼續往下閱讀-----
有限遠(上)和無限遠(下)光學系統的光路差別
有限遠(上)和無限遠(下)光學系統的光路差別。圖 / 擷自 Optical microscopy

透過這種方法,當使用者將 DIC 稜鏡等光學配件添加到物鏡、目鏡間鏡筒的「無限空間」中,影像的位置和焦點便不會被改變,也就不會改變成像比例和產生像差,而影響影像品質。

但也因為無限遠系統物鏡將光線平行化,因此這些光線必須再經過套筒透鏡在目鏡前聚焦。有些顯微鏡的鏡筒透鏡是固定的,有些則設計為可更換的光學元件,以根據不同實驗需求更換不同焦距或特性的透鏡。

除了可以安插不同的光學元件到光路中而不影響成像品質外,大多數顯微鏡都有物鏡鼻輪,使用者可以根據所需的放大倍率安裝和旋轉更換不同的物鏡。

傳統上一旦更換物鏡,樣本可能就偏離焦點,而須重新對焦。但在無限遠光學系統的設計中,物鏡到套筒透鏡的光路長度固定,也就意味著無論更換哪個物鏡,只要物鏡設計遵循無限遠系統的標準,光路長度和光學路徑的一致性得以保持。

-----廣告,請繼續往下閱讀-----

因此無限遠光學系統也有助於保持齊焦性,減少焦距偏移。這對需要頻繁切換倍率的實驗操作來說,變得更為便利和具有效率。

不過使用上需要注意的是,每個顯微鏡製造商的無限遠概念都有其專利,混合使用不同製造商的無限遠物鏡可能導致不正確的放大倍率和色差。

改良顯微技術,使研究人員能夠看到更精確的目標;以及如何讓更多光學配件進入無限遠光學系統中的可能性仍然在不斷發展中。但無限遠光學系統的出現已為研究人員打開了大門,可以在不犧牲影像品質的情況下輕鬆連接其他光學設備,獲得更精密的顯微影像。

  1. M. W. Davidson and M. Abramowitz, “Optical microscopy”, Encyclopedia Imag. Sci. Technol., vol. 2, no. 1106, pp. 120, 2002.
  2. C. Greb, “Infinity Optical Systems: From infinity optics to the infinity port,” Opt. Photonik 11(1), 34–37 (2016).
  3. Infinity Optical Systems: From infinity optics to the infinity port
  4. Basic Principle of Infinity Optical Systems
  5. Infinity Optical Systems

延伸閱讀選擇適合物鏡 解析鏡頭上的密碼

-----廣告,請繼續往下閱讀-----

討論功能關閉中。