Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

鑽石行星

科學人_96
・2013/02/07 ・909字 ・閱讀時間約 1 分鐘 ・SR值 517 ・六年級

-----廣告,請繼續往下閱讀-----

在某些系外行星上,鑽石可能比石頭還多。

撰文/麥森(John Matson)

對於環繞著遙遠恆星的系外行星,相關研究仍處於初期階段。然而,研究人員已發現的數百顆系外行星,沒有兩顆是相似的。有的巨大到可以把木星壓扁,有的則是小得像是被恆星燒烤著的鵝卵石,有的則打腫臉充胖子、密度低得有如苔蘚聚集而成的泥炭。還有些系外行星猛一看覺得很熟悉,但是某些性質卻和地球相反,地球上的稀有物質在那裡到處都是,反之亦然。

舉例來說,碳是構成鑽石到石油等珍貴物質的關鍵元素,儘管如此重要,碳卻佔地球組成不到0.1%。

-----廣告,請繼續往下閱讀-----

不過,在其他的行星上,碳卻可能和泥土一樣普通,搞不好,那裡的泥土根本就是碳。有一顆距離我們40光年遠的系外行星,最近經判定就是這樣的一個地方,碳是該行星最主要的成份,而且內部的強大壓力讓大量的碳組成了鑽石。

這個稱為巨蟹座55e(55 Cancri e)的行星,地殼由石墨組成,厚達數百公里。美國耶魯大學的天文物理博士後研究員馬度蘇罕(Nikku Madhusudhan)說:「如果你繼續往下挖,會發現地殼之下有很厚的鑽石層。」結晶的鑽石層厚度達行星半徑的1/3。

這些主要由碳組成的行星,形成過程和地球非常不同。如果以太陽的成份為指標,最初形成太陽系行星的塵埃和氣體中,氧氣約是碳的兩倍。而地球上的岩石也確實大多是富含氧的矽酸鹽礦物。然而,天文學家發現巨蟹座55e所環繞的恆星,卻是含碳略多於氧,這顯示出截然不同的行星形成環境。馬度蘇罕和同事計算這顆行星的性質時,發現它的密度比水高,但是比地球上的礦物低,符合對碳行星的預測。該研究結果發表在2012年11月10日的《天文物理期刊通訊》(Astrophysical Journal Letters)。

美國航太總署哥達德太空飛行中心的庫赫納(Marc Kuchner)說:「如果碳行星上有任何生命體,它們將和仰賴氧的地球生物截然不同。在燃料用途上,稀有的氧氣和人類亟需的碳氫燃料一樣珍貴。」即使是求婚的方式也會很特別,庫赫納若有所思地說:「在碳星球上,會讓人興奮的是一小杯亮晶晶的水,而不是鑽戒。」(洪艾彊 譯)

-----廣告,請繼續往下閱讀-----

 

SA原文:Carbon Planets Turn Earth’s Chemistry on Its Head.

研究文獻:A Possible Carbon-rich Interior in Super-Earth 55 Cancri e. Nikku Madhusudhan et al. 2012 ApJ 759 L40

刊載於《科學人》2013年第132期02月號

-----廣告,請繼續往下閱讀-----
文章難易度
科學人_96
39 篇文章 ・ 5 位粉絲
《科學人》雜誌-遠流出版公司於2002年3月發行Scientific American中文版,除了翻譯原有文章更致力於本土科學發展與關懷。

0

1
1

文字

分享

0
1
1
伺服器過熱危機!液冷與 3D VC 技術如何拯救高效運算?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/11 ・3194字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 高柏科技 合作,泛科學企劃執行。

當我們談論能擊敗輝達(NVIDIA)、Google、微軟,甚至是 Meta 的存在,究竟是什麼?答案或許並非更強大的 AI,也不是更高速的晶片,而是你看不見、卻能瞬間讓伺服器崩潰的「熱」。

 2024 年底至 2025 年初,搭載 Blackwell 晶片的輝達伺服器接連遭遇過熱危機,傳聞 Meta、Google、微軟的訂單也因此受到影響。儘管輝達已經透過調整機櫃設計來解決問題,但這場「科技 vs. 熱」的對決,才剛剛開始。 

不僅僅是輝達,微軟甚至嘗試將伺服器完全埋入海水中,希望藉由洋流降溫;而更激進的做法,則是直接將伺服器浸泡在冷卻液中,來一場「浸沒式冷卻」的實驗。

-----廣告,請繼續往下閱讀-----

但這些方法真的有效嗎?安全嗎?從大型數據中心到你手上的手機,散熱已經成為科技業最棘手的難題。本文將帶各位跟著全球散熱專家 高柏科技,一同看看如何用科學破解這場高溫危機!

運算=發熱?為何電腦必然會發熱?

為什麼電腦在運算時溫度會升高呢? 圖/unsplash

這並非新問題,1961年物理學家蘭道爾在任職於IBM時,就提出了「蘭道爾原理」(Landauer Principle),他根據熱力學提出,當進行計算或訊息處理時,即便是理論上最有效率的電腦,還是會產生某些形式的能量損耗。因為在計算時只要有訊息流失,系統的熵就會上升,而隨著熵的增加,也會產生熱能。

換句話說,當計算是不可逆的時候,就像產品無法回收再利用,而是進到垃圾場燒掉一樣,會產生許多廢熱。

要解決問題,得用科學方法。在一個系統中,我們通常以「熱設計功耗」(TDP,Thermal Design Power)來衡量電子元件在正常運行條件下產生的熱量。一般來說,TDP 指的是一個處理器或晶片運作時可能會產生的最大熱量,通常以瓦特(W)為單位。也就是說,TDP 應該作為這個系統散熱的最低標準。每個廠商都會公布自家產品的 TDP,例如AMD的CPU 9950X,TDP是170W,GeForce RTX 5090則高達575W,伺服器用的晶片,則可能動輒千瓦以上。

-----廣告,請繼續往下閱讀-----

散熱不僅是AI伺服器的問題,電動車、儲能設備、甚至低軌衛星,都需要高效散熱技術,這正是高柏科技的專長。

「導熱介面材料(TIM)」:提升散熱效率的關鍵角色

在電腦世界裡,散熱的關鍵就是把熱量「交給」導熱效率高的材料,而這個角色通常是金屬散熱片。但散熱並不是簡單地把金屬片貼在晶片上就能搞定。

現實中,晶片表面和散熱片之間並不會完美貼合,表面多少會有細微間隙,而這些縫隙如果藏了空氣,就會變成「隔熱層」,阻礙熱傳導。

為了解決這個問題,需要一種關鍵材料,導熱介面材料(TIM,Thermal Interface Material)。它的任務就是填補這些縫隙,讓熱可以更加順暢傳遞出去。可以把TIM想像成散熱高速公路的「匝道」,即使主線有再多車道,如果匝道堵住了,車流還是無法順利進入高速公路。同樣地,如果 TIM 的導熱效果不好,熱量就會卡在晶片與散熱片之間,導致散熱效率下降。

-----廣告,請繼續往下閱讀-----

那麼,要怎麼提升 TIM 的效能呢?很直覺的做法是增加導熱金屬粉的比例。目前最常見且穩定的選擇是氧化鋅或氧化鋁,若要更高效的散熱材料,則有氮化鋁、六方氮化硼、立方氮化硼等更高級的選項。

典型的 TIM 是由兩個成分組成:高導熱粉末(如金屬或陶瓷粉末)與聚合物基質。大部分散熱膏的特點是流動性好,盡可能地貼合表面、填補縫隙。但也因為太「軟」了,受熱受力後容易向外「溢流」。或是造成基質和熱源過分接觸,高分子在高溫下發生熱裂解。這也是為什麼有些導熱膏使用一段時間後,會出現乾裂或表面變硬。

為了解決這個問題,高柏科技推出了凝膠狀的「導熱凝膠」,說是凝膠,但感覺起來更像黏土。保留了可塑性、但更有彈性、更像固體。因此不容易被擠壓成超薄,比較不會熱裂解、壽命也比較長。

OK,到這裡,「匝道」的問題解決了,接下來的問題是:這條散熱高速公路該怎麼設計?你會選擇氣冷、水冷,還是更先進的浸沒式散熱呢?

-----廣告,請繼續往下閱讀-----

液冷與 3D VC 散熱技術:未來高效散熱方案解析

除了風扇之外,目前還有哪些方法可以幫助電腦快速散熱呢?圖/unsplash

傳統的散熱方式是透過風扇帶動空氣經過散熱片來移除熱量,也就是所謂的「氣冷」。但單純的氣冷已經達到散熱效率的極限,因此現在的散熱技術有兩大發展方向。

其中一個方向是液冷,熱量在經過 TIM 後進入水冷頭,水冷頭內的不斷流動的液體能迅速帶走熱量。這種散熱方式效率好,且增加的體積不大。唯一需要注意的是,萬一元件損壞,可能會因為漏液而損害其他元件,且系統的成本較高。如果你對成本有顧慮,可以考慮另一種方案,「3D VC」。

3D VC 的原理很像是氣冷加液冷的結合。3D VC 顧名思義,就是把均溫板層層疊起來,變成3D結構。雖然均溫板長得也像是一塊金屬板,原理其實跟散熱片不太一樣。如果看英文原文的「Vapor Chamber」,直接翻譯是「蒸氣腔室」。

在均溫板中,會放入容易汽化的工作流體,當流體在熱源處吸收熱量後就會汽化,當熱量被帶走,汽化的流體會被冷卻成液體並回流。這種利用液體、氣體兩種不同狀態進行熱交換的方法,最大的特點是:導熱速度甚至比金屬的熱傳導還要更快、熱量的分配也更均勻,不會有熱都聚集在入口(熱源處)的情況,能更有效降溫。

-----廣告,請繼續往下閱讀-----

整個 3DVC 的設計,是包含垂直的熱導管和水平均溫板的 3D 結構。熱導管和均溫板都是採用氣、液兩向轉換的方式傳遞熱量。導熱管是電梯,能快速把散熱工作帶到每一層。均溫板再接手將所有熱量消化掉。最後當空氣通過 3DVC,就能用最高的效率帶走熱量。3DVC 跟水冷最大的差異是,工作流體移動的過程經過設計,因此不用插電,成本僅有水冷的十分之一。但相對的,因為是被動式散熱,其散熱模組的體積相對水冷會更大。

從 TIM 到 3D VC,高柏科技一直致力於不斷創新,並多次獲得國際專利。為了進一步提升 3D VC 的散熱效率並縮小模組體積,高柏科技開發了6項專利技術,涵蓋系統設計、材料改良及結構技術等方面。經過設計強化後,均溫板不僅保有高導熱性,還增強了結構強度,顯著提升均溫速度及耐用性。

隨著散熱技術不斷進步,有人提出將整個晶片組或伺服器浸泡在冷卻液中的「浸沒式冷卻」技術,將主機板和零件完全泡在不導電的特殊液體中,許多冷卻液會選擇沸點較低的物質,因此就像均溫板一樣,可以透過汽化來吸收掉大量的熱,形成泡泡向上浮,達到快速散熱的效果。

然而,因為水會導電,因此替代方案之一是氟化物。雖然效率差了一些,但至少可以用。然而氟化物的生產或廢棄時,很容易產生全氟/多氟烷基物質 PFAS,這是一種永久污染物,會對環境產生長時間影響。目前各家廠商都還在試驗新的冷卻液,例如礦物油、其他油品,又或是在既有的液體中添加奈米碳管等特殊材質。

-----廣告,請繼續往下閱讀-----

另外,把整個主機都泡在液體裡面的散熱邏輯也與原本的方式大相逕庭。如何重新設計液體對流的路線、如何讓氣泡可以順利上浮、甚至是研究氣泡的出現會不會影響元件壽命等等,都還需要時間來驗證。

高柏科技目前已將自家產品提供給各大廠商進行相容性驗證,相信很快就能推出更強大的散熱模組。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
224 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

2
1

文字

分享

0
2
1
製藥廠的野心,與暗潮洶湧的秘密協商——《謊言之瓶》
臉譜出版_96
・2021/06/27 ・3362字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者 / 凱瑟琳.埃班  (Katherine Eban)
  • 譯者 / 高子梅

二○○七年十月 印度新德里

馬爾溫德.辛格的起步一開始並不順利。他父親是一位創業垂統的遠見之士,但他不像他父親,他知道自己的首要任務是幫股東們創造價值。他曾告訴印度的財經媒體:「我內心是個創業家,真正的創業家的終極目標就是要創造價值。」

但是要創造出長久的價值,就不像表面那麼容易了。二○○六年接管這家公司時,這位年輕的執行長立刻複習一遍他的企管碩士教戰守冊—積極尋找收購和結盟的機會。但就算他成功地製造出話題,根據《亞洲貨幣》(AsiaMoney)的說法,蘭伯西的損益表底線卻在「下降中」。蘭伯西不得不撤回收購德國最大學名藥公司的那場標案。後來又碰 FDA 的作梗。在他看來,美國的監管機關真的「很討人厭」,不管他怎麼保證公司一定會改革,怎麼暗示它們為這家公司留點面子,對方就是無動於衷。

馬爾溫德.辛格。圖/Wikipedia

在馬爾溫德的印度老家裡,你幾乎什麼問題都可以解決,不管是靠金錢來買通還是暴力威脅。就在五個月前,馬爾溫德的弟弟席溫德跑去堵一個很愛強出頭的心臟外科醫師,因為後者在一筆交易裡反對他重返辛格家族名下新德里的一家醫院。結果外科醫生上班的時候竟碰上幾近一百名的警力和多達一整個營的快速行動部隊,全都配備防暴用的催淚瓦斯和水灌車。

但在美國,你召集不到自衛部隊,而且 FDA 也拒絕讓步。身為蘭伯西最大股東的辛格兄弟發現這些問題已經有損他們的損益表底線。但就在這些紛擾當中,馬爾溫德注意到紐約有家公司的顧問傳了一則很有趣的訊息給他。日本製藥公司第一三共(Daiichi Sankyo)裡一個叫做宇根勉(Tsutomu Une,暫譯名)的傢伙想跟他談一下策略合夥的事。馬爾溫德嗅到了商機。

-----廣告,請繼續往下閱讀-----

在離新德里四千英里外的東京,宇根勉博士正在全球各地尋找新的收入來源。身為全日本第二大藥廠第一三共全球企業策略資深執行官的宇根勉,想要打入公司尚未涉足的海外市場,譬如印度和東歐。他需要一個成本低廉但產值又夠大的合作對象。於是目光落在蘭伯西身上。

蘭伯西實驗室有限公司。圖/Wikipedia

六十歲的微生物學家宇根勉是從醫藥創新領域裡的基層慢慢爬上來的。他在第一製藥公司(Daiichi Pharmaceutical Company)工作了三十幾年,並在該公司二○○五年與三共公司(Sankyo Company)合併之後繼續一路攀到高位。態度穩重又彬彬有禮的宇根勉從以前就有習慣把工作生涯的點滴內容記錄下來。

日本比任何一個國家都來得唯原廠藥是從,認為學名藥不值得信賴。這國家崇尚品質和衛生管理。儘管以前品質上曾受到鄙視,但它的現代製藥產業已不可同日而語,在品管上享有全球數一數二的地位。他們的藥丸必須是白色的,否則病患會存疑。宇根勉雖然是這塊謹慎招牌下的產物,卻也看出了日本製藥業的保守天性和對高成本研究的全心投入,將導致這個產業成長的趨緩。

從他的角度來看,在十一個國家設有製藥工廠、產品銷售遍布一百二十五個國家的蘭伯西,非常具有吸引力。它有眾多符合「先申請主義」的藥物申請案正在美國境內等待通過,其中仿製立普妥的學名藥勢必會是有史以來最賺錢的上市學名藥。第一三共的盤算是趁手邊還沒有暢銷藥(blockbusters)襲捲市場的空檔,先靠一批成本低廉的藥物產品來創造收入。蘭伯西似乎是一個絕佳的結盟夥伴,可以幫它達到這個目的。若是能很快完成收購,便可趕在下一季的投資者會議上撐起第一三共重創的股價。

-----廣告,請繼續往下閱讀-----

在日本的董事會議廳裡,決策做成往往是靠共識的產生。所以宇根勉必須說服他的同僚們。

只是當第一三共的總經理小田剛(Takashi Shoda ,暫譯名)告訴他的同僚們,「印度會是一張王牌,可以讓一家日本製藥公司步上全球化。」這點子聽起來宛若空中樓閣。

對文化蘊涵向來敏感的宇根勉深知這種事要小心處理。蘭伯西不是一般的印度公司。它是一家有文化歷史的機構,是由顯赫的辛格家族創辦,已經傳了三代。現在掌權的是辛格家族裡的一位繼承人,他是受過美式教育的企管碩士,年紀只有他的一半多一點。但還好宇根勉在第一三共的地位算高,高瞻遠矚的見地向來受人敬重,商業頭腦也很受肯定。因此在二○○七年十月初,他首度伸出觸角,聯絡上蘭伯西在紐約的一位外聘顧問。

第一次對話後,不到三個禮拜,宇根勉和馬爾溫德就碰面了。銀髮整齊往後梳的宇根勉用日本腔很濃的英文開口說話。馬爾溫德措辭優雅、穿著訂製西服、包著頭巾和匹配的手帕,看上去泰然自若。他們的協商進行得很快,雙方訂好在新德里展開後續會談。宇根勉和馬爾溫德以保密方式保持聯絡,在內部報告和往來信件裡都使用「鑽石」這個代號來代表第一三共,「紅寶石」則代表蘭伯西。若有媒體詢問,便聲稱他們正在討論代工生產的協議內容。這種事情在業界很平常,並不稀罕,不會引起財經媒體的注意。

-----廣告,請繼續往下閱讀-----

宇根勉首度伸出觸角後,又過了四個多月,兩方的對話已經從策略性合夥的議題提升到買斷協商。這位日本微生物學家和年輕的印度億萬富豪一直在股價和一些條款上討價還價。不過宇根勉對蘭伯西始終揮之不去的監管疑雲憂心忡忡。在雙方往返的電郵裡,宇根勉在律師們的指導棋下,不斷施壓蘭伯西必須詳述清楚該有的擔保、代表性與補償辦法,萬一蘭伯西的財務狀況不若馬爾溫德所保證的那樣,第一三共便可以控告對方違約。但馬爾溫德不斷擋住他的要求。最後宇根勉在一通電話裡告訴他,「我們的提問,你總是用『不用擔心』這種答案來打發,我的同僚們對此感到灰心。」同一天在第二通電話裡,馬爾溫德用他那一貫悅耳和平穩的聲音向這位科學家再三保證:「紅寶石無所畏懼,毫無過失。」

但是宇根勉仍有一些懸而未決的疑問。眾所皆知聯邦探員曾在二月突襲蘭伯西的美國總部,發出警告函抵制它的兩家主要工廠:帕奧恩塔薩希布和德瓦斯。但是沒有人知道這場調查的嚴重性究竟到什麼程度,或者這家公司的可能法律責任。馬爾溫德曾在電話裡詢問宇根勉:「你在擔心什麼?」宇根勉只能自行揣測美國司法部底下的檢察官和這世上最難纏的 FDA 監管人員到底在追查什麼。這是他的顧問們必須找到的答案。不到一個月,馬爾溫德和宇根勉在德里祕密會面,雙方都各自帶著律師和一小群高級主管。宇根勉明白表示,不管美國政府對蘭伯西進行的各種調查最後會查出什麼,都會影響第一三共的未來動作。但馬爾溫德表情淡定,保證會提供協助,對整個過程坦誠以對。他同意辦一場盡職調查會(due diligence meeting),將所有跟調查案有關的文件全攤在第一三共面前。

然後這位年輕的執行長就像把宇根勉當成自己人那樣,跟他說這些調查案的真正幕後推手是誰—輝瑞藥廠為了報復蘭伯西在立普妥專利權官司上的占盡優勢,於是透過某種手段對蘭伯西展開調查。宇根勉思索著他的說法,而蘭伯西智慧財產權顧問德斯穆克當時也出現在那群高級顧問裡,但他面無表情、沒有開口說話。

儘管馬爾溫德神情愉悅地再三保證蘭伯西「無所畏懼,毫無過失」,但這家公司基本上就是個隨時可能炸開的火藥桶。馬爾溫德很清楚這家公司最不可告人的祕密已經被記載在公司內部那份殺傷力最強的文件裡,亦即眾所皆知的自評報告(SAR),也就是拉吉達.庫馬秀給董事會看的那份批判內容毫不留情的 PowerPoint 簡報。

-----廣告,請繼續往下閱讀-----

要是它已被徹底摧毀,馬爾溫德就不會有今天的處境。

-----廣告,請繼續往下閱讀-----
臉譜出版_96
88 篇文章 ・ 255 位粉絲
臉譜出版有著多種樣貌—商業。文學。人文。科普。藝術。生活。希望每個人都能找到他要的書,每本書都能找到讀它的人,讀書可以僅是一種樂趣,甚或一個最尋常的生活習慣。

2

7
3

文字

分享

2
7
3
向豐富多元的變質岩提問——《磐石紀事:追蹤 46 億年的地球故事》
貓頭鷹出版社_96
・2021/04/01 ・2564字 ・閱讀時間約 5 分鐘 ・SR值 513 ・六年級

-----廣告,請繼續往下閱讀-----

  • 文 | 貝鳶業如

變質隱喻

變質(「後來形成的」)岩石是岩石世界中少數的多語通曉者,一生至少曾在兩種不同的地質環境中居住過。這些岩石所代表的是多元文化,而非文化熔爐。變質作用與熔融無關,而與固態狀態下的再結晶有關,就跟粉狀的新雪被埋起並變得易碎一樣。因此,變質岩的結構和成分風格各異,是其所棲環境的混合產物,這使變質岩成為所有地質文章中最豐富的一種。

變質沉積岩是其中最易閱讀的一種,因為它們可能尚保有分層、漣漪紋,甚至化石等可見的特徵,於是可以由所形成的變質沉積岩(也就是它們的原岩,意為「第一岩石」)中分辨出此種岩石。這就好像你憑著耳朵上一道疤痕的形狀,而認出一位你自孩提時代後就再沒見過面的老朋友。但即便再結晶作用和變形作用已然抹去這些特徵,變質岩的成分還是記錄著自己的起源身分(雖然外貌變了,你的朋友還是記得很久以前的某個夏天,曾與你一同在海灘消磨時光)。

大理岩是由石灰岩加熱所形成,而這兩種岩石主要也都由方解石礦(碳酸鈣,CaCo)所組成。

意大利托斯卡尼的大理石采石場。圖/Pixabay

大理岩之所以呈半透明狀,單純就是因為再結晶顆粒的平均尺寸較大之故。板岩、千枚岩和片岩是頁岩(泥岩)不斷經由高溫烘烤而成。晦暗無光澤的黏土會依變質作用壓力與溫度條件的不同,而形成閃亮的雲母、耐看的紫色石榴石或天藍色的藍晶石,全都是由原來黏土中本來就有的鋁和矽重組而成。

-----廣告,請繼續往下閱讀-----

此類只在相當嚴格的物理條件範圍內才會形成的礦物,稱為指標性礦物,是烙印在岩石生涯旅程各個不同關卡的印記。地質學家研讀指標性礦物,便能夠就特定岩石從其起源一路追溯到最深的掩埋處所,再回到他當初無意間撿起這塊岩石的地表。像鑽石這種主要藉由壓力而形成的礦物,是良好的地壓計,提供了礦物形成之時,岩石所處深度的測量讀數。其他只在特定溫度下才會結晶形成的礦物,則被當成地熱計使用。這些受壓力和溫度影響的礦物即便在旅行前往地表時,依然是其宿主岩石的亞穩成分,這就像大雪堆在氣溫升至冰點上之後,還可以繼續存在一段時間。不過,從熱動力學的角度來看,鑽石不盡然恆久遠。與在地表的情況不同的是,鑽石會慢慢劣化成另一種平凡得多的碳結晶形態——石墨,也就是用來製造鉛筆芯的「鉛」。好在對珠寶商和客戶而言,鑽石劣化要耗去好幾段的地質時間。

藉由壓力而形成的鑽石,是良好的地壓計。圖/Pixabay

指標性礦物是辨識岩石變質時構造環境的關鍵。在地球大陸地殼的洞穴裡,溫度會以每公里攝氏二十度的速率穩定上升。

此種變化在礦坑深處便可直接觀察得到,在礦坑的較深處,溫度之高可能使人熱到無力。有些變質岩所含有的礦物集合與這種地熱梯度一致。也就是說,礦物所記錄下的溫度,正與我們預期中岩石所經歷受的壓力(深度)相當。這種以常見方式發展成熟的岩石所經歷過的,稱為一般性的深埋變質作用。

但許多其他的變質岩石所記錄下的溫度和壓力高峰情況,卻與這種典型的地熱梯度並不一致,亦即就岩石所到達的深度而言,這些岩石成分所暗示的溫度要不是太高,就是太低。

-----廣告,請繼續往下閱讀-----

這意味著岩石是在熱混亂的情況下產生變質,而這正是岩漿或構造活動的標記。

若一塊岩石所含的指標性礦物在低壓下記錄到高溫(就像天才兒童過早深入成人世界),那麼這岩石必然曾在接近熱源處產生再結晶,熱源則多半是地底的大塊岩漿。

經歷接觸變質作用的岩石,所接觸的熱源大部分為地底的岩漿。圖/Pixabay

此種岩石所經歷的,稱為接觸變質作用。相反地,若一塊岩石含有高壓礦物(如石榴石、玉、罕見的鑽石等),卻從未經歷過相應的高溫,那麼這塊岩石位於深處之時,必然有某種東西使之冷卻,或至少將之隔絕開來(就像一個天真的成人過著異乎尋常受保護的生活)。

岩石是效能極低的熱導體,因此一塊岩石(尤其是大塊的岩石)是有可能在被熱得多的岩石包圍的情況下,依然保持著涼爽。

-----廣告,請繼續往下閱讀-----

「隱沒帶」海洋地殼因自身重量的拉扯而下沉(就像厚重棉被掉下床去)回到溫暖地函之處,此處便是此種隔絕現象可能出現的地質場景。海洋地層運動進入地函(對流循環的下降部分)的速率,較其因傳導而升溫的速率快了許多倍(岩石很不容易因傳導而增溫),因此海洋地層在隱沒到地函裡千百萬年後,依然能夠保持異常冰冷的表層,這一點甚至可由地震「觀察」得到,因為穿行地球內部的震波在通過這些較冷地帶時,運動速率會提高一些。

已進入隱沒帶的岩石有時候又會再度回到地表,但我們對這種地球消化不良的現象所知極少。這些岩石含有高壓低溫礦物的特徵,很容易被辨識出來。這些岩石稱為藍片岩,因為其中一種富含鈉、稱為「藍閃石」的礦石呈牛仔布色而得名。藍閃石非常罕見,但科學期刊討論它們的篇幅卻很多,因為它們明確地訴說進入隱沒帶的旅程,使我們全都能夠免於走這一遭。再說一次:你得找到對的岩石提問才行。

圖中礦物深藍色的部分即為藍閃石。圖/wikimedia

與隱沒有關的變質岩無疑為地球所獨有。月球、水星、火星和金星上沒有將岩石從地表推回地底深處的構造循環作用,因此應該沒有變質岩的存在(除非你要把因隕石撞擊而受創,發生驚嚇變質的岩石也算進去)。

火星和金星上大規模的火山作用可能使較老的岩石被覆蓋住,因而經歷了深埋變質作用,但由於缺乏有效侵蝕媒介的存在,這些岩石就一直無聲地停留在難以企及的深處,無法到地表來訴說它們的故事。

-----廣告,請繼續往下閱讀-----
——本文摘自《磐石紀事:追蹤 46 億年的地球故事》,2020 年 12 月,貓頭鷹出版社
-----廣告,請繼續往下閱讀-----
所有討論 2
貓頭鷹出版社_96
65 篇文章 ・ 26 位粉絲
貓頭鷹自 1992 年創立,初期以單卷式主題工具書為出版重心,逐步成為各類知識的展演舞台,尤其著力於科學科技、歷史人文與整理台灣物種等非虛構主題。以下分四項簡介:一、引介國際知名經典作品如西蒙.德.波娃《第二性》(法文譯家邱瑞鑾全文翻譯)、達爾文傳世經典《物種源始》、國際科技趨勢大師KK凱文.凱利《科技想要什麼》《必然》與《釋控》、法國史學大師巴森《從黎明到衰頹》、瑞典漢學家林西莉《漢字的故事》等。二、開發優秀中文創作品如腦科學家謝伯讓《大腦簡史》、羅一鈞《心之谷》、張隆志組織新生代未來史家撰寫《跨越世紀的信號》大系、婦運先驅顧燕翎《女性主義經典選讀》、翁佳音暨曹銘宗合著《吃的台灣史》等。三、也售出版權及翻譯稿至全世界。四、同時長期投入資源整理台灣物種,並以圖鑑形式陸續出版,如《台灣原生植物全圖鑑》計八卷九巨冊、《台灣蛇類圖鑑》、《台灣行道樹圖鑑》等,叫好又叫座。冀望讀者在愉悅中閱讀並感受知識的美好是貓頭鷹永續經營的宗旨。