Loading [MathJax]/extensions/tex2jax.js

0

20
0

文字

分享

0
20
0

術語多用不見得專業,論文卻會少被引用

寒波_96
・2021/04/19 ・1888字 ・閱讀時間約 3 分鐘 ・SR值 576 ・九年級

隨著科學發展,愈來愈多專業術語被創造。一項研究分析發現,論文的標題和摘要,假如使用較多術語,被引用的數量也會更低。

發現罕見地球生物,而講起火星話的專家們。圖/參考資料 2

論文不想被引用太多,標題和摘要就多用術語

術語或行話,也就是英文的 terminology 或 jargon,在討論比較專業的問題時往往不可或缺;但是過多的術語也會阻礙溝通,尤其是對不同領域的人

在武漢肺炎封城而中斷正常研究的期間,義大利 2 位地質學者 Alejandro Mart’inez 和 Stefano Mammola,想到研究術語對論文傳播的影響。他們探討的領域是「洞穴」相關研究,以被引用的次數作為量化指標。

和洞穴有關的研究包含多個領域,像是地質學、動物學、考古學、生態學、演化學。兩位學者由科睿唯安 (Clarivate) 公司的資料庫「Web of Science」,取樣過去 30 年,共 21,486 篇洞穴研究論文。

總共約 1,500 個字被定義為術語。這項研究分析標題和摘要中,術語所佔的比例,計算術語比例和被引用數的關聯。

-----廣告,請繼續往下閱讀-----

整體看來,術語比例和引用次數呈現負相關。特別是當比例超過 1% 以後,引用次數劇烈下降。引用數名列前茅的論文們,術語比例絕大部分未滿 1%;被引用超過 450 次的熱門論文,沒有一篇在標題中使用術語。

洞穴研究最常出現的術語:石筍(stalagmite)。圖/pixabay

濫行話主義:以術語為基礎錯置脈絡的專業場域建構

同樣是火星話,術語和術語間還是有差。有些術語的出現次數較多,例如 speleothem、stalagmit 的存在感,明顯比 epikarst、vadose、troglophi 這些術語更高。

常見到或許不太算是術語的術語,如 stalagmite(石筍)、epigean(生物在土壤表面上的活動)等等,對引用數似乎比較沒有負面影響。

即使本行的專業人士,關注別人論文的時間也很有限。一項 2002 年的研究調查,一位科學家平均一年會看 1,100 個論文標題、200 篇的摘要,最後只會閱讀 97 篇內文。如今論文發表的數量愈來愈多,爭搶讀者的競爭也益發激烈。

新研究的作者認為,過度使用術語會阻礙溝通,論文作者應該避免濫用術語,至少在標題與摘要,以免嚇跑潛在讀者。

但是也有人不認同,烏克蘭的地質學者 Alexander Klimchouk 便認為術語能更精確表達意思;例如他身為地球岩石學 (geospeleology) 的專家,不需要在意動物學家沒辦法立刻看懂他的論文。他自己被引用最多,達到 430 次的論文標題叫作「Hypogene speleogenesis: hydrogeological and morphogenetic perspective」。

-----廣告,請繼續往下閱讀-----
論文的寫作目的,和其他文類沒有不同,都是「向讀者傳達訊息」。圖/pexels

考量讀者是誰,向他們傳達什麼訊息

其實論文的寫作目的,和其他文類沒有不同,都是「向讀者傳達訊息」。該怎麼寫,最重要的考量是「讀者」是誰,要向他們「傳達什麼訊息」。

例如沒那麼厲害的人,假如想要表達我很厲害,時常會術語連發,表現一個專業的感覺。但是這招只能蒙蔽也沒那麼厲害的人,對真的很厲害的人通常不太有用。

相對地,有些非常非常強的人,表達訊息時還真的不太需要用到術語;簡單幾句話,就能傳達以下省略幾萬字的意圖。

術語該怎麼用這回事沒有一定,看自己、看對象、看狀況、看場合,總之要看脈絡。我個人意見是,

-----廣告,請繼續往下閱讀-----

在這個專業爆炸,術語不值錢的年代,大部分人最好平時就養成有意少用術語的習慣。適度使用術語以精簡敘述,但是僅止於此。尤其不該讓敘述被術語牽著走,甚至是只在文字上繞來繞去,反倒沒有進入問題的內涵。

延伸閱讀

  1. Specialized terminology reduces the number of citations of scientific papers
  2. Want other scientists to cite you? Drop the jargon

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

-----廣告,請繼續往下閱讀-----
文章難易度
寒波_96
193 篇文章 ・ 1090 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

4
0

文字

分享

0
4
0
為什麼不要對重聽的阿嬤大叫──不只是沒禮貌的問題
雅文兒童聽語文教基金會_96
・2024/06/04 ・3173字 ・閱讀時間約 6 分鐘

  • 文/張逸屏|雅文基金會聽語科學研究中心 主任/研究員

端午節時,幼兒園大班的晴晴跟著爸爸媽媽回阿嬤家過節,晴晴興奮地跟阿嬤分享前幾天在學校聽的故事「紅盒子裡的祕密」,但是,最近開始出現重聽情況的阿嬤,常常聽不清楚或聽錯,不是說「啥?什麼?」,不然就是把「驢子爺爺」聽成「吳爺爺」。於是,晴晴不自覺地愈講愈大聲,希望能讓阿嬤聽清楚,當阿嬤還是聽得霧煞煞,晴晴只好更大聲!最後,大聲到爸爸從廚房跑出來罵晴晴:「怎麼可以對阿嬤講話這麼大聲、太沒禮貌了!」晴晴委屈地哭了起來……

大家應該都有碰過被身旁的人提醒跟這位長者說話要大聲一點的經驗吧?根據世界衛生組織的數據[1],60 歲以上高齡人口中,約有 1/4 的人患有足以造成生活障礙的聽力損失(disabling hearing loss)。然而,說話大聲一點,真的可以讓重聽的年長者聽得比較清楚嗎?一般來說,嗓門特別小的人,或是原本用悄悄話的方式在說話,這時提高到一般音量應該會有用。然而,若是一般音量的情況下,大聲說話、甚至大吼大叫,其實是不怎麼管用,更可能會有反效果的[2]。這樣違反直覺的情況,是什麼緣故造成的呢?

圖一/大吼大叫往往不會讓重聽的人聽得更清楚(圖片來源:Pixabay)

大聲不是比較聽得清楚嗎?

一般直覺上會認為,既然重聽或有聽力損失,就是講大聲一點應該就能聽得到了,不是嗎?事實上,由於「語音組成」及「聽力損失特性」這兩大因素,會使得加大音量卻反而有聽不「清楚」語音的問題。

然而,在解釋上述兩大因素之前,必須先釐清聽得「到」不一定聽得「清楚」。大家應該都有這樣的經驗,在有噪音或距離較遠的情境下,例如在廚房洗碗時,家人在客廳說話,我們會聽「到」家人在說話的聲音、也可能聽到大致的內容或是部份內容,但卻沒辦法聽「清楚」完整的內容、或是有聽錯的情況。而重聽或聽力損失的情況也很類似,因為聽力損失有不同的程度,一般年長者的重聽不會是完全聽不到的情形,因此老人家常會說「我都有聽到啊!是你講話不清楚。」

語音組成:聲母和韻母

那麼,當音量變大、卻反而「聽不清楚」,到底是什麼原因造成的呢?一般來說,聽不清楚的通常是指語音當中的聲母(子音)無法被完整地傳遞與接收。回想一下,小時候在學注音符號時,拼音時寫在上面的就是聲母(子音)、下面的則是韻母(母音)。圖二以「沙」(/ㄕㄚ/)為例,可以看出子音/sh/(聲母/ㄕ/,但只有氣音的部份)的部份音量小,且集中在高頻帶,而母音/a/(韻母/ㄚ/)的部份則是音量大,且相對集中在較低頻的區塊。然而,當我們試著說大聲一點,也就是把音量放大時,無論我們怎麼嘗試,都只能放大母音部份的音量[3],子音部份的音量都還是很小。甚至,我們可以試試看只針對子音的部份(如/sh/, /s/, /t/等音)「大叫」,會發現根本沒有辦法做到。

-----廣告,請繼續往下閱讀-----
圖二/語音的組成分為聲母(子音)和韻母(母音)。以「ㄕㄚ」(/sha/)音為例,從上半部的聲音波形可看出,子音(/sh/)的音量(振幅)比母音(/a/)要小得多;下半部則是聲譜圖(spectrogram),縱軸代表頻率,子音(/sh/)的頻率成份集中在高頻帶(黑色集中在較上方),母音(/a/)則是低頻相對較多。

然而,在語音中音量較小的子音才是主要提供清晰度的來源[3,4],曾有研究發現,若將語音中子音主要所在的高頻帶(1000 Hz 以上)去除掉之後,語音清晰度只剩不到 40%;反之,若將母音主要所在的低頻帶(500 Hz 以下)去除,語音清晰度仍有 95%[4]。試試看,若將一句話當中的子音都省略掉,那麼「他今天去上班」就會變成「阿因煙玉ㄤˋ安」,會變得非常非常難以理解。

聽力損失的特性:高頻通常較嚴重

大多數老年性的聽力損失是屬於高頻聽損[5],也就是在較高頻率的部份比較聽不清楚。這個類型的聽損者,就常會有前面所提到的感受:「我都有聽到,但我就是聽不清楚、沒有辦法理解內容!」而如果本文一開始提到的晴晴,因為阿嬤聽不清楚而愈說愈大聲時,卻如同前述,語音當中只有阿嬤原本就聽得到的母音部份變大聲了,但應該是要帶來語音清晰度的子音卻沒有辦法同樣變大聲。即使說話者不斷把音量加大,原本是希望能讓對方聽清楚,豈料適得其反,讓子音和母音之間的音量差距更大,更加劇了不清晰的問題,造成了愈大聲反而愈聽不清楚的矛盾現象。

助聽器科技來幫忙:音量壓縮

那麼,要如何才能讓重聽的長輩,或是聽力損失者能夠聽得清楚呢?如果對生活溝通已經造成困擾,應該要尋求專業耳科醫師和聽力師的協助,嘗試配戴設定適當的助聽器。助聽器的功能不只是放大聲音,還具備了「音量壓縮」的科技[6],讓小聲的聲音放大較多、大聲音量的聲音放大少一些。若套上前述子音和母音相對音量的概念,那就是能讓較小聲、原本聽不清楚的子音變得清楚,提高語音的清晰度。不過,配戴助聽器會需要一段時間的適應,同時也需要和聽力師討論生活上聆聽的需求,才能找到最適合自己的設定。並不是到藥局隨意買一副助聽器,以為戴上就能解決聆聽的所有困難喔!

和聽損者談話的小撇步:正常音量、稍慢語速、發音清楚

除了配戴助聽器之外,溝通策略[1,7]的運用也很有幫助註1。從前面的解釋已經了解到,大吼大叫對聽損者理解語音不但沒有幫助,甚至會有反效果。所以在語音本身上面,可以調整的部份不在音量,而是速度和發音清楚。因此,用一般的音量、語速稍微放慢、發音清楚一點但保持自然,這幾個小撇步可以幫助聽損者聽清楚。同時也可試著換句話說,或是搭配手勢動作來幫助理解。

-----廣告,請繼續往下閱讀-----

其他還有一些策略,包括先取得聽損者的注意力,讓他知道您在跟他說話,避免環境噪音或多人同時說話,這些方法可讓聽損者專注在要聽取的語音訊息上,並減少干擾。此外,建議環境的光線要充足,並可稍微靠近聽損者、讓他能看清楚您的臉部,這麼做可讓聽損者獲取臉部表情和口形等線索,幫助解讀語音訊息的內容,即便聽損者不一定有練過讀唇,但口形線索確實會有幫助,您可以留意看看在很吵雜時,若能看到說話者的臉及口形(當對方沒有戴口罩)時,會比較容易聽清楚。

相信若是晴晴運用了上面所提到的這些溝通策略,不但可以快樂地跟阿嬤分享在學校發生的事,享受愉快的祖孫親情時光,也不會被爸爸罵對阿嬤沒禮貌了喔!

圖三/與聽損者談話時,除了正常音量、稍慢語速、發音清楚等小撇步以外,在光線充足的地方談話,讓聽損者能看到說話者的臉部表情和口型輔助語音接收,也是很好的策略。(圖片來源:Pixabay)

註1 :欲了解更多溝通策略,可參考雅文基金會「聽損溝通小學堂」和「微聽損網站-聽說策略」

  1. World Health Organization. (2024/02/02). Deafness and hearing loss. Retrieved from https://www.who.int/news-room/fact-sheets/detail/deafness-and-hearing-loss
  2. Painter, K. (2013/03/10). How to talk to a hearing impaired person? Don’t shout. USA TODAY. Retrieved from https://www.usatoday.com/story/news/nation/2013/03/10/talking-hearing-impaired/1965127/
  3. DPA Microphones. (2021/03/04). How to improve speech intelligibility when amplifying the voice. Retrieved from https://www.dpamicrophones.com/mic-university/how-to-improve-speech-intelligibility-when-amplifying-the-voice
  4. DPA Microphones. (2021/03/03). Facts about speech intelligibility. Retrieved from https://www.dpamicrophones.com/mic-university/facts-about-speech-intelligibility
  5. Victory, J. (2024/02/21). Understanding high-frequency hearing loss: This kind of hearing loss affects speech clarity. Retrieved from https://www.healthyhearing.com/report/52448-Understanding-high-frequency-hearing-loss
  6. 張逸屏(2022/01/07)。長輩常抱怨助聽器噪音大?——孝子們該認識的「音量壓縮」科技。泛科學。取自https://pansci.asia/archives/339307
  7. UCSF Health. (n.d.). Communicating with people with hearing loss. Retrieved from https://www.ucsfhealth.org/education/communicating-with-people-with-hearing-loss
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

雅文兒童聽語文教基金會_96
61 篇文章 ・ 223 位粉絲
雅文基金會提供聽損兒早期療育服務,近年來更致力分享親子教養資訊、推動聽損兒童融合教育,並普及聽力保健知識,期盼在家庭、學校和社會埋下良善的種子,替聽損者營造更加友善的環境。

1

1
1

文字

分享

1
1
1
2020 年公民科學事件簿:#長新冠(#Long Covid)
A.H._96
・2023/10/20 ・5564字 ・閱讀時間約 11 分鐘

-----廣告,請繼續往下閱讀-----

通過患者主導的研究和患者主導的行動主義,
患者似乎正在編寫第一本關於長新冠的教科書

(Amali Lokugamage, 2020 而後被世衛總幹事引用1

時空回到 2020 年 5 月下旬,台灣的新冠疫情頭條新聞是國內新冠肺炎疫情趨緩,連續超過一個月沒有本土確診病例,然而全球確診數卻已衝破 500 萬大關 2。那是台灣全民和網路社群每日為 +0 歡欣鼓舞的日子,清零台灣很難想像其他國家在疫情狂飆下的生活樣貌。

全球大部分國家在封城與疫情無法控制的脈絡下,原本防疫科學辭典裡沒有的名詞,在 2020 年春季歐美英語使用者的網路社群中漸漸流傳開來。由於網路社群媒體允許患者在封鎖與身體狀態不佳的限制下,在網路社群中相互尋找和資訊交流,產生共鳴與共識進而發展出一個共通術語,也就是我們現在熟知的「長新冠(Long COVID)」或國內較不熟悉的另一個相似詞「長途運輸者(Long-hauler)/長途運輸的新冠 (long-haul COVID) 3」。

我們現在知道的「長新冠」已不是網路世界中的虛擬事件,而是科學家和國際組織認定的「科學物件 (scientific object)」。世界衛生組織正式定義:新冠後症狀(Post COVID-19 condition ),簡稱長新冠(Long COVID) 是指在初次感染新冠病毒三個月後繼續或出現新症狀,症狀持續至少兩個月,無法用其他診斷來解釋的病症 4。長新冠患者的發病率也從早期研究的 10%,20% 至近期《自然》期刊《科學報告》5 所敘述的 30-60% 。此篇論文主要提出感染新冠兩年後仍對免疫系統造成不良影響,再次令人不僅感嘆新冠的長尾還真是長,不過我們關注的焦點是論文中的這段敘述:

“有趣的是「長新冠」一詞是由倫敦大學考古學家艾爾莎・佩雷戈(Elsa Perego)在推特上推廣來自患者創造的術語而興起的。”

圖一:網路社群廣用的主題標籤來描述或分享長新冠資訊。圖/作者提供

這個來自 2020 年春天「患者創造的術語」, 2021 年 10 月 6 日世衛公布長新冠的正式定義,雖然使用的是「新冠後症狀(post COVID-19 condition)」,但長新冠仍是最通用的術語。在今年(2023)的 7 月 31 日美國衛生與公眾服務部(Health and Human Service, HHS)宣布正式成立「長新冠研究與實務辦公室 (the Office of Long COVID Research and Practice)」,同時也啟動了長新冠的臨床試驗 6。這場網路社群的公眾參與科學論述理念,由下而上的草根運動,進而引起廣泛群眾社會良知並驅動科學家研究,最後促成相關政策組織的成立過程,即是社會學家所稱的「公民科學(citizen science)」7

-----廣告,請繼續往下閱讀-----

那麼我們不禁好奇,這一切是如何開始的?

現在若按照世衛的「長新冠」定義,感染三個月後持續二個月症狀合計至少五個月的病程,那麼文獻上 2020 年 5 月這個時間點,反應了歐美國家初期大規模感染後,累積一定數量患者在確診後「理論上康復」但卻持續有各種症狀困擾的情形。當時各國的衛生當局和醫療機構尚未認識到新冠感染造成長期後遺症的可能性,而世衛最初資訊亦表示新冠輕症感染者的病程平均持續兩周。

佩雷戈在 2020 年 5 月 20 日(英國時間)是目前文獻上記載最早的長新冠推文,後續網路社群媒體陸續出現如圖一所標示與長新冠有關的主題標籤。佩雷戈與其他科學家 2020 年 9 月發表了一封公開信,標題是「為什麼我們需要患者所提出的『長新冠』術語」,說明長新冠一詞強調了當時輕症卻持續超過二周以上的多種後遺症,這個術語有助於認識新冠發病機制本身具有特異性,而術語本身的簡單性和力量則有助於在全球範圍內爭取公平認可,並確保公眾在接觸新冠風險時,瞭解感染的潛在長期影響 8

圖二:2020 年自 5 月起長新冠公民科學形成的過程。圖/作者提供
註:長新冠公民科學的發展並非完全線性的發展,其中多種面相是重疊的。
(點圖放大)

圖二摘要描述 2020 年自 5 月起長新冠公民科學形成的過程,主要依據佩雷戈與英國格拉斯哥大學人文地理學教授菲麗西蒂・卡拉德(Felicity Callard)、英國劍橋、牛津等大學研究學者梅洛迪・特納(Melody Turner)等人記錄這場 2020 年公民科學發展過程的三篇論文 9, 10, 11

以 2020 年自 5 月的第一條推文,推特社群與其他網路媒體(如臉書、 Slack 和 WhatsApp 社群)快速構建,並在此過程中引入了長新冠作為一種社會條件,導致在短短的三個月內被世衛確認長新冠為一種醫療狀況:世衛國際疾病分類(International Classification of Diseases 11th Revision, ICD-11)正式定義長新冠為新冠後症狀,圖二最後以《自然》期刊編輯於該年 10 月發表的公開呼籲做結:「長新冠:讓患者協助定義長新冠症狀」副標題:長新冠症狀的術語以及康復的定義必須納入患者的觀點。

-----廣告,請繼續往下閱讀-----

「從一條相當不起眼的推文(引入了一個新的主題標籤,最初只被『點讚』一次),在短短三個月內轉變為世衛使用的詞」佩雷戈回憶說明, #longcovid 的使用呈指數級增長。一週內從社群媒體轉向印刷媒體,短短一個月醫學期刊從討論、呼籲、科學家開始下定義、到「長新冠」的引號在主流媒體與科學期刊內容消失,直接使用長新冠一詞,三個月後 2020 年 8 月 21 日在世衛新冠技術負責人瑪麗亞・范克爾霍夫 (Maria Van Kerkhove)聯繫英國的長新冠 SOS 組織(LongCovidSOS)了解宣導者要求後,世衛組織總幹事在線上會議與長新冠宣導者討論這一個疾病。

患者症狀故事:新冠不只影響肺部

佩雷戈與卡拉德指出,長新冠患者在網路社群的公民運動中通過與其他經歷長期後遺症患者集體分享而出現,提供了後來科學的新知,其貢獻包括:口頭、書面、視覺敘述、證詞和論點以及宣傳和政策干預,對傳統科學提出了挑戰,例如在大流行初期的新冠公眾資訊傳遞過程中僅限對肺部影響的討論,長新冠網路社群則協助擴大範圍。

2020 年 4 月一篇廣為流傳的推文,而後經由報紙專欄強調這位患者的後遺症「純粹是胃部症狀」而不是肺部系統,其他患者的多重器官後遺症則陸續在各種平台上,各自分享自身的醫學檢查,要求醫療單位進行更深入調查並向傳統研究團體致電等。現在這些「症狀故事」已在許多科學期刊的出版物中得到驗證,換言之,這些患者不僅提供了早期複雜的症狀,更有助於修正新冠損害的範圍,強調了需要關注所有潛在的面相,並提供有關疾病的機制和治療方法的假設。

新冠不只影響肺部,有位患者的後遺症純粹是胃部症狀。
圖/pexels

特納等人 2023 年發表的研究,在論文中提到是特納本人經歷長新冠症狀後與其他研究人員著手展開的。她反思自己的經歷如何影響她的研究,並質疑患者如何以及為何能在各種醫療機構前識別出長新冠,進而質疑傳統實證醫學的過程。他們蒐集整理 3 萬多筆帶有 #longcovid 和 #longhauler 標籤推文,進一步語意分析 974 條推文內容中的關鍵字後歸納指出:推特使用者最初將長新冠描述為一種無情、多器官、致殘的疾病,卻也因當時公眾和醫療機構缺乏認知,這些推特使用者面臨著恥辱和歧視的不公平待遇。但這些長新冠的早期推特使用者,後來被研究記錄為長新冠最初經歷的科學實證者,藉由此次的集體社會運動 (collective social movement)對長新冠患者的醫療保健需求建立共識。

-----廣告,請繼續往下閱讀-----

同時另一個推特標籤 #researchrehabrecognition (#研究康復認知)也引起了世衛總幹事譚德賽的注意,最後承認長新冠問題並力促解決,特納等人解釋,長新冠患者賦予疾病經歷的含義在很大程度上被理解為有價值的知識形式,可以更全面地認識和治療病情及其影響,這些公民知識通過塑造臨床醫生與患者討論診斷的方式來直接影響臨床實踐,提高了就治療方案和任何建議的生活方式改變達成共識的能力。

長新冠公民運動:衛生服務部門的具體回應

佩雷戈與卡拉德提到的另一個網路社群運動也使得英國政府不得不採取具體行動。 2020 年 7 月,患有長新冠的英國南安普敦大學公共衛生教授尼斯林・阿爾萬(Nisreen Alwan)發起了社群媒體活動「#計算長新冠(#CountLongCovid)」,強調迫切需要正確的康復病例定義、收集數據的標準化方法以及大量基於人群的樣本資料,呼籲政府全面收集監測長新冠。

9 月,網友結合「六個月前」脈絡在推特上集合紛紛留下個人長新冠前後的對比故事。現在我們可藉由應用程式 Thread Reader App 將此推文串合併,一窺當時網路社群如何串連長新冠的個人經歷 12。 2020 年底英國國家統計局公布,「長新冠」監測數據,證實了真實患病率可能比以前認為的要高得多、患者症狀持續三個月或更長時間 13

另外針對兒童和青少年的長新冠症狀, 2020 年的 #兒童長新冠(#LongCovidKids)運動亦促成了英國國會跨黨派國會新冠小組(All-Party Parliamentary Group on Coronavirus in the UK)在 2021 年 1 月舉行的兒童長新冠公聽會,今(2023)年 2 月 16 日世衛也公布了兒童和青少年版長新冠的正式定義 14

-----廣告,請繼續往下閱讀-----
世界衛生組織也公布了兒童和青少年版長新冠的正式定義。
圖/unsplash

特納等人綜合歸納 #longcovid 推文標籤的六個主題:

  1. 個人長期恢復
  2. 看不見的疾病,例如考慮最初對長新冠缺乏認識可能是一種孤立和無形的體驗
  3. 意外族群,如參與者對觀察結果表示驚訝和擔憂,許多長新冠患者很年輕而且以前「身體健康」
  4. 通過量化進行驗證,如對疫情統計資料和醫療系統有限投入的憂慮,強調最初兩週的定義的不足,要求通過監測計算患者發病率來了解病情
  5. 支持和研究的需要,如推特使用者擔心由於知識的缺乏,醫療機構可能無法充分提供醫療保健服務或投資長新冠的研究,因此使用 #researchrehabrecognition,最後獲得世衛的重視
  6. 衛生服務部門的認可

如推文中參與者評論醫療機構如何逐漸意識到長新冠與受到官方醫療保健的認同,如當時的美國首席醫療顧問安東尼・福奇以及世衛譚德塞,從而創造了衛生服務部門的具體行動以及為社會和科學新的認識契機。

網路社群媒體的開放性

網路社群在 2020 年經歷了所謂的醫療煤氣燈(medical gaslighting)效應,當他們處於科學對長新冠不確定性的大環境時,經常覺得被敷衍或誤診,就像是 1944 年經典電影《煤氣燈下》(Gaslight)明明房間裡煤氣燈忽明忽暗,但影片中的老公卻堅持一切正常,這些求助無門的人們,經歷許多令人沮喪的醫療保健挫折,藉由網路群眾的長新冠公民運動,將確診後揮之不去的各種後遺症和醫療狀況與具有相同經歷的人們聯繫起來,以尋求資訊、支持和認可,最終獲得了疾病的驗證和社會的支援 15

當他們處於科學對長新冠不確定性的大環境時,經常覺得被敷衍或誤診。
圖/pexels

特納等人分析推特如何促進集體社會運動的形成社會共識,通過社群媒體的公開和開放的系統,推特的社交網絡使得以前互不相干的使用者能夠分享這些情緒、資訊與交換知識,從普通公民、醫生、科學家到世衛總幹事等知名人士。推特與其他社交網站(如臉書和 Slack )使用方法不同,後者的長新冠社群多是封閉群組,限制公開分享;推特則在長新冠的推文中具有「去中心化」的特性:如沒有單一的意見領袖、使用者間訊息自由流動等。

-----廣告,請繼續往下閱讀-----

例如推特使用者廣泛分享了 #research 、 #rehabilitation 和 #recognition 等單獨術語。 最終,使用者將這三個術語合併成 #researchrehabrecognition ,此標籤的演變展示了集體決策的過程,旨在挑戰長新冠患者由最初缺乏醫療認可和醫療保健規定而面臨的公民知識需求和認可狀態。

長新冠患者的知識因民眾直接地發起參與研究自己或社區、社群的環境和健康危害,提高學界醫界對新冠的新認識,知識從患者通過媒體傳播到正規的臨床和衛生政策管道,就像特納等人的分析,長新冠從一種看不見的疾病轉變為一種公認的疾病。

這些網路社群推文積極的行動,達成的集體共識足以令人信服地向包括世衛在內的醫療機構證明,儘管缺乏傳統的實證醫學,但長新冠是一種真實的疾病。一群網路公民在 2020 年集體編寫了第一本關於長新冠的教科書,此刻我們見證了網路社群的群眾力量,不僅促成了現實世界的真實變化,確保對醫療保健供應的認可,也揭開了科學研究的新序幕。

  1. Lokugamage A, Rayner C, Simpson F, Carayon L. We have heard your message about long covid and we will act, says WHO. The BMJ. Published September 3, 2020. ↩︎
  2. Yahoo News:國際新冠肺炎疫情還在燒 全球確診數破 500 萬大關 ↩︎
  3. 目前已知「長途運輸者」在佩雷戈論文中引用來自 2020 年 6 月的推文:「長途運輸新冠戰士」的患者召集人艾咪・沃森(Amy Watson) ,她從她接受測試時戴的卡車司機帽子中衍生出來:https://twitter.com/katemeredithp/status/1277316840453267456 ↩︎
  4. WHO:https://www.who.int/europe/news-room/fact-sheets/item/post-covid-19-condition ↩︎
  5. López-Hernández, Y., Monárrez-Espino, J., López, D.A.G. et al. The plasma metabolome of long COVID patients two years after infection. Sci Rep 13, 12420 (2023) ↩︎
  6. HHS News: https://www.hhs.gov/about/news/2023/07/31/hhs-announces-formation-office-long-covid-research-practice-launch-long-covid-clinical-trials-through-recover-initiative.html ↩︎
  7. 泛科學、左岸文化 (2018/05/17),什麼是公民科學?誰是公民科學家? ↩︎
  8. Perego, Elisa, et al. “Why the patient-made term ‘long covid’ is needed.” Wellcome Open Research 5.224 (2020): 224. ↩︎
  9. Callard, Felicity, and Elisa Perego. “How and why patients made Long Covid.” Social science & medicine 268 (2021): 113426 ↩︎
  10. Perego, Elisa, and Felicity Callard. “Patient-made Long Covid changed COVID-19 (and the production of science, too).” (Feb. 2021) ↩︎
  11. Turner, Melody, et al. “The# longcovid revolution: A reflexive thematic analysis.” Social Science & Medicine (2023): 116130. ↩︎
  12. Thread Reader App#計算長新冠(#CountLongCovid)與“六個月前”結合的網頁: https://threadreaderapp.com/convos/1308678318821199872 ↩︎
  13. 英國獨立報 The Independent (16 December 2020) ,https://www.independent.co.uk/news/health/coronavirus-long-covid-ons-data-b1774821.html ↩︎
  14. WHO:A clinical case definition for post COVID-19 condition in children and adolescents by expert consensus, 16 February 2023 ↩︎
  15. Russell, David, et al. “Support amid uncertainty: Long COVID illness experiences and the role of online communities.” SSM-Qualitative Research in Health 2 (2022): 100177 ↩︎
-----廣告,請繼續往下閱讀-----
所有討論 1