Loading [MathJax]/extensions/tex2jax.js

0

0
1

文字

分享

0
0
1

人工智慧的「黑箱作業」,類神經網路如何將生物分類的?

MiTalk
・2019/06/08 ・4467字 ・閱讀時間約 9 分鐘 ・SR值 543 ・八年級

-----廣告,請繼續往下閱讀-----

  • 作者/吳育瑋 臺北醫學大學醫學資訊研究所助理教授

這篇文章是我在讀到 Nature Methods 在 2018 年 3 月 5 日刊登的文章「Using deep learning to model the hierarchicalstructure and function of a cell」1後,在臉書 MiTalk 社團寫下的三篇短文的整理集結。在這三篇短文中,我簡要地介紹了目前人工智慧的技術基礎「類神經網路」的概念,再將其延伸到這篇文章提及的系統生物學研究,並解釋目前類神經網路之所以被稱為「黑盒子」的原因,以及這項系統生物學研究處理黑盒子的手法。

資訊輸入和輸出,如何用「類神經網路」做出無人車?

我們先來聊聊目前機器學習中最火紅的演算法「類神經網路」究竟是什麼東西?

動物的神經元大致上都有著可以接受來自其他神經元的訊號的樹突 (dendrite),以及可以傳送訊號給其他神經元的軸突 (axon)。類神經網路的單位神經元架構與生物的神經元類似:都有著數個可以接受其他神經元的「輸入 (Input)」,以及數個傳送訊號給其他神經元的 「輸出 (Output)」。將一大堆這樣子的神經元連結起來,就是類神經網路了。

當然,這種連結也不是亂連的。類神經網路通常會分成好幾「層」,而每一層與每一層之間的神經元都會緊密連結著 (fullyconnected),以下我用個實際的例子來說明這所謂的「層」是怎麼回事。

在 1989 年的時候,卡內基美隆大學發明了第一台透過類神經網路控制的無人車 ALVINN 2。這台無人車的主要架構有三個:一台在車子前面隨時拍照的照相機或攝影機,一台執行類神經網路運算的電腦,以及由電腦控制的方向盤,請參考下圖:

-----廣告,請繼續往下閱讀-----
  • 第一層(最底層):照相機照出來的 30 x 32 個 pixel 的影像,以及8 x 32 個雷射距離測定器像。總共輸入單位是 30 x 32 + 8 x 32 = 1216 個。
  • 第二層(中層):由 29 個類神經網路神經元構成的隱藏層(最初期的設計只有4 個)。
  • 第三層(最上層):45 個輸出神經元,代表著方向盤要打那個角度;每個神經元代表一個角度,例如第一個神經元代表方向盤往右打 30 度,第二個代表方向盤往右打 28 度,依此類推。
卡內基美隆大學發明了第一台透過類神經網路控制的無人車 ALVINN。圖片取自:LVINN 論文2

這麼簡單的類神經網路,就已經可以讓這台車在路上以 60 英哩的速度行駛了。可見得類神經網路機器學習的威力。

那麼類神經網路是怎麼訓練的呢?簡單地說,我們在訓練類神經網路時,必須要給它一組(通常是數量很多的一大組)已經知道正確答案的訓練樣本,讓類神經網路之間的神經元連結可以自動透過輸入訊號與正確答案的比對調整自身的參數。這樣的訓練會持續上數千或甚至數百萬次,直到正確率無法再提昇為止。比如說 ALVINN 無人車的訓練就是在真人開車時,將每張相機照出來的圖片與人類開車者的方向盤角度(也就是正確答案)進行連結,並持續調整參數直到答案錯誤率很低為止。

換句話說,ALVINN 這台無人車所做的事,就是模仿人類的開車行為。

除了無人車,「類神經網路」也能區分生物種類?

在上一段我們解釋了何謂類神經網路。一句話總結的話就是類神經網路就是連結在一起的人工神經元,而且可以透過無數次訓練盡量提高執行任務(比如說下棋或預測天氣)的準確率。在這一段中我將提到類神經網路與生物網路之間的關係

-----廣告,請繼續往下閱讀-----

類神經網路通常是由許多的「層」數以及每一層內的「神經元」數量所構成的;然而究竟需要多少層網路,或是每一層網路需要多少神經元,則沒有一定的準則。

我認為這是類神經網路最關鍵,卻也最難以決定的參數。舉例來說,先前提到過的自駕車 ALVINN 總共只有一層網路(不考慮輸入與輸出層的話),且這一層只包含 29 個神經元節點。但是現在如 Tesla 或其他品牌自駕車的類神經網路絕對比這個架構複雜許多。我們在設計類神經網路的時候,甚至需要不停地 trial-and-error 後才能決定「最佳」的網路架構,而這裡的「最佳」理所當然是由預測準確率來決定的。

那麼這和微生物或生命科學有什麼關係呢?這要先從一篇Nucleic Acids Research 論文3 講起。在這篇論文中,卡內基美隆的研究人員試圖透過類神經網路試圖研究不同的細胞(比如說胚胎分化時期的 early-2-cell、late-2-cell、8-cell、16-cell,或不同種類的細胞如 fibroblast、BMDC、以及上皮細胞等),並查看這些細胞的基因表現是否有著明顯的差異。他們的研究標的是不同研究團隊定序出來的 single-cell RNASeq 資料。

簡單來說,他們希望將許多人體內不同種類細胞的 RNASeq 資料透過類神經網路處理後,能夠過濾雜訊,留下最清楚的基因表現訊號。其最終目的當然是透過分群演算法視覺化看出每種細胞的區別

舉例來說,在論文的圖中,我們可以看到不同的人類細胞在經過類神經網路處理後,能夠有著最大化的分群效果;而且群與群之間大致上距離都相當遠,顯示出基因的表現量的確會隨著細胞的不同而不同。

-----廣告,請繼續往下閱讀-----
不同細胞的基因表現差異視覺化。圖片取自:Nucleic Acids Research 論文3

在同一項研究中,研究人員也發現如果小心地設計類神經網路架構,並將其與生物意義結合的話,將能達到最好的效果。這裡說的與生物意義結合的意思,指的是在設計的類神經網路層級中考慮到生物網路的數量以及結構。

他們首先算出這些基因表現量資料,並將資料建成 protein-protein interaction (PPI) 與 protein-DNA interaction (PDI) 的網路系統,並找出裡面總共有 348 個彼此之間有關聯的子網路;而就在找出「348」這個神奇數字後,研究人員就將類神經網路的隱藏層設計成兩層,且各有著 348 個神經元節點,分別代表這 348 組 PPI 與PDI 子網路。他們發現這樣子的類神經網路設計將能達到最理想的分群效果。

好的。到底我之所以鋪了類神經網路和生物意義這些梗要幹嘛呢?當然最主要的目的就是要說明 2018 年 Nature Methods的論文1 到底在講什麼。這篇論文雖然也是走類神經網路路線,但是他們網路的設計相當極端:完全按照生物的代謝途徑 (metabolic pathway) 來設計神經元的分佈(作者群在另一篇論文中提到他們就是受到這一篇 Nucleic AcidsResearch 的論文啟發而設計出這種奇妙的架構的)。

換句話說,這篇系統生物學的論文設計的類神經網路事實上已經不太有傳統的「隱藏層」的概念,而是完全按照代謝途徑連結人工神經元。透過這個方法,他們的類神經網路中總共包含了酵母菌的 2526 個子網路系統,分別代表不同的細胞代謝途徑。在經過訓練與比較後,這個經過特殊設計的網路結構可以準確地透過不同的基因表現預測酵母菌的細胞生長,並且預測的準確率比傳統數層緊密連結的類神經網路還要好上許多。

-----廣告,請繼續往下閱讀-----

神秘的黑盒子,「類神經網路」是怎麼運作的?

在類神經網路的世界中,常常會聽到一個說法:以類神經網路為基礎架構的人工智慧預測模型是「黑盒子  (black box)」。這裡的黑盒子當然不是飛機出事後可以撿回來分析的那個,而是無法打開無法分析而且完全不曉得裡面到底在幹嘛的系統。為什麼會有這種說法呢?一切都要從類神經網路模型是如何訓練的開始講起。

黑盒子系統就像骰骰子一樣,即使知道力學原理,我們還是無法得知骰盅內部到底發生了什麼?圖/pixabay

在類神經網路的世界中,每一個神經元可以接收來自數十甚至數百個神經元的訊號,並且可以傳送訊號給數十到數百個其他神經元。這種連接方式讓類神經網路的參數異常地多,且輕易就可以上到百萬千萬甚至億這種等級。我再次拿 ALVINN,那台 1989 年的無人車來當例子好了。

ALVINN 的輸入層有 1216 個神經元節點,中間的隱藏層有 29 個神經元,而輸出層有 45個神經元。這個相對來說架構非常簡單的類神經網路的參數就有 1216 X 29 X 45 = 1586880 個參數要考慮了,更別提其他
更複雜的深度學習類神經網路模型了。

事實上,參數數量多還在其次,真正的關鍵在於類神經網路的訓練方式。在訓練類神經網路時,我們往往會做以下兩件事:

-----廣告,請繼續往下閱讀-----
  1. 『 隨機』初始化類神經網路中的『所有』參數
  2. 隨著每個樣本的預測對錯微調所有的參數

我來用實際生活案例舉個例子好了。假設你要登一座山,目標是山頂。這座山每個地方的地型都完全不一樣。所以從 A 點上山和從不一樣的 B 點或 C 點上山的路都不盡相同。假設隨機把你放在這座山邊的某一點,要你朝著山頂為目標前進。這時候你的每一步就都會是在「那個當下」最佳的往山頂路線。所以從不同的點上山路線就有可能會差異極大,雖然最後都能到山頂就是了。

類神經網路的黑盒子,就是來自這個初始化與細微調整。因為參數太多,而且微調整的方式會隨著初始位置的不同而不同,所以一個調整好的類神經網路雖然可以達到不錯的預測成果,但是幾乎沒有人知道為什麼能夠達到這個預測效果。

  • 題外話,這個議題已經受到機器學習以及人工智慧界的重視了。許多人都在想辦法解開這個「黑盒子之謎」5, 6, 7

再舉個例子。每個人的大腦會隨著發育環境的不同而有著不同的發展軌跡,所以幾乎沒有兩個人的大腦神經連結方式是完全相同的。雖然每個人都知道蘋果可以吃,或者是被打會痛;但是發展出這個知識的「神經元連結」則有可能每個人都不一樣。

參數設定越明確,越能解開「黑箱作業」!

回到主題。在前一段落提到的:完全按照代謝途徑建構的類神經網路,和其他網路系統不同的是,它有著「解開黑盒子」的效果呢。

-----廣告,請繼續往下閱讀-----

這是因為這套「酵母菌的類神經網路預測模型」是完全按照「生物的代謝途徑」來連結的,所以雖然每個參數還是會因為類神經網路訓練過程而有所不同,但是我們可以得知某個神經元的總輸入參數值,也就是這個神經元的活化 (activation;中國翻成『激活』) 程度。只要將預測過程中每個神經元被活化的程度彼此比較,就能夠得知那個神經元扮演著最重要的角色;而這個神經元也就會是整個代謝途徑中最關鍵的基因或是調控因子。

下列 a、b 兩圖中皆可在這個類神經網路中,不同的基因活化後將會趨動不同的細胞反應,如 a 圖的 PMT1 與 IRE1 兩條基因與細胞壁的組成與強度有關,而 b 圖則可見 ERV7 與 RAD57 與DNA 的修復有著密切關聯性。

(點圖放大):按照細胞代謝途徑建構的類神經網路系統模擬測試結果。圖/參考文獻 1 ,Figure 3a 與 3d。

回到系統生物學,這套系統之所以對系統生物學的研究很有幫助的原因,在於它是一個可模擬生物在輸入各種訊號(如食物或環境刺激)後,將整個生物代謝途徑中最關鍵的基因標示出來的系統。礙於篇幅沒辦法將所有的元件講的非常清楚(比如說類神經網路本身就有一大堆參數要設定,然後訓練時也往往要扯到方程式微分模型之類的),只是很概略地將最大方向的概念用各種例子來說明。希望各位在讀完這個系列後能夠對何謂類神經網路有著最基本的認知,也能大致理解為什麼類神經網路會被詬病為「黑盒子」的原因。

  1. Ma et al., “Using deep learning to model the hierarchical structure and function of a cell”, Nature Methods, 15:290–298, 2018.
  2.  Pomerleau D., “ALVINN: an autonomous land vehicle in a neural network”, Advances in Neural Information Processing Systems 1, pp. 305-313, 1989.
  3. Lin et al., “Using neural networks for reducing the dimensions of single-cell RNA-Seq data”, Nucleic Acids Research, 45(17):e156, 2017.
  4. Yu et al., “Visible Machine Learning for Biomedicine”, Cell, 173(7):1562-1565, 2018.
  5. Knight W., “The Dark Secret at the Heart of AI”, MIT Technology Review,2017.
  6. Wisdom D., “Deciphering The Black Box of AI”, Medium, 2018.
  7. Castelvecchi D., “Can we open the black box of AI?”, Nature 538:20-23, 2016.

-----廣告,請繼續往下閱讀-----
文章難易度
MiTalk
10 篇文章 ・ 5 位粉絲
MiTalk 由一群微生物領域的科學家組成,希望能讓更多人喜歡上這些有趣的小生物。MiTalkzine 是我們推出的免費電子科普雜誌,歡迎訂閱

0

1
0

文字

分享

0
1
0
數智驅動未來:從信任到執行,AI 為企業創新賦能
鳥苷三磷酸 (PanSci Promo)_96
・2025/01/13 ・4938字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文由 鼎新數智 與 泛科學 共同規劃與製作

你有沒有想過,當 AI 根據病歷與 X 光片就能幫你診斷病症,或者決定是否批准貸款,甚至從無人機發射飛彈時,它的每一步「決策」是怎麼來的?如果我們不能知道 AI 的每一個想法步驟,對於那些 AI 輔助的診斷和判斷,要我們如何放心呢?

馬斯克與 OpenAI 的奧特曼鬧翻後,創立了新 AI 公司 xAI,並推出名為 Grok 的產品。他宣稱目標是以開源和可解釋性 AI 挑戰其他模型,而 xAI 另一個意思是 Explainable AI 也就是「可解釋性 AI」。

如今,AI 已滲透生活各處,而我們對待它的方式卻像求神問卜,缺乏科學精神。如何讓 AI 具備可解釋性,成為當前關鍵問題?

-----廣告,請繼續往下閱讀-----
AI 已滲透生活各處,而我們對待它的方式卻像求神問卜,缺乏科學精神。如何讓 AI 具備可解釋性,成為當前關鍵問題?圖/pexels

黑盒子模型背後的隱藏秘密

無法解釋的 AI 究竟會帶來多少問題?試想,現在許多銀行和貸款機構已經使用 AI 評估借貸申請者的信用風險,但這些模型往往如同黑箱操作。有人貸款被拒,卻完全不知原因,感覺就像被分手卻不告訴理由。更嚴重的是,AI 可能擅自根據你的住所位置或社會經濟背景給出負面評價,這些與信用風險真的相關嗎?這種不透明性只會讓弱勢群體更難融入金融體系,加劇貧富差距。這種不透明性,會讓原本就已經很難融入金融體系的弱勢群體,更加難以取得貸款,讓貧富差距越來越大,雪上加霜。

AI 不僅影響貸款,還可能影響司法公正性。美國部分法院自 2016 年起使用「替代性制裁犯罪矯正管理剖析軟體」 COMPAS 這款 AI 工具來協助量刑,試圖預測嫌犯再犯風險。然而,這些工具被發現對有色人種特別不友好,往往給出偏高的再犯風險評估,導致更重的刑罰和更嚴苛的保釋條件。更令人擔憂的是,這些決策缺乏透明度,AI 做出的決策根本沒法解釋,這讓嫌犯和律師無法查明問題根源,結果司法公正性就這麼被悄悄削弱了。

此外,AI 在醫療、社交媒體、自駕車等領域的應用,也充滿類似挑戰。例如,AI 協助診斷疾病,但若原因報告無法被解釋,醫生和患者又怎能放心?同樣地,社群媒體或是 YouTube 已經大量使用 AI 自動審查,以及智慧家居或工廠中的黑盒子問題,都像是一場越來越複雜的魔術秀——我們只看到結果,卻無法理解過程。這樣的情況下,對 AI 的信任感就成為了一個巨大的挑戰。

為什麼人類設計的 AI 工具,自己卻無法理解?

原因有二。首先,深度學習模型結構複雜,擁有數百萬參數,人類要追蹤每個輸入特徵如何影響最終決策結果,難度極高。例如,ChatGPT 中的 Transformer 模型,利用注意力機制(Attention Mechanism)根據不同詞之間的重要性進行特徵加權計算,因為機制本身涉及大量的矩陣運算和加權計算,這些數學操作使得整個模型更加抽象、不好理解。

-----廣告,請繼續往下閱讀-----

其次,深度學習模型會會從資料中學習某些「特徵」,你可以當作 AI 是用畫重點的方式在學習,人類劃重點目的是幫助我們加速理解。AI 的特徵雖然也能幫助 AI 學習,但這些特徵往往對人類來說過於抽象。例如在影像辨識中,人類習慣用眼睛、嘴巴的相對位置,或是手指數量等特徵來解讀一張圖。深度學習模型卻可能會學習到一些抽象的形狀或紋理特徵,而這些特徵難以用人類語言描述。

深度學習模型通常採用分佈式表示(Distributed Representation)來編碼特徵,意思是將一個特徵表示為一個高維向量,每個維度代表特徵的不同方面。假設你有一個特徵是「顏色」,在傳統的方式下,你可能用一個簡單的詞來表示這個特徵,例如「紅色」或「藍色」。但是在深度學習中,這個「顏色」特徵可能被表示為一個包含許多數字的高維向量,向量中的每個數字表示顏色的不同屬性,比如亮度、色調等多個數值。對 AI 而言,這是理解世界的方式,但對人類來說,卻如同墨跡測驗般難以解讀。

假設你有一個特徵是「顏色」,在傳統的方式下,你可能用一個簡單的詞來表示這個特徵,例如「紅色」或「藍色」。但是在深度學習中,這個「顏色」特徵可能被表示為一個包含許多數字的高維向量,向量中的每個數字表示顏色的不同屬性,比如亮度、色調等多個數值。圖/unsplash

試想,AI 協助診斷疾病時,若理由是基於醫生都無法理解的邏輯,患者即使獲得正確診斷,也會感到不安。畢竟,人們更相信能被理解的東西。

打開黑盒子:可解釋 AI 如何運作?我們要如何教育 AI?

首先,可以利用熱圖(heatmap)或注意力圖這類可視化技術,讓 AI 的「思維」有跡可循。這就像行銷中分析消費者的視線停留在哪裡,來推測他們的興趣一樣。在卷積神經網絡和 Diffusion Models 中 ,當 AI 判斷這張照片裡是「貓」還是「狗」時,我需要它向我們展示在哪些地方「盯得最緊」,像是耳朵的形狀還是毛色的分布。

-----廣告,請繼續往下閱讀-----

其次是局部解釋,LIME 和 SHAP 是兩個用來發展可解釋 AI 的局部解釋技術。

SHAP 的概念來自博弈,它將每個特徵看作「玩家」,而模型的預測結果則像「收益」。SHAP 會計算每個玩家對「收益」的貢獻,讓我們可以了解各個特徵如何影響最終結果。並且,SHAP 不僅能透過「局部解釋」了解單一個結果是怎麼來的,還能透過「全局解釋」理解模型整體的運作中,哪些特徵最重要。

以實際的情景來說,SHAP 可以讓 AI 診斷出你有某種疾病風險時,指出年齡、體重等各個特徵的影響。

LIME 的運作方式則有些不同,會針對單一個案建立一個簡單的模型,來近似原始複雜模型的行為,目的是為了快速了解「局部」範圍內的操作。比如當 AI 拒絕你的貸款申請時,LIME 可以解釋是「收入不穩定」還是「信用紀錄有問題」導致拒絕。這種解釋在 Transformer 和 NLP 應用中廣泛使用,一大優勢是靈活且計算速度快,適合臨時分析不同情境下的 AI 判斷。比方說在醫療場景,LIME 可以幫助醫生理解 AI 為何推薦某種治療方案,並說明幾個主要原因,這樣醫生不僅能更快做出決策,也能增加患者的信任感。

-----廣告,請繼續往下閱讀-----

第三是反事實解釋:如果改變一點點,會怎麼樣?

如果 AI 告訴你:「這家銀行不會貸款給你」,這時你可能會想知道:是收入不夠,還是年齡因素?這時你就可以問 AI:「如果我年輕五歲,或者多一份工作,結果會怎樣?」反事實解釋會模擬這些變化對結果的影響,讓我們可以了解模型究竟是如何「權衡利弊」。

最後則是模型內部特徵的重要性排序。這種方法能顯示哪些輸入特徵對最終結果影響最大,就像揭示一道菜中,哪些調味料是味道的關鍵。例如在金融風險預測中,模型可能指出「收入」影響了 40%,「消費習慣」占了 30%,「年齡」占了 20%。不過如果要應用在像是 Transformer 模型等複雜結構時,還需要搭配前面提到的 SHAP 或 LIME 以及可視化技術,才能達到更完整的解釋效果。

講到這裡,你可能會問:我們距離能完全信任 AI 還有多遠?又或者,我們真的應該完全相信它嗎?

-----廣告,請繼續往下閱讀-----

我們終究是想解決人與 AI 的信任問題

當未來你和 AI 同事深度共事,你自然希望它的決策與行動能讓你認可,幫你省心省力。因此,AI 既要「可解釋」,也要「能代理」。

當未來你和 AI 同事深度共事,你自然希望它的決策與行動能讓你認可,幫你省心省力。圖/unsplash

舉例來說,當一家公司要做一個看似「簡單」的決策時,背後的過程其實可能極為複雜。例如,快時尚品牌決定是否推出新一季服裝,不僅需要考慮過去的銷售數據,還得追蹤熱門設計趨勢、天氣預測,甚至觀察社群媒體上的流行話題。像是暖冬來臨,厚外套可能賣不動;或消費者是否因某位明星愛上一種顏色,這些細節都可能影響決策。

這些數據來自不同部門和來源,龐大的資料量與錯綜關聯使企業判斷變得困難。於是,企業常希望有個像經營大師的 AI 代理人,能吸收數據、快速分析,並在做決定時不僅給出答案,還能告訴你「為什麼要這麼做」。

傳統 AI 像個黑盒子,而可解釋 AI (XAI)則清楚解釋其判斷依據。例如,為什麼不建議推出厚外套?可能理由是:「根據天氣預測,今年暖冬概率 80%,過去三年數據顯示暖冬時厚外套銷量下降 20%。」這種透明解釋讓企業更信任 AI 的決策。

-----廣告,請繼續往下閱讀-----

但會解釋還不夠,AI 還需能真正執行。這時,就需要另一位「 AI 代理人」上場。想像這位 AI 代理人是一位「智慧產品經理」,大腦裝滿公司規則、條件與行動邏輯。當客戶要求變更產品設計時,這位產品經理不會手忙腳亂,而是按以下步驟行動:

  1. 檢查倉庫物料:庫存夠不夠?有沒有替代料可用?
  2. 評估交期影響:如果需要新物料,供應商多快能送到?
  3. 計算成本變化:用新料會不會超出成本預算?
  4. 做出最優判斷,並自動生成變更單、工單和採購單,通知各部門配合執行。

這位 AI 代理人不僅能自動處理每個環節,還會記錄每次決策結果,學習如何變得更高效。隨時間推移,這位「智慧產品經理」的判斷將更聰明、決策速度更快,幾乎不需人工干預。更重要的是,這些判斷是基於「以終為始」的原則,為企業成長目標(如 Q4 業績增長 10%)進行連續且動態地自我回饋,而非傳統系統僅月度檢核。

這兩位 AI 代理人的合作,讓企業決策流程不僅透明,還能自動執行。這正是數智驅動的核心,不僅依靠數據驅動決策,還要能解釋每一個選擇,並自動行動。這個過程可簡化為 SUPA,即「感知(Sensing)→ 理解(Understanding)→ 規劃(Planning)→ 行動(Acting)」的閉環流程,隨著數據的變化不斷進化。

偉勝乾燥工業為例,他們面臨高度客製化與訂單頻繁變更的挑戰。導入鼎新 METIS 平台後,偉勝成功將數智驅動融入業務與產品開發,專案準時率因此提升至 80%。他們更將烤箱技術與搬運機器人結合,開發出新形態智慧化設備,成功打入半導體產業,帶動業績大幅成長,創造下一個企業的增長曲線。

-----廣告,請繼續往下閱讀-----

值得一提的是,數智驅動不僅帶動業務增長,還讓員工擺脫繁瑣工作,讓工作更輕鬆高效。

數智驅動的成功不僅依賴技術,還要與企業的商業策略緊密結合。為了讓數智驅動真正發揮作用,企業首先要確保它服務於具體的業務需求,而不是為了技術而技術。

這種轉型需要有策略、文化和具體應用場景的支撐,才能讓數智驅動真正成為企業持續增長的動力。

還在猶豫數智驅動的威力?免費上手企業 AI 助理!👉 企業 AI 體驗
現在使用專屬邀請碼《 KP05 》註冊就享知:https://lihi.cc/EDUk4
訂閱泛科學獨家知識頻道,深入科技趨勢與議題內容。

👉立即免費加入

-----廣告,請繼續往下閱讀-----
鳥苷三磷酸 (PanSci Promo)_96
222 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
從遊戲到量子計算:NVIDIA 憑什麼在 AI 世代一騎絕塵?
PanSci_96
・2025/01/09 ・2941字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

AI 與 GPU 的連結:為什麼 NVIDIA 股價一路飆?

2023 年至今,人工智慧(AI)熱潮引爆全球科技圈的競爭與創新,但最受矚目的企業,莫過於 NVIDIA。它不僅長期深耕遊戲顯示卡市場,在近年來卻因為 AI 應用需求的飆升,一舉躍居市值龍頭。原因何在?大家可能會直覺認為:「顯示卡性能強,剛好給 AI 訓練用!」事實上,真正的關鍵並非只有強悍的硬體,而是 NVIDIA 打造的軟硬體整合技術──CUDA

接下來將為你剖析 CUDA 與通用圖形處理(GPGPU)的誕生始末,以及未來 NVIDIA 持續看好的量子計算與生醫應用,一窺這家企業如何從「遊戲顯示卡大廠」蛻變為「AI 世代的領航者」。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

CPU vs. GPU:為何顯示卡能成為 AI 領跑者?

在電腦運作中,CPU(中央處理器)向來是整個系統的「大腦」,負責執行指令、邏輯判斷與多樣化的運算。但是,AI 模型訓練需要面對的是龐大的數據量與繁複的矩陣或張量運算。這些運算雖然單一步驟並不複雜,但需要進行「海量且重複性極高」的計算,CPU 難以在短時間內完成。

反觀 GPU(圖形處理器),原先是用來處理遊戲畫面渲染,內部具有 大量且相對簡單的算術邏輯單元。GPU 可以同時在多個核心中進行平行化運算,就像一座「高度自動化、流水線式」的工廠,可一次處理大量像素、頂點或是 AI 訓練所需的運算。這讓 GPU 在大量數值計算上遠遠超越了 CPU 的處理速度,也讓「顯示卡算 AI」成了新時代的主流。

-----廣告,請繼續往下閱讀-----

顯示卡不只渲染:GPGPU 與 CUDA 的誕生

早期,GPU 只被視為遊戲繪圖的利器,但 NVIDIA 的創辦人黃仁勳很快察覺到:這種多核心平行化的結構,除了渲染,也能用來處理科學運算。於是,NVIDIA 在 2007 年正式推出了名為 CUDA(Compute Unified Device Architecture) 的平台。這是一套讓開發者能以熟悉的程式語言(如 C、C++、Python)來調用 GPU 資源的軟體開發工具套件,解決了「人類要如何對 GPU 下指令」的問題。

在 CUDA 出現之前,若要把 GPU 用於渲染以外的用途,往往必須透過「著色器語言」或 OpenGL、DirectX 等繪圖 API 進行繁瑣的間接操作。對想用 GPU 加速數學或科學研究的人來說,門檻極高。然而,有了 CUDA,開發者不需理解圖像著色流程,也能輕鬆呼叫 GPU 的平行運算能力。這代表 GPU 從遊戲卡一躍成為「通用圖形處理單元」(GPGPU),徹底拓展了它在科學研究、AI、影像處理等領域的應用版圖。

AI 崛起的臨門一腳:ImageNet 大賽的關鍵一擊

如果說 CUDA 是 NVIDIA 邁向 AI 領域的踏腳石,那麼真正讓 GPU 與 AI 完美結合的轉捩點,發生在 2012 年的 ImageNet 大規模視覺辨識挑戰賽(ILSVRC)。這場由李飛飛教授創辦的影像辨識競賽中,參賽團隊需要對龐大的影像數據進行訓練、分類及辨識。就在那一年,名為「AlexNet」的深度學習模型橫空出世,利用 GPU 進行平行運算,大幅減少了訓練時間,甚至比第二名的辨識率高出將近 10 個百分點,震撼了全球 AI 研究者。

AlexNet 的成功,讓整個學界與業界都注意到 GPU 在深度學習中的強大潛力。CUDA 在此時被奉為「不二之選」,再加上後來發展的 cuDNN 等深度學習函式庫,讓開發者不必再自行編寫底層 GPU 程式碼,建立 AI 模型的難度與成本大幅降低,NVIDIA 的股價也因此搭上了 AI 波浪,一飛沖天。

-----廣告,請繼續往下閱讀-----
AlexNet 的成功凸顯 GPU 在深度學習中的潛力。圖/unsplash

為什麼只有 NVIDIA 股價衝?對手 AMD、Intel 在做什麼?

市面上有多家廠商生產 CPU 和 GPU,例如 AMD 與 Intel,但為什麼只有 NVIDIA 深受 AI 市場青睞?綜觀原因,硬體只是其一,真正不可或缺的,是 「軟硬體整合」與「龐大的開發者生態系」

硬體部分 NVIDIA 長年深耕 GPU 技術,產品線完整,且數據中心級的顯示卡在能耗與性能上具領先優勢。軟體部分 CUDA 及其相關函式庫生態,涵蓋了影像處理、科學模擬、深度學習(cuDNN)等多方面,讓開發者易於上手且高度依賴。

相比之下,雖然 AMD 也推行了 ROCm 平台、Intel 有自家解決方案,但在市場普及度與生態支持度上,依舊與 NVIDIA 有相當差距。

聰明的管理者

GPU 的優勢在於同時有成百上千個平行運算核心。當一個深度學習模型需要把數據切分成無數個小任務時,CUDA 負責將這些任務合理地排班與分配,並且在記憶體讀寫方面做出最佳化。

-----廣告,請繼續往下閱讀-----
  • 任務分類:同性質的任務集中處理,以減少切換或等待。
  • 記憶體管理:避免資料在 CPU 與 GPU 之間頻繁搬移,能大幅提升效率。
  • 函式庫支援:如 cuDNN,針對常見的神經網路操作(卷積、池化等)做進一步加速,使用者不必從零開始撰寫平行運算程式。

結果就是,研究者、工程師甚至學生,都能輕鬆把 GPU 能力用在各式各樣的 AI 模型上,訓練速度自然飛漲。

從 AI 到量子計算:NVIDIA 對未來的佈局

當 AI 波浪帶來了股價與市值的激增,NVIDIA 並沒有停下腳步。實際上,黃仁勳與團隊還在積極耕耘下一個可能顛覆性的領域──量子計算

2023 年,NVIDIA 推出 CUDA Quantum 平台,嘗試將量子處理器(QPU)與傳統 GPU / CPU 整合,以混合式演算法解決量子電腦無法單獨加速的部分。就像為 AI 量身打造的 cuDNN 一樣,NVIDIA 也對量子計算推出了相對應的開發工具,讓研究者能在 GPU 上模擬量子電路,或與量子處理器協同運算。

NVIDIA 推出 CUDA Quantum 平台,整合 GPU 與 QPU,助力混合量子運算。圖/unsplash

這項新布局,或許還需要時間觀察是否能孕育出市場級應用,但顯示 NVIDIA 對「通用運算」的野心不只停留於 AI,也想成為「量子時代」的主要推手。

-----廣告,請繼續往下閱讀-----

AI 熱潮下,NVIDIA 凭什麼坐穩王座?

回到一開始的疑問:「為什麼 AI 熱,NVIDIA 股價就一定飛?」 答案可簡化為兩點:

  1. 硬體領先 + 軟體生態:顯示卡性能強固然重要,但 CUDA 建立的開發者生態系才是關鍵。
  2. 持續布局未來:當 GPU 為 AI 提供高效能運算平台,NVIDIA 亦不斷將資源投入到量子計算、生醫領域等新興應用,為下一波浪潮預先卡位。

或許,正因為不斷探索新技術與堅持軟硬整合策略,NVIDIA 能在遊戲市場外再創一個又一個高峰。雖然 AMD、Intel 等競爭者也全力追趕,但短期內想撼動 NVIDIA 的領先地位,仍相當不易。

未來,隨著 AI 技術持續突破,晶片性能與通用運算需求只會節節攀升。「AI + CUDA + GPU」 的組合,短時間內看不出能被取代的理由。至於 NVIDIA 是否能繼續攀向更驚人的市值高峰,甚至在量子計算跑道上再拿下一座「王者寶座」,讓我們拭目以待。

歡迎訂閱 Pansci Youtube 頻道 鎖定每一個科學大事件!

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1262 篇文章 ・ 2408 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

3
0

文字

分享

0
3
0
AI 破解生命密碼!AlphaFold 3 揭開蛋白質折疊的終極謎團
PanSci_96
・2024/10/07 ・1624字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

AlphaFold的誕生:人工智慧的奇蹟

2018 年,Google 旗下的 DeepMind 團隊推出了第一代 AlphaFold,這是一款基於深度學習的 AI 模型,專門用於預測蛋白質的三維結構。AlphaFold 的命名取自「fold」一詞,意為折疊,指的是蛋白質在胺基酸鏈構成後迅速摺疊成其功能所需的三維結構。

AlphaFold 的突破在於其能夠預測出蛋白質折疊的可能性,這是一個傳統計算方法無法達到的領域。第一代 AlphaFold 在國際 CASP 比賽中取得了一定的成功,雖然其預測準確度尚未達到實驗室標準,但其潛力讓科學家們充滿期待。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

為什麼蛋白質結構預測如此重要?

蛋白質是生命的基石,它們的功能取決於其複雜的三維結構。然而,僅靠實驗技術來解析蛋白質的結構既昂貴又耗時。過去科學家依賴於如 X 光晶體繞射等技術來解析蛋白質的結構,然而這種方法雖然精確,但往往需要數年時間來得出一個結論。

到目前為止,人類已知的蛋白質數據庫中,全球僅解析了大約 22 萬種蛋白質的結構,這遠遠不足以滿足生物學和醫學研究的需求。尤其是人類的許多蛋白質結構仍然未知,這成為阻礙醫學進步的一個主要瓶頸,特別是在藥物開發和疾病治療上,因此如何加速對蛋白質的結構的解析至關重要。

-----廣告,請繼續往下閱讀-----

AlphaFold 2:技術飛躍

2020 年,AlphaFold 2 橫空出世,改進了多項技術,預測準確度大幅,幾乎達到了與實驗結果相媲美的程度。這一成就震驚了全球生物學界,許多科學家開始將 AlphaFold 2 應用於實際研究中。

AlphaFold 2 的成功源自於其三大技術革新:

  • 注意力機制:模仿人類的思維模式,從大局出發,關注蛋白質結構中的每一個細節,進而提高預測的準確性。
  • 多序列比對功能:通過搜尋類似的胺基酸序列,推斷新的蛋白質結構。
  • 端到端預測模式:利用深度學習神經網路,不斷反饋預測結果,持續優化模型。
AlphaFold 2 預測準確度大幅提升。 圖/envato

AlphaFold 3:下一代 AI 的力量

隨著 AlphaFold 2 的成功,DeepMind 並未停止其腳步。2024 年 5 月,AlphaFold 3 正式推出,這標誌著 AI 技術在生物學領域的又一個里程碑。AlphaFold 3 的改進再次吸引了科學界的目光,它強化了注意力機制,並引入了擴散模型,這使其能夠更快且更準確地預測複合蛋白質的結構。

擴散模型是一項關鍵技術,它能夠生成大量的可能蛋白質結構,並快速篩選出最可能的解答。與此同時,AlphaFold 3 還內建了「減幻覺」功能,這讓其在產生結果時能夠避免過多不切實際的預測,提升了結果的可信度。

-----廣告,請繼續往下閱讀-----

AlphaFold 的實際應用:醫學與藥物開發

AlphaFold 3 的誕生,不僅是一個技術突破,還為醫學和藥物開發帶來了巨大的希望。過去,癌症治療中的標靶藥物需要經過漫長的實驗才能確定其作用原理,然而現在,通過 AlphaFold 的預測,科學家可以更加精確地針對癌細胞中的錯誤蛋白質,設計出更有效的藥物。

除此之外,AlphaFold 3 還在抗病毒藥物、抗生素以及阿茲海默症等領域展現了潛力。其能夠預測蛋白質與其他分子(如DNA、RNA)的交互作用,這使得研發新藥的過程大大加速。

AlphaFold 3 的挑戰與未來

儘管 AlphaFold 3 取得了驚人的進展,但其仍然面臨一些挑戰。首先,目前 AlphaFold 3 的模型尚未完全開源,這限制了研究人員對其內部運作的了解。為此,一些科學家已聯名要求 DeepMind 開放其程式碼,以便進行更深入的研究和應用。

不過,隨著 AlphaFold 3的逐步推廣,生物學家相信它將繼續改變生物學研究的方式。未來,這項技術有望在解決更多未解難題中發揮關鍵作用,並為醫學領域帶來更大的突破。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1262 篇文章 ・ 2408 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。