0

1
1

文字

分享

0
1
1

暗夜中「鬼魅蘑菇」的幽光

胡中行_96
・2022/06/23 ・2071字 ・閱讀時間約 4 分鐘

雨後無月的冬夜,南澳的森林裡水氣氤氳。樹幹上參差交疊的扇狀物,正靜靜地散發冷白的幽光。[1]近看每片直徑 20 到 40 公分左右,[2]向外展開。若用相機去捕捉那毛骨悚然的氛圍,肉眼所見的白,則會在照片中變成詭譎的螢光綠。[1]

這不是靈異現象,而是澳大利亞「鬼魅蘑菇」(ghost mushrooms;學名:Omphalotus nidiformis)與生俱來的特質。[1, 2]

  

鬼魅蘑菇日夜迥異的面貌:A – 白天,B – 夜晚。圖/參考資料 2

  

蘑菇發光的原理

鬼魅蘑菇體內,有一種叫做「乙烯基吡喃酮」(hispidin)的「螢光素」(luciferin),會在「螢光酵素」(luciferase)的催化下,與空氣中的氧氣結合,產生「氧化反應」。此時所形成的暫時性產物,具有極高的能量。在接下來的還原過程中,便會釋放出「生物光」(bioluminescence)。[3, 4]

-----廣告,請繼續往下閱讀-----

  

拍攝鬼魅蘑菇的技巧

鬼魅蘑菇盛產的六月,正值南半球的冬天。[2]拍攝發光奇景最佳的戶外環境,必須不見月亮和其他任何的光害。[1]換句話說,有志之士要在攝氏 4、5 度的夜晚,摸黑找蘑菇,架設相機與腳架,再耐心地以慢速快門曝光。(給對專業攝影有興趣的讀者參考:墨爾本大學Paul Whitington副教授某次成功的拍攝數值,為 ISO 800,F/2.8,曝光 216 秒。)[3]

  

生物光的顏色

鬼魅蘑菇發出 530nm 的光線,理應呈現綠色,跟相機拍到的一樣。肉眼所見卻非如此,是因為眼睛裡唯有超級敏感的「視桿細胞」(rod photoreceptors),能接收到微弱的生物光。偏偏視桿細胞不長在視網膜的正中央…[3]

-----廣告,請繼續往下閱讀-----

所以,如果哪天真有機會親眼目睹,請千萬別「正視」鬼魅蘑菇的存在,反而得用眼角餘光「偷瞄」它,[3]才會有較精確的體驗。

鬼魅蘑菇發出 530nm 的光線,理應呈現綠色。圖/Climate Science Investigations

  

生物光的功能

無論顏色如何,鬼魅蘑菇的外表,對遊客來說,都稱得上賞心悅目。然而,它們原本發出生物光的目的,應該不是為了討好人類。曾有科學家假設它和巴西螢光蘑菇 Neonothopanus gardneri 一樣,透過在夜間發光,吸引昆蟲來協助散播孢子。可是 2016 年的一篇期刊論文,指出鬼魅蘑菇整日不熄燈,卻也沒因此拐到比較多的昆蟲。研究團隊於是認為鬼魅蘑菇的生物光,僅是代謝過程中的意外產物。[2, 3]

  

巴西螢光蘑菇Neonothopanus gardneri特寫:C – 日間,D – 黑夜。圖/Photochemistry and Photobiology

  

-----廣告,請繼續往下閱讀-----

發光蕈類的歷史

根據化石資料推估,世界上第一株發出生物光的蕈類,出現在 1.6 億年前的侏羅紀。[5]遲至公元前 4 世紀,亞里斯多德(Aristotle,384 – 322 BC)才寫下人類史上,關於生物光最早的文字紀錄,描述一根腐木(上面的蕈類),散發有別於火焰的光芒。[1, 6]17 世紀時,德國植物學家Georg Eberhard Rumphius(1627‐1702),隨荷蘭東印度公司派駐印尼。[7]他在《安汶島植物名彙》(Herbarium Amboinense)中,提到當地人手持泛著藍光的蘑菇當燈籠。[6]不過,生物光其實在深海生物身上較為常見;相對地,目前所知的 15 萬種蕈類裡,僅有 70 幾種能發光[2, 8]而鬼魅蘑菇的分佈又只限於澳大利亞的南澳和塔斯馬尼亞。[1]

  

玲瓏可愛的發光小菇。圖/維基百科

  

臺灣的發光小菇與相關研究

話說回來,觀賞自帶光芒的蘑菇,並不困難。臺灣本地就有幾種會發光的蕈類,在阿里山、溪頭、墾丁等地都看得到。[8, 9]它們隸屬世界三大發光真菌支系之一的「小菇支系」(Mycenoid lineage)。中央研究院生物多樣性研究中心的團隊,曾發表論文探討它們的基因,還被選為 2020 年《美國國家科學院院刊》(PNAS)的封面故事。中研院的新聞稿中指出,目前發光蕈類的基因已被用於各種領域,例如:追蹤癌細胞的移轉,或製造生物感測的環境汙染警示器。[5]看來發光蕈類,有比單純供人玩賞,更嚴肅的使命。

-----廣告,請繼續往下閱讀-----

  

參考資料:

  1. Glencoe’s Ghost Mushroom Lane begins to flourish after heavy rainfall (ABC News, 2022)
  2. Weinstein P, Delean S, Wood T, Austin AD. (2016) ‘Bioluminescence in the ghost fungus Omphalotus nidiformis does not attract potential spore dispersing insects’. IMA Fungus (7): 229 – 236.
  3. Luminescent ghosts by A/Prof Paul Whitington (Life in a Southern Forest, 2019)
  4. Ke HM, Lee HH, Lin CYI, et al. (2020) ‘Mycena genomes resolve the evolution of fungal bioluminescence’, Proceedings of the National Academy of Sciences of the United States of America, 117(49): 31267-31277.
  5. 臺灣也有發光菇!中研院追溯基因演化史 找尋蕈類發光的意義 (中央研究院,2020)
  6. A History of Luminescence: From the Earliest Times Until 1900 by E. Newton Harvey (The American Philosophical Society, 1957)
  7. 尋找記憶的缺角:早期有關通草的記錄(國立臺灣大學)
  8. 螢光蕈(臺灣國家公園,2018)
  9. 施雨伸,2014,〈臺灣產螢光小菇的分布、分類及人工培養,並兼述一新種〉(臺灣博碩士論文加值系統)
-----廣告,請繼續往下閱讀-----
文章難易度
胡中行_96
169 篇文章 ・ 67 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。

0

0
0

文字

分享

0
0
0
停工即停薪:如何證明你的時間值多少?車禍背後的認知 x 情緒 x 金錢 x 法律大混戰
鳥苷三磷酸 (PanSci Promo)_96
・2026/01/09 ・3286字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 PAMO車禍線上律師 合作,泛科學企劃執行

走在台灣的街頭,你是否發現馬路變得越來越「急躁」?滿街穿梭的外送員、分秒必爭的多元計程車,為了拚單量與獎金,每個人都在跟時間賽跑 。與此同時,拜經濟發展所賜,路上的豪車也變多了 。

這場關於速度與金錢的博弈,讓車禍不再只是一場意外,更是一場複雜的經濟算計。PAMO 車禍線上律師施尚宏律師在接受《思想實驗室 video podcast》訪談時指出,我們正處於一個交通生態的轉折點,當「把車當生財工具」的職業駕駛,撞上了「將車視為珍貴資產」的豪車車主,傳統的理賠邏輯往往會失靈 。

在「停工即停薪」(有跑才有錢,沒跑就沒收入)的零工經濟時代,如果運氣不好遇上車禍,我們該如何證明自己的時間價值?又該如何在保險無法覆蓋的灰色地帶中全身而退?

-----廣告,請繼續往下閱讀-----
如果運氣不好遇上車禍,我們該如何證明自己的時間價值?/ 圖片來源: Nano Banana

薪資證明的難題:零工經濟者的「隱形損失」

過去處理車禍理賠,邏輯相對單純:拿出公司的薪資單或扣繳憑單,計算這幾個月的平均薪資,就能算出因傷停工的「薪資損失」。

但在零工經濟時代,這套邏輯卡關了!施尚宏律師指出,許多外送員、自由接案者或是工地打工者,他們的收入往往是領現金,或者分散在多個不同的 App 平台中 。更麻煩的是,零工經濟的特性是「高度變動」,上個月可能拚了 7 萬,這個月休息可能只有 0 元,導致「平均收入」難以定義 。

這時候,律師的角色就不只是法條的背誦者,更像是一名「翻譯」。

施律師解釋「PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言。」 這包括將不同平台(如 Uber、台灣大車隊)的流水帳整合,或是找出過往的接單紀錄來證明當事人的「勞動能力」。即使當下沒有收入(例如學生開學期間),只要能證明過往的接單能力與紀錄,在談判桌上就有籌碼要求合理的「勞動力減損賠償 」。

-----廣告,請繼續往下閱讀-----
PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言 / 圖片來源: Nano Banana

300 萬張罰單背後的僥倖:你的直覺,正在害死你

根據警政署統計,台灣交通違規的第一名常年是「違規停車」,一年可以開出約 300 萬張罰單 。這龐大的數字背後,藏著兩個台灣駕駛人最容易誤判的「直覺陷阱」。

陷阱 A:我在紅線違停,人還在車上,沒撞到也要負責? 許多人認為:「我人就在車上,車子也沒動,甚至是熄火狀態。結果一台機車為了閃避我,自己操作不當摔倒了,這關我什麼事?」

施律師警告,這是一個致命的陷阱。「人在車上」或「車子沒動」在法律上並不是免死金牌 。法律看重的是「因果關係」。只要你的違停行為阻礙了視線或壓縮了車道,導致後方車輛必須閃避而發生事故,你就可能必須背負民事賠償責任,甚至揹上「過失傷害」的刑責 。 

數據會說話: 台灣每年約有 700 件車禍是直接因違規停車導致的 。這 300 萬張罰單背後的僥倖心態,其巨大的代價可能是人命。

-----廣告,請繼續往下閱讀-----

陷阱 B:變換車道沒擦撞,對方自己嚇到摔車也算我的? 另一個常年霸榜的肇事原因是「變換車道不當」 。如果你切換車道時,後方騎士因為嚇到而摔車,但你感覺車身「沒震動、沒碰撞」,能不能直接開走?

答案是:絕對不行。

施律師強調,車禍不以「碰撞」為前提 。只要你的駕駛行為與對方的事故有因果關係,你若直接離開現場,在法律上就構成了「肇事逃逸」。這是一條公訴罪,後果遠比你想像的嚴重。正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。

正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。/ 圖片來源: Nano Banana

保險不夠賠?豪車時代的「超額算計」

另一個現代駕駛的惡夢,是撞到豪車。這不僅是因為修車費貴,更因為衍生出的「代步費用」驚人。

-----廣告,請繼續往下閱讀-----

施律師舉例,過去撞到車,只要把車修好就沒事。但現在如果撞到一台 BMW 320,車主可能會主張修車的 8 天期間,他需要租一台同等級的 BMW 320 來代步 。以一天租金 4000 元計算,光是代步費就多了 3 萬多塊 。這時候,一般人會發現「全險」竟然不夠用。為什麼?

因為保險公司承擔的是「合理的賠償責任」,他們有內部的數據庫,只願意賠償一般行情的修車費或代步費 。但對方車主可能不這麼想,為了拿到這筆額外的錢,對方可能會採取「以刑逼民」的策略:提告過失傷害,利用刑事訴訟的壓力(背上前科的恐懼),迫使你自掏腰包補足保險公司不願賠償的差額 。

這就是為什麼在全險之外,駕駛人仍需要懂得談判策略,或考慮尋求律師協助,在保險公司與對方的漫天喊價之間,找到一個停損點 。

談判桌的最佳姿態:「溫柔而堅定」最有效?

除了有單據的財損,車禍中最難談判的往往是「精神慰撫金」。施律師直言,這在法律上沒有公式,甚至有點像「開獎」,高度依賴法官的自由心證 。

-----廣告,請繼續往下閱讀-----

雖然保險公司內部有一套簡單的算法(例如醫療費用的 2 到 5 倍),但到了法院,法官會考量雙方的社會地位、傷勢嚴重程度 。在缺乏標準公式的情況下,正確的「態度」能幫您起到加分效果。

施律師建議,在談判桌上最好的姿態是「溫柔而堅定」。有些人會試圖「扮窮」或「裝兇」,這通常會有反效果。特別是面對看過無數案件的保險理賠員,裝兇只會讓對方心裡想著:「進了法院我保證你一毛都拿不到,準備看你笑話」。

相反地,如果你能客氣地溝通,但手中握有完整的接單紀錄、醫療單據,清楚知道自己的底線與權益,這種「堅定」反而能讓談判對手買單,甚至在證明不足的情況下(如外送員的開學期間收入),更願意採信你的主張 。

車禍不只是一場意外,它是認知、情緒、金錢與法律邏輯的總和 。

在這個交通環境日益複雜的時代,無論你是為了生計奔波的職業駕駛,還是天天上路的通勤族,光靠保險或許已經不夠。大部分的車禍其實都是小案子,可能只是賠償 2000 元的輕微擦撞,或是責任不明的糾紛。為了這點錢,要花幾萬塊請律師打官司絕對「不划算」。但當事人往往會因為資訊落差,恐懼於「會不會被告肇逃?」、「會不會留案底?」、「賠償多少才合理?」而整夜睡不著覺 。

-----廣告,請繼續往下閱讀-----

PAMO看準了這個「焦慮商機」, 推出了一種顛覆傳統的解決方案——「年費 1200 元的訂閱制法律服務 」。

這就像是「法律界的 Netflix」或「汽車強制險」的概念。PAMO 的核心邏輯不是「代打」,而是「賦能」。不同於傳統律師收費高昂,PAMO 提倡的是「大腦武裝」,當車禍發生時,線上律師團提供策略,教你怎麼做筆錄、怎麼蒐證、怎麼判斷對方開價合不合理等。

施律師表示,他們的目標是讓客戶在面對不確定的風險時,背後有個軍師,能安心地睡個好覺 。平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。

平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。 / 圖片來源: Nano Banana

從違停的陷阱到訂閱制的解方,我們正處於交通與法律的轉型期。未來,挑戰將更加嚴峻。

-----廣告,請繼續往下閱讀-----

當 AI 與自駕車(Level 4/5)真正上路,一旦發生事故,責任主體將從「駕駛人」轉向「車廠」或「演算法系統」 。屆時,誰該負責?怎麼舉證?

但在那天來臨之前,面對馬路上的豪車、零工騎士與法律陷阱,你選擇相信運氣,還是相信策略? 先「武裝好自己的大腦」,或許才是現代駕駛人最明智的保險。

PAMO車禍線上律師官網:https://pse.is/8juv6k 

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

3
4

文字

分享

0
3
4
減碳新招:二氧化碳再利用!光觸媒材料可以把二氧化碳還原成工業化學原料?——專訪中研院原分所陳貴賢特聘研究員
研之有物│中央研究院_96
・2023/11/03 ・5793字 ・閱讀時間約 12 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自中央研究院「研之有物」,為「中研院廣告」

  • 採訪撰文|簡克志
  • 責任編輯|簡克志
  • 美術設計|蔡宛潔

降低碳排還不夠,奈米材料幫你直接減少二氧化碳!

氣候變遷問題日益嚴重,2023 年 9 月成為全球有史以來最熱的月份,臺灣夏天飆破 38 ℃ 的頻率逐漸增加。為了避免地表升溫超過工業化前水準的 +1.5 ℃,世界各國訂出 2050 年淨零排放的目標,設法減少大氣中的溫室氣體。減碳解方除了低碳電力之外,直接減少二氧化碳也是一條路徑。中央研究院「研之有物」專訪院內原子與分子科學研究所陳貴賢特聘研究員,他的研究專長是奈米能源材料,我們將介紹一種複合光催化材料:硫化鋅(ZnS)/硫化銦鋅(ZnIn2S4,簡稱 ZIS),在太陽光照射下,此材料表面發生的氧化還原反應,會將二氧化碳還原成有用的工業化學原料!

為了避免全球升溫超過工業化前水準的 +1.5 ℃,我們需要減少碳排放與開發負碳技術,並盡量在 2050 年左右達到全球溫室氣體淨零排放量的目標。所謂的「工業化前水準」是指 1850-1900 年的平均溫度。
圖|iStock

地球「保冷」計畫——減碳是關鍵

我們每天排放多少二氧化碳?根據 Our World in Data 的人均二氧化碳排放數據,2021 年全球每人排放的二氧化碳為 4.69 噸,而燃燒 1 公升的汽油大概會產生 2.3 公斤的二氧化碳。換算一下,每人每天排放二氧化碳約為 12.8 公斤,相當於每人每天消耗 5.6 公升的汽油!

根據聯合國政府間氣候變化專門委員會(IPCC)的特別報告「全球暖化 1.5 ℃」,人類活動排放的溫室氣體,已經讓地球表面平均溫度上升了 1 ℃。若以人類目前經濟模式發展下去,碳排放量可預期將不斷上升,大量溫室氣體將讓暖化現象與極端天氣事件更加劇。

氣候科學家警示,地球表面平均溫度需控制在 +1.5 ℃ 以內 註 1,否則將有不可逆的後果,例如生物多樣性大幅度降低的風險。因此,世界各國有了 2050 年淨零排放的共同目標,並不是說都不排碳了,而是要設法讓溫室氣體的碳排放量和碳減少量相互抵消,達到「淨零」的目標。

-----廣告,請繼續往下閱讀-----

要達到淨零的目標,除了尋找與開發減碳電力之外,直接減少二氧化碳也是一個方法。想像一下,如果可以像植物一樣,只要照太陽光,就把二氧化碳變成有價值的碳氫化合物,聽起來不錯吧?但是二氧化碳做為燃燒後的產物已相當穩定,要如何以人工方式讓二氧化碳再次參與反應?

我們可運用「陽光」與「光催化材料」(又稱光觸媒,photocatalyst),不僅可以減碳,還能產生有價值的碳氫化合物,是一種「一舉兩得」的方法!

光觸媒(光催化)材料是什麼?

在談到光催化材料之前,先複習一下「催化劑」這個概念,催化劑不參與化學反應,但是它讓原先不可能的化學反應變得可行!陳貴賢分享,這就像過去從臺北到宜蘭需要翻過雪山,經過九彎十八拐的北宜公路;但如今有了「雪山隧道」之後,就大大降低臺北到宜蘭的時間與難度。「雪山隧道」就是臺北通往宜蘭的催化劑。

除此之外,催化劑也可以說是推進人類歷史發展的重要角色!在過去,農作物施肥只有天然氮肥可以使用,產量有限。而肥料意味著糧食增加與生產力增加,《巫師與先知》這本書就提到位於秘魯的鳥糞島嶼成為各家跨國公司必爭之地。另一方面,波斯人也在各地建造供鳥類休息的高塔,用來收集當肥料用的鳥糞。

-----廣告,請繼續往下閱讀-----

到了近代,陳貴賢提到在 20 世紀初,德國科學家哈伯(Fritz Haber)透過催化劑,在高溫高壓的條件下,以鐵粉做為催化劑,讓氮氣和氫氣轉換成氨。這讓人工固氮成為可能,人類不用再依賴緩慢的生物固氮反應就可以合成化學氮肥,農作物產量也大幅提昇。

本文主角「光催化材料」,顧名思義就是協助光化學反應的催化劑,但光催化材料與一般催化劑不同的地方在於,其化學反應通常發生在固態的表面環境,目標反應物、光子和電子都有參與反應。

比起光催化材料,你可能更常聽到它的同義詞「光觸媒」,例如某某產品宣稱具有「奈米光觸媒消毒」的功能,其實就是照射足夠的光,讓材料表面的氧化還原反應把細菌分解。而之所以光觸媒需要做到奈米尺寸,這是因為奈米小顆粒可以改變物質的電子能量結構,且大幅增加反應的表面積,讓光催化反應更有效率。

陳貴賢:「一個高表面積的奈米粉末,它的表面積可能是薄膜的一萬倍,甚至於十萬倍。」

給你電子,還你原形!光催化材料上的氧化還原反應是怎麼發生的?

光催化材料之所以能夠減少二氧化碳,是因為照光後材料表面發生「氧化還原反應」,氧化反應會失去電子,還原反應會得到電子。陳貴賢與團隊開發的複合光催化材料:硫化鋅(ZnS)/硫化銦鋅(ZnIn2S4,簡稱 ZIS),可以讓二氧化碳還原成甲醇(CH3OH)和乙醛(CH3CHO),這兩種產物都是工業常用的化學原料。反應式如下:

-----廣告,請繼續往下閱讀-----

要持續減少二氧化碳,就要持續發生上述還原反應,持續供給電子。不過,我們要怎麼讓電子快速又順利的補充到材料表面?這裡就開始涉及到半導體的核心問題:電子與電洞的產生、分離和傳輸

陳貴賢與團隊開發的複合光催化材料:ZnS/ZIS,是結合兩種奈米半導體材料,透過水熱法合成,將 0 維的 ZnS 奈米顆粒沉積在 2 維的 ZIS 奈米片之上,形成 0D-2D 結構的 ZnS/ZIS 複合物,就像製作巧克力豆餅乾,不過要複雜得多。

陳貴賢團隊將 0 維的 ZnS 奈米顆粒沉積在 2 維的 ZIS 奈米片之上,就好像做巧克力豆餅乾一樣,形成複合的異質半導體,做為光催化材料用途。左圖是示意圖,右圖是電子顯微鏡下的照片,Zn:In 比例為 1:0.46。
圖|研之有物(資料來源|Nano Energy

既然 ZnS/ZIS 是半導體,當受到光照之後,原來的價帶(valence band)電子會被光激發成導帶(conduction band)電子,原本價帶電子佔據的位置則留下一個空位,就是電洞。電子和電洞的遷移,就是半導體形成電流的原因,因此電子和電洞都稱為「載子」(charge carrier)

還記得上面的還原反應嗎?

-----廣告,請繼續往下閱讀-----

對光催化材料來說,為了在光照環境下把二氧化碳還原成乙醛和甲醇,必須獲得穩定的電子來源,材料內部要迅速補充電子到表面,因此:

照光產生的電荷載子數量越多越好;產生的電子和電洞要傾向分離,分得越遠越好;電子和電洞越快移動到表面參與反應越好。

載子輸送要快速穩定,首先照光產生的載子要多,就有更多電子和電洞參與反應。分離載子是為了避免復合,照光產生的電子和電洞很容易復合,一旦復合,等同於減少載子。再來是載子越快移動到表面越好,可以讓每次的氧化還原反應都是最佳效率。

尋找最有效的光催化材料

陳貴賢團隊總共做了 4 種不同比例的 ZnS/ZIS 光催化材料,依照 Zn:In 比例 1:0.12、1:0.26、1:0.46 和 1:0.99,分別標記為 ZnS/ZIS-1、ZnS/ZIS-2、ZnS/ZIS-3 和 ZnS/ZIS-4。其中,ZnS/ZIS-3 的光催化效果最好,可以有效減少二氧化碳,產生最多的乙醛和甲醇(如下圖)。

水熱法製備的 ZnS/ZIS-3 光催化效果最好,可以有效減少二氧化碳,產生最多的乙醛和甲醇。最右邊是將 ZnS 和 ZIS 簡單物理混合的對照組,沒有介面效應的輔助,催化效果不佳。
圖|研之有物(資料來源|Nano Energy

為了驗證光催化材料產生有效載子的效率,陳貴賢團隊計算了 ZnS/ZIS-3 的總 AEQ 值(apparent quantum efficiency),用來評估「照到光催化材料上的每顆光子數量,產生了多少實際參與催化反應的電子數」。測量之後,ZnS/ZIS-3 的 AEQ 值為 0.8%,量子效率比單獨的 ZnS 材料提高了將近 200 倍!

-----廣告,請繼續往下閱讀-----

這也是為什麼陳貴賢團隊要使用兩種不同的材料結合,因為單一半導體材料照光產生的電子和電洞有很高的復合機率,選擇兩種不同的半導體材料組合,讓兩種材料形成特殊的「能量階梯」就可以有效分離電子和電洞,並且把電子送到它該去的材料表面。

此外,使用兩種半導體材料的好處還有「二次激發電子到更高能階」,以符合光催化反應的能量門檻,自由電子掙脫 ZnS 的束縛之後,繼續往 ZIS 跑,光的能量會繼續把電子往上送到更高能級的材料表面,還原二氧化碳的反應在此發生。

Z 字形跑比較快!控制材料之間的微應變提升氧化還原效率

關於光催化材料的二次激發,陳貴賢提到:「材料低能階,然後光子進來後,把電子激發到高能階去做反應,太陽能電池也是這樣。但是呢,有時候沒那麼剛好,例如激發後的能階不夠高,雖然激發上去了,但電子沒有辦法跟二氧化碳做反應。那我把兩個材料拼在一起,電子上去以後又下來,然後再吸收第二個光子上去,那就變得很高了,高了以後它的反應效率就提升很多。」

如果我們把光催化材料的二次激發過程畫成示意圖,如下圖所示,電子在 ZnS 束縛區受到第一次光子的激發,變成自由電子,接著經過設計完善的材料介面,先降到較低的 ZIS 束縛區,受到第二次光子的激發,再次變成自由電子,跑到光催化材料的表面,和二氧化碳發生還原反應,將二氧化碳變成可再利用的乙醛和甲醇。

-----廣告,請繼續往下閱讀-----

看看電子走過的路,如果向左歪著頭看,是不是就是一個 Z 字呢?科學家把這個過程稱為「直接 Z 方案」(Direct Z-scheme)。「直接」的意思是,電子從 ZnS 跑到 ZIS 的過程,不需要再經過一個中間地帶,降低電子和電洞復合的機會。

為了將二氧化碳轉換成可用化學原料,電子在材料內部能階走 Z 字路徑,過程中受到光的二次激發,最後到達材料表面。電子參與還原反應,將二氧化碳變成乙醛和甲醇。電洞參與氧化反應,將水變成氧氣。
圖|研之有物(資料來源|Nano Energy

為什麼陳貴賢團隊設計的「直接 Z 方案」光催化材料,電子可以不需要中間的「轉接站」,直接轉移到另一個材料上呢?這裡也有一個巧思:不同材料之間的「微應變」

不同材料的晶體排列規律是不一樣的,當兩種材料接在一起時,接面處會發生「晶格不匹配」,也就是兩種材料的原子會互相卡到、晶格微微變形。但是,如果我們可以控制微應變(Strain)的程度,就可以控制兩種材料「能量階梯」的相對位置,微應變可以讓材料接面自動帶有「轉接站」的功能,進而形成一個內部電場,讓電子和電洞更能快速分離,提高光催化效率。

總之,陳貴賢團隊開發的這套材料組合,是有微應變誘導的直接 Z 方案光催化材料,可做為未來量產光催化材料的研發設計參考,同時也是減碳的解方之一。

-----廣告,請繼續往下閱讀-----
ZnS 奈米顆粒接在 ZIS 奈米片上,兩邊的晶格排列方式不一樣,發生「晶格不匹配」,接面處晶格會微微變形。如果控制微應變(Strain)的程度,就可以微調材料能階的相對位置,微應變可以讓接面帶有「轉接站」的功能,形成一個內部電場,讓電子和電洞更能快速分離,提高光催化效率。
圖|研之有物(資料來源|Nano Energy
ZnS 奈米顆粒接在 ZIS 奈米片上,兩邊的晶格排列方式不一樣,發生「晶格不匹配」,接面處晶格會微微變形。如果控制微應變(Strain)的程度,就可以微調材料能階的相對位置,微應變可以讓接面帶有「轉接站」的功能,形成一個內部電場,讓電子和電洞更能快速分離,提高光催化效率。
圖|研之有物(資料來源|Nano Energy

綠能趨勢——光催化材料未來可期

陳貴賢表示,目前表面科學和材料是中研院原分所的主要研究領域,他的實驗室選擇能源材料作為研究主軸,有太陽能電池和熱電材料,同時團隊也專注研究可還原二氧化碳的光催化材料,以及與燃料電池相關的催化劑。

陳貴賢看好將來能源材料的發展,因為在 2050 淨零排放之前,有愈來愈多企業紛紛加入「RE100 倡議」的行列,企業必須承諾最晚於 2030 年前使用 100% 再生能源。最著名案例是科技巨頭蘋果Google 和微軟等公司都已宣布其全球供應鏈將符合 RE100 的要求。其中,台積電為蘋果主要供應商,2020 年也加入 RE100,目前為臺灣再生能源的主要買家

可以預見,將來風能、太陽能與燃料電池的相關材料有其市場需求,而能夠減少二氧化碳的光催化材料,也將成為全球減碳的利器。陳貴賢提到,當前光催化材料還在基礎研究階段,目前的人工光合作用效率約 1%,接近大自然效率,而團隊希望提升到至少 5% 到 10% 以上,方能有其實用價值。

陳貴賢進一步強調,未來效率提高之後,能夠轉化二氧化碳的光催化材料就會有很大的經濟價值,不僅轉化後的燃料可以賣錢,處置二氧化碳原料亦可以收取負碳費用,是一種前所未有的概念。

陳貴賢強調,未來效率提高之後,能夠轉化二氧化碳的光催化材料就會有很大的經濟價值。
圖|研之有物

註解

  1. 根據 IPCC 的資料,如果要將全球暖化幅度控制在 +1.5 °C 以內,必須在 2050 年左右達到二氧化碳的淨零排放目標,同時也要大幅度降低非二氧化碳的溫室氣體排放,特別是甲烷。
-----廣告,請繼續往下閱讀-----
研之有物│中央研究院_96
296 篇文章 ・ 3854 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

1

25
4

文字

分享

1
25
4
用錯使用方法,漂白劑也會出人命?請注意,盡量不要「混搭」清潔劑!
阿咏_96
・2020/12/18 ・3364字 ・閱讀時間約 7 分鐘 ・SR值 512 ・六年級

今年八月時,有新聞指出,一位英國女子西摩(Leah Seymour)在打掃浴室時,將馬桶清潔劑與漂白劑混合一起使用,幾分鐘後出現強烈氣味,導致她氣喘發作,失去意識,送醫後宣告不治身亡。

什麼!漂白劑不是我們生活中常用來消毒的好朋友嗎?到底發生了什麼事?漂白劑真的這麼危險嗎?以後是不是就別用了?

修但幾勒!

在恐慌蔓延之前,我們必須先來了解漂白劑究竟是何方神聖,又是如何作用的。

別只會唱愛情轉移,你知道電子轉移嗎?

我們日常使用的漂白劑,通常是透過氧化還原反應將顏色去除或變淡,除了漂白的功能之外,也可以用來消毒殺菌。

-----廣告,請繼續往下閱讀-----
漂白水是我們消毒環境、清洗衣物的好幫手。圖/Pixabay

氧化還原反應指的是過程中發生電子轉移的化學反應,例如以下這個鎂和氧化銅的反應式: 

Mg+CuO → MgO+Cu

我們可以把 鎂 Mg 想像成是一位財大氣粗的火爆小子,而 銅 Cu 是個性溫和的好好先生,有天他們倆相遇了,鎂對銅表示想買下他的情人 氧 O,急躁的鎂不管銅的意見,就把錢(也就是電子)付給他,同時也把氧搶走了,於是鎂就把氧佔為己有,而銅得到了錢財,變回孤身一人。

在氧化還原反應裡,不同角色有各自的稱呼和招式,把電子付給別人的火爆小子稱為「還原劑」,招式為「還原」,讓別人變回孤身一人;得到電子的好好先生為「氧化劑」,招式為「氧化」。

-----廣告,請繼續往下閱讀-----
大家不妨猜猜看,圖中的 H 和 F 之間,誰是火爆小子,誰又是好好先生呢?圖/Wikipedia

然而,好好先生與火爆小子的身份並非永遠不變,也就是說「沒有最火爆,只有更火爆」,未來當鎂遇到比他更財大氣粗的人時,手上的氧也會被「買」走,而銅遇到比他更溫和的人時,也可能會買別人的氧。

而這種急躁又霸道的性格,稱之為「活性」,也就是說活性越大的元素,性質越活潑,越急著把錢(電子)塞到別人手裡、買走氧,不過,他們把氧買走後,就會「浪子回頭」,個性變得比較收斂,性質更為安定。

拿~麼厲害!漂白劑原來是轉移高手

接著回到故事主線,漂白劑的種類可以依據在漂白過程發生的氧化還原反應中擔任的角色來區分:若在反應裡擔任氧化劑者,稱為「氧化型漂白劑」;若擔任還原劑者,稱為「還原型漂白劑」。

平時我們較常接觸到的是氧化型漂白劑,而氧化型漂白劑通常可以再分為兩類:氯系漂白劑氧系漂白劑

-----廣告,請繼續往下閱讀-----
你用的是氯系,還是氧系漂白劑呢?圖/Wikipedia

這邊即將登場的是:氯系漂白劑

氯系漂白劑含有次氯酸鈉(NaClO),溶在水中會解離成次氯酸離子(ClO)和鈉離子(Na+),當次氯酸離子(ClO)與水反應後,會轉變為弱酸性的次氯酸(HClO),但鈉離子(Na+)與水反應後,會變成強鹼性的氫氧化納(NaOH),因此使水溶液變成弱鹼性。

次氯酸(HClO)就是典型的好好先生,很容易得到其他物質的電子,也就說能夠氧化許多的物質,透過氧化就可以破壞細菌的細胞機能,最後導致細菌死亡。而漂白的功能也是因為氧化了含有顏色的化合物而造成褪色。

不過,漂白水的原液只含微量 HClO 分子,加水稀釋後 HClO 的比例會提高,此時才具有比較好的消毒殺菌效果。

-----廣告,請繼續往下閱讀-----

什麼?跟清潔劑一起用ㄟ出代誌?!

然而,如果以不正確的方式使用氯系漂白劑,可能會對我們的健康造成危害!

使用漂白水的時候,有些人會加上「比較好聞」的清潔劑,或是跟其他強效清潔劑混合,希望可以藉此達到更好的清潔效果。

請小心!如果將漂白水和其他清潔劑混合,很有可能產生危害人體的物質。

許多香精油、清潔劑中,都可能含有檸檬烯。圖/Pixabay

加拿大多倫多大學 2019 年的研究發現,當我們在室內環境使用氯漂白劑溶液時,容易釋放出氣態的次氯酸(HOCl)和氯氣(Cl2),由於兩者都是強氧化劑,因此它們會和清潔劑中的揮發性有機化合物——檸檬烯(limonene)產生反應。

-----廣告,請繼續往下閱讀-----

檸檬烯是最豐富的揮發性有機化合物之一,許多我們的日常用品有它的存在,例如個人護理產品、清潔用品、空氣清新劑等。

檸檬烯本身是無毒的,在不同的室內條件下,檸檬烯可以與臭氧或其他氧化劑反應,生成顆粒,例如它和氫氧自由基可以快速進行反應。

他們觀察到,在室內日光燈或陽光的照射下,檸檬烯會與次氯酸、氯氣發生反應,並在室內產生大量的粒子,接著他們用氣膠儀質譜法(Aerosol mass spectrometry)分析這些粒子後,發現這些例子大部分都是含氯的顆粒,吸入身體後可能對肺功能或氣管造成負面的影響 4

光照之下,在透明的空氣中可能發生了許多你完全察覺不到的化學反應!圖/Pixabay

然而,我們也不能完全把責任都推給檸檬烯。

-----廣告,請繼續往下閱讀-----

事實上,當氯漂白劑溶液釋放出次氯酸(HOCl)和氯氣(Cl2)後,在光的照射下註1,很容易被分解為氫氧自由基及氯原子,它們倆也是強氧化劑,可以與許多室內揮發性有機化合物反應,產生氯化物,甚至有助於形成二級有機氣溶膠(SOA),可能會危害人體的呼吸系統健康 5

雖然這些顆粒的成分、對健康的影響程度還需要進一步研究,但我們仍然可以知道,這些光解作用、氧化反應形成的產物,對人體健康具有一定的風險。

使用漂白劑前,三件最重要的小事

次氯酸鈉在我們的生活中扮演著重要的角色,游泳池、廁所乃至於免疫系統,都可以發現它的存在。

然而如同歌詞裡說「水能載舟,亦能煮粥」,次氯酸鈉帶來便利的同時,也伴隨著其他風險,為了避免更多因誤用而造成的悲劇,我們必須了解如何安全的使用漂白劑,以下為大家整理了和次氯酸鈉平安共處的 3 大守則!

-----廣告,請繼續往下閱讀-----
  1. 禁止飲用與避免觸摸

次氯酸鈉之所以能「消毒殺菌」,是因為具有一定的生物毒性,如果誤飲可能會造成中毒,在使用次氯酸鈉進行清潔時,最好戴上口罩及手套,避免直接接觸喔!

請盡量戴上手套、口罩,避免與清潔劑零距離的接觸。圖/Unsplash
  1. 避開陽光及高溫

如同剛剛的研究提到,次氯酸鈉遇到光或熱會被分解成有毒的氯氣,因此平常不使用時要保存在陰涼處,也不要搭配熱水使用。

  1. 避免與清潔劑混合

除了上面提到的檸檬烯以外,其實清潔劑裡還含有其他物質,會跟次氯酸鈉反應生成氯氣或其他對人體有不良影響的化學物質。

即使上述這些注意事項看起來都是常識,卻非常容易被大家忽略!請大家務必謹慎、聰明地使用,才能讓我們在享受潔淨空間的同時,避免意外的發生!

註解

  1. 這項研究的實驗是在只有朝北窗戶的房間內進行的,他們推測窗戶接收陽光較多的房間會有更迅速的光解反應。

參考資料

  1. Wang, C., Collins, D. B., & Abbatt, J. P. (2019). Indoor illumination of terpenes and bleach emissions leads to particle formation and growth. Environmental Science & Technology, 53(20), 11792-11800.
  2. Yahoo新聞:「漂白水+清潔劑」刷浴室 她聞刺鼻味倒地……4天後亡
  3. 香港政府一站通:漂白水的使用
  4. Das, R., & Blanc, P. D. (1993). Chlorine gas exposure and the lung: a review. Toxicology and industrial health, 9(3), 439-455.
  5. Gaschen, A., Lang, D., Kalberer, M., Savi, M., Geiser, T., Gazdhar, A., … & Geiser, M. (2010). Cellular responses after exposure of lung cell cultures to secondary organic aerosol particles. Environmental science & technology, 44(4), 1424-1430.
-----廣告,請繼續往下閱讀-----
所有討論 1