Loading [MathJax]/extensions/tex2jax.js

0

0
1

文字

分享

0
0
1

鮟鱇一道光如此美妙,指引你到牠嘴裡來──《海洋的極端生物》

PanSci_96
・2017/07/13 ・3062字 ・閱讀時間約 6 分鐘 ・SR值 497 ・六年級

-----廣告,請繼續往下閱讀-----

  • 【科科愛看書】廣闊無邊的藍色水域之中,究竟藏著什麼秘密?如果你以為到處都是尼莫式的溫馨場景,可就大錯特錯了!《海洋的極端生物》可是一群心機超重的傢伙,天天都要為了生存奮鬥。如果想見識海洋版的甄嬛傳,從這裡下手準沒錯。

我們會知道某些深海物種的存在,是因為我們把牠們拖上水面,並予以命名;但在深海當中,這些物種也彼此相熟。牠們身上並沒有掛著名牌,好比你參加畢業多年後的高中同學會那樣,但牠們當中許多身上都有燈飾。

海底到處黑壓壓?來試試自體發光

想像你是深海裡無垠黑暗當中的一條無助小魚,藍黑色的海水無頂也無底,就像沒有月亮的黑暗天空在你上方與下方伸展。只不過這種永夜並不平靜,永遠有數百隻眼睛注視著你,急切地想抓住一絲亮光。掠食者隱藏在黑暗的四周,不知有多少尖牙利齒等在那裡。從上方透進來的一丁點陽光,隨時都可能洩漏你的行蹤。

不過就像沒有月亮的天空還有星星,海底也有其他光源。你的四周不斷會有閃爍的藍光與綠光,這些微弱又偷偷摸摸的閃光可能是一頓大餐,也可能讓你命喪當場。深海是地球上唯一不以陽光為主要光源的生態系統(只有蕈類生長的洞穴不算),而是靠蛋白有機物發光。

深海生物大多發出藍綠色的光。圖/Ethan Volberg @ Flickr

螢光素酶(luciferase),或稱光蛋白,靠分解高能分子產生光子,而不是代謝能量。有些魚類擁有螢光素酶基因,並把這些能發光的蛋白擺在皮膚上的小穴,稱為發光器(photophore)的特化器官。大多數魚類生成自己的發光物質,但有些只是長出囊袋,裡頭裝了能發光的共生微生物。

-----廣告,請繼續往下閱讀-----

生物發光是海中最重要的戰術適應。有些魚類把發光器安排在腹部,其形態與水面上方傳入的微弱光線類似,使得位於下方的魚辨認不出牠們的存在,不論是身為掠食者還是獵物,都可讓牠們隱去形跡。 簡單的浮游生物也會大量應用光噪音:耀眼但不造成干擾的光子使深海充滿無意義的視覺絮叨。這種絮叨可能帶有真正的目的,有實驗顯示,當蝦子吃進某些種類的浮游生物,後者會放射出閃爍的生物光,像是在發警報;掠食魚類會像特警隊一樣迅速被吸引過來,把蝦子一口吃掉,對微小的浮游生物則不屑一顧。

一閃一閃亮晶晶,竟是邪惡的陷阱

近來海洋生物學家海道克(Steve Haddock)和同事描述了在深海魚類當中,生物光扮演多達七種的防禦性角色。 此外,生物光還可以扮演攻擊性的角色:強光可讓獵物吃驚或困惑,或是以吊在巨顎上方的燈光做為誘餌來吸引獵物,又或者使用如同車頭燈的強光來找尋漂浮在水柱當中的小塊食物。

頭頂前方有一條長形肉質誘餌的鮟鱇魚(anglerfish),是將生物光做創新運用最出名的生物。這是一整批外型極為醜陋的動物,牠們缺少背鰭,但把原本要形成魚鰭的脊椎移到眼睛上方的一點。其中第一節脊椎變粗並延長成為一根手指狀,頂端還帶有一個形狀不規則的燈泡,稱為「餌球」(esca),做為可發光的誘餌。 餌球的海綿組織裡住滿一批努力工作的發光微生物,讓餌球在黑暗的水中發出誘人的光芒,幫宿主鮟鱇魚製造假象。

鮟鱇魚。圖/公有領域, wikimedia commns.

這種魚就像一位經驗十足的海釣者,把誘餌的吸引力發揮到十分:左右扭動、上下擺動、迴旋繞圈,就像一隻瘋狂嬉戲的蟲子;牠上頭發光的燈泡,更是讓誘餌的魅力難以抗拒。比鮟鱇魚體型小得多的掠食魚類在接近餌球後,會用盡全力奮力一擊;只不過牠在瞬間就被鮟鱇魚的巨型大嘴吸入並被利齒刺穿,一聲不響就消失得無影無蹤。每種鮟鱇魚都有自己特殊的餌球,有些比魚體還長,全部都會發光。 至於鮟鱇魚如何偵測到有獵物靠近,目前還不清楚,因為牠們的眼睛很小,視覺也不佳;有人推測鮟鱇魚的殺戮反射是由獵物輕觸誘餌所引發。

-----廣告,請繼續往下閱讀-----
各種鮟鱇魚與他們特殊的餌球。圖/Masaki Miya et al. – Evolutionary history of anglerfishes (Teleostei: Lophiiformes): a mitogenomic perspective. BMC Evolutionary Biology 2010, 10:58 doi:10.1186/1471-2148-10-58, CC BY 2.0, wikimedia commons.

我們已知的是,鮟鱇魚會攻擊任何體型的魚種:有紀錄顯示,在巴布亞紐幾內亞沿海捕獲過一條十來公分長的鮟鱇魚,口中卻啣了一條三十公分長的鼠尾鱈魚;不過捕獲的時候這兩條魚都已死亡,浮在水面上。

獨一無二的紅光,保命防身都靠它

絕大多數的生物發光都是藍綠色,與深海當中微弱的陽光相符合。但屬於深海巨口魚科(Stomiidae)的黑柔骨魚(loosejaw,學名是 Malacosteus niger)卻發出特殊的色澤 :在牠們的眼睛下方具有大型的強力發光器,可在水中發出紅光。某些物種的紅光是由特殊的螢光蛋白造成,另一些物種則是在發光器外圍加了一層紅褐色的濾鏡。

在深海當中,紅色是特殊的顏色。海水會吸收紅色,而容易讓藍色穿越,因此海中大多數的生物發光都是落在藍綠色澤的範圍。黑柔骨魚的掠食者與獵物都具有對這種藍綠光敏感的眼睛,那是生活在一公里半深的海底所演化出來的。

但黑柔骨魚是罕見的例外:由於某個特殊的突變,改變了牠們眼睛當中捕捉光線的視紫蛋白裡面第 261 號位置的胺基酸;那是對這種吸收光線的蛋白質非常重要的位置,結果造成黑柔骨魚要比其他的深海魚類能吸收更多的紅色光,於是能看到由牠們自己特殊的探照燈從獵物身上反射回來的紅光。

-----廣告,請繼續往下閱讀-----

大多數深海魚類都只發出閃光,也就是快速明滅的短暫光點,以免被掠食者發現而遭到吞食。在黑暗的殺手世界中,強光可照亮食物,同時也會招來殺身之禍。與海水表層的掠食者相比,黑柔骨魚又小又弱,但牠們可以看見紅色,卻不被其他魚看見,因此得以在深海中來回覓食,免遭殺手。

黑柔骨魚。圖/Emma Kissling – Résultats des campagnes scientifiques accomplies sur son yacht par Albert Ier, prince souverain de Monaco Albert I, Prince of Monaco, 1848-1922 url, Public Domain, wikimedia commons.

點亮宇宙的奇妙之光

海底最深處的真實特性,並不是由鬼鬼祟祟如同汽車一般大小的烏賊,或是在黑煙囪四周冒出的數百個二公尺長的管蟲所定義;我們在想像這些生物時,會忘記深海本身的廣大無垠。我們通常想像那裡有清澈的海水,到處有亮光,有巨型生物在空曠的空間裡移動;但海底深淵真正的特性,畢伯(William Beebe)有最真切的掌握。

當他坐在那顆迷你的潛水球裡,下潛至深海的暗夜之中,讓他感到驚奇的不是他看到的那些奇特掠食性魚類,而是光:充滿在潛水球小水晶舷窗外的閃爍光亮,在黑暗中綻放。在他的潛水球四周,亮光以他無法閱讀的語言彼此交談,述說著生與死的故事,以及掠食者的偽裝。我們不能用教科書中的圖片來想像這些動物,而是要想像牠們在其世界生活的樣子。在被黑暗籠罩完全沒有光線的深海,牠們只能用生物光的閃爍以及一絲黑色剪影來認識彼此。

身為第一位造訪深海的人,畢伯覺得自己的責任重大:他看到了世人從未見過的景象,他認為自己有義務描述一二。他曉得自己進入了陸地以外的另一個世界,遠在首度有人在太空漫步的三十年前,畢伯對深海的描述有如預言一般:

-----廣告,請繼續往下閱讀-----

唯一能與這奇妙的海底世界相比擬的,想必是遠在大氣層之外,位於星辰之間,太陽光不會照射在星球空氣中的塵埃與垃圾上面的虛無太空了。太空的黑暗,以及其中發亮的行星、彗星、太陽以及星星,在一位心中充滿敬畏之情的人類眼裡,必定與他在大海半英里深處所見到的生命世界非常相似。


 

 

 

本文摘自《海洋的極端生物》衛城出版

-----廣告,請繼續往下閱讀-----
文章難易度
PanSci_96
1262 篇文章 ・ 2428 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

0
0

文字

分享

0
0
0
從PD-L1到CD47:癌症免疫療法進入3.5代時代
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/25 ・4544字 ・閱讀時間約 9 分鐘

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

如果把癌細胞比喻成身體裡的頭號通緝犯,那誰來負責逮捕?

許多人第一時間想到的,可能是化療、放療這些外來的「賞金獵人」。但其實,我們體內早就駐紮著一支最強的警察部隊「免疫系統」。

既然「免疫系統」的警力這麼堅強,為什麼癌症還是屢屢得逞?關鍵就在於:癌細胞是偽裝高手。有的會偽造「良民證」,騙過免疫系統的菁英部隊;更厲害的,甚至能直接掛上「免查通行證」,讓負責巡邏的免疫細胞直接視而不見,大搖大擺地溜過。

-----廣告,請繼續往下閱讀-----

過去,免疫檢查點抑制劑的問世,為癌症治療帶來突破性的進展,成功撕下癌細胞的偽裝,也讓不少患者重燃希望。不過,目前在某些癌症中,反應率仍只有兩到三成,顯示這條路還有優化的空間。

今天,我們要來聊的,就是科學家如何另闢蹊徑,找出那些連「通緝令」都發不出去的癌細胞。這個全新的免疫策略,會是破解癌症偽裝的新關鍵嗎?

科學家如何另闢蹊徑,找出那些連「通緝令」都發不出去的癌細胞。這個全新的免疫策略,會是破解癌症偽裝的新關鍵嗎?/ 圖片來源:shutterstock

免疫療法登場:從殺敵一千到精準出擊

在回答問題之前,我們先從人類對抗癌症的「治療演變」說起。

最早的「傳統化療」,就像威力強大的「七傷拳」,殺傷力高,但不分敵我,往往是殺敵一千、自損八百,副作用極大。接著出現的「標靶藥物」,則像能精準出招的「一陽指」,能直接點中癌細胞的「穴位」,大幅減少對健康細胞的傷害,副作用也小多了。但麻煩的是,癌細胞很會突變,用藥一段時間就容易產生抗藥性,這套點穴功夫也就漸漸失靈。

直到這個世紀,人類才終於領悟到:最強的武功,是驅動體內的「原力」,也就是「重新喚醒免疫系統」來對付癌症。這場關鍵轉折,也開啟了「癌症免疫療法」的新時代。

-----廣告,請繼續往下閱讀-----

你可能不知道,就算在健康狀態下,平均每天還是會產生數千個癌細胞。而我們之所以安然無恙,全靠體內那套日夜巡邏的「免疫監測 (immunosurveillance)」機制,看到癌細胞就立刻清除。但,癌細胞之所以難纏,就在於它會發展出各種「免疫逃脫」策略。

免疫系統中,有一批受過嚴格訓練的菁英,叫做「T細胞」,他們是執行最終擊殺任務的霹靂小組。狡猾的癌細胞為了躲過追殺,會在自己身上掛出一張「偽良民證」,這個偽裝的學名,「程序性細胞死亡蛋白配體-1 (programmed death-ligand 1, PD-L1) 」,縮寫PD-L1。

當T細胞來盤查時,T細胞身上帶有一個具備煞車功能的「讀卡機」,叫做「程序性細胞死亡蛋白受體-1 (programmed cell death protein 1, PD-1) 」,簡稱 PD-1。當癌細胞的 PD-L1 跟 T細胞的 PD-1 對上時,就等於是在說:「嘿,自己人啦!別查我」,也就是腫瘤癌細胞會表現很多可抑制免疫 T 細胞活性的分子,這些分子能通過免疫 T 細胞的檢查哨,等於是通知免疫系統無需攻擊的訊號,因此 T 細胞就真的會被唬住,轉身離開且放棄攻擊。

這種免疫系統控制的樞紐機制就稱為「免疫檢查點 (immune checkpoints)」。而我們熟知的「免疫檢查點抑制劑」,作用就像是把那張「偽良民證」直接撕掉的藥物。良民證一失效,T細胞就能識破騙局、發現這是大壞蛋,重新發動攻擊!

-----廣告,請繼續往下閱讀-----
狡猾的癌細胞為了躲過追殺,會在自己身上掛出一張「偽良民證」,也就是「程序性細胞死亡蛋白配體-1 (programmed death-ligand 1, 縮寫PD-L1) 」/ 圖片來源:shutterstock

目前免疫療法已成為晚期癌症患者心目中最後一根救命稻草,理由是他們的體能可能無法負荷化療帶來的副作用;標靶藥物雖然有效,不過在用藥一段期間後,終究會出現抗藥性;而「免疫檢查點抑制劑」卻有機會讓癌症獲得長期的控制。

由於免疫檢查點抑制劑是借著免疫系統的刀來殺死腫瘤,所以有著毒性較低並且治療耐受性較佳的優勢。對免疫檢查點抑制劑有治療反應的患者,也能獲得比起化療更長的存活期,以及較好的生活品質。

不過,儘管免疫檢查點抑制劑改寫了治癌戰局,這些年下來,卻仍有些問題。

CD47來救?揭開癌細胞的「免死金牌」機制

「免疫檢查點抑制劑」雖然帶來治療突破,但還是有不少挑戰。

-----廣告,請繼續往下閱讀-----

首先,是藥費昂貴。 雖然在台灣,健保於 2019 年後已有條件給付,但對多數人仍是沉重負擔。 第二,也是最關鍵的,單獨使用時,它的治療反應率並不高。在許多情況下,大約只有 2成到3成的患者有效。

換句話說,仍有七到八成的患者可能看不到預期的效果,而且治療反應又比較慢,必須等 2 至 3 個月才能看出端倪。對患者來說,這種「沒把握、又得等」的療程,心理壓力自然不小。

為什麼會這樣?很簡單,因為這個方法的前提是,癌細胞得用「偽良民證」這一招才有效。但如果癌細胞根本不屑玩這一套呢?

想像一下,整套免疫系統抓壞人的流程,其實是這樣運作的:當癌細胞自然死亡,或被初步攻擊後,會留下些許「屍塊渣渣」——也就是抗原。這時,體內負責巡邏兼清理的「巨噬細胞」就會出動,把這些渣渣撿起來、分析特徵。比方說,它發現犯人都戴著一頂「大草帽」。

-----廣告,請繼續往下閱讀-----

接著,巨噬細胞會把這個特徵,發布成「通緝令」,交給其他免疫細胞,並進一步訓練剛剛提到的菁英霹靂小組─T細胞。T細胞學會辨認「大草帽」,就能出發去精準獵殺所有戴著草帽的癌細胞。

當癌細胞死亡後,會留下「抗原」。體內的「巨噬細胞」會採集並分析這些特徵,並發布「通緝令」給其它免疫細胞,T細胞一旦學會辨識特徵,就能精準出擊,獵殺所有癌細胞。/ 圖片來源:shutterstock

而PD-1/PD-L1 的偽裝術,是發生在最後一步:T 細胞正準備動手時,癌細胞突然高喊:「我是好人啊!」,來騙過 T 細胞。

但問題若出在第一步呢?如果第一關,巡邏的警察「巨噬細胞」就完全沒有察覺這些屍塊有問題,根本沒發通緝令呢?

這正是更高竿的癌細胞採用的策略:它們在細胞表面大量表現一種叫做「 CD47 」的蛋白質。這個 CD47 分子,就像一張寫著「自己人,別吃我!」的免死金牌,它會跟巨噬細胞上的接收器─訊號調節蛋白α (Signal regulatory protein α,SIRPα) 結合。當巨噬細胞一看到這訊號,大腦就會自動判斷:「喔,這是正常細胞,跳過。」

結果會怎樣?巨噬細胞從頭到尾毫無動作,癌細胞就大搖大擺地走過警察面前,連罪犯「戴草帽」的通緝令都沒被發布,T 細胞自然也就毫無頭緒要出動!

這就是為什麼只阻斷 PD-L1 的藥物反應率有限。因為在許多案例中,癌細胞連進到「被追殺」的階段都沒有!

為了解決這個問題,科學家把目標轉向了這面「免死金牌」,開始開發能阻斷 CD47 的生物藥。但開發 CD47 藥物的這條路,可說是一波三折。

-----廣告,請繼續往下閱讀-----

不只精準殺敵,更不能誤傷友軍

研發抗癌新藥,就像打造一把神兵利器,太強、太弱都不行!

第一代 CD47 藥物,就是威力太強的例子。第一代藥物是強效的「單株抗體」,你可以想像是超強力膠帶,直接把癌細胞表面的「免死金牌」CD47 封死。同時,這個膠帶尾端還有一段蛋白質IgG-Fc,這段蛋白質可以和免疫細胞上的Fc受體結合。就像插上一面「快來吃我」的小旗子,吸引巨噬細胞前來吞噬。

問題來了!CD47 不只存在於癌細胞,全身上下的正常細胞,尤其是紅血球,也有 CD47 作為自我保護的訊號。結果,第一代藥物這種「見 CD47 就封」的策略,完全不分敵我,導致巨噬細胞連紅血球也一起攻擊,造成嚴重的貧血問題。

這問題影響可不小,導致一些備受矚目的藥物,例如美國製藥公司吉立亞醫藥(Gilead)的明星藥物 magrolimab,在2024年2月宣布停止開發。它原本是預期用來治療急性骨髓性白血病(AML)的單株抗體藥物。

太猛不行,那第二代藥物就改弱一點。科學家不再用強效抗體,而是改用「融合蛋白」,也就是巨噬細胞身上接收器 SIRPα 的一部分。它一樣會去佔住 CD47 的位置,但結合力比較弱,特別是跟紅血球的 CD47 結合力,只有 1% 左右,安全性明顯提升。

像是輝瑞在 2021 年就砸下 22.6 億美元,收購生技公司 Trillium Therapeutics 來開發這類藥物。Trillium 使用的是名為 TTI-621 和 TTI-622 的兩種融合蛋白,可以阻斷 CD47 的反應位置。但在輝瑞2025年4月29號公布最新的研發進度報告上,TTI-621 已經悄悄消失。已經進到二期研究的TTI-622,則是在6月29號,研究狀態被改為「已終止」。原因是「無法招募到計畫數量的受試者」。

-----廣告,請繼續往下閱讀-----

但第二代也有個弱點:為了安全,它對癌細胞 CD47 的結合力,也跟著變弱了,導致藥效不如預期。

於是,第三代藥物的目標誕生了:能不能打造一個只對癌細胞有超強結合力,但對紅血球幾乎沒反應的「完美武器」?

為了找出這種神兵利器,科學家們搬出了超炫的篩選工具:噬菌體(Phage),一種專門感染細菌的病毒。別緊張,不是要把病毒打進體內!而是把它當成一個龐大的「鑰匙資料庫」。

科學家可以透過基因改造,再加上AI的協助,就可以快速製造出數億、數十億種表面蛋白質結構都略有不同的噬菌體模型。然後,就開始配對流程:

  1. 先把這些長像各異的「鑰匙」全部拿去試開「紅血球」這把鎖,能打開的通通淘汰!
  2. 剩下的再去試開「癌細胞」的鎖,從中挑出結合最強、最精準的那一把「神鑰」!

接著,就是把這把「神鑰」的結構複製下來,大量生產。可能會從噬菌體上切下來,或是定序入選噬菌體的基因,找出最佳序列。再將這段序列,放入其他表達載體中,例如細菌或是哺乳動物細胞中來生產蛋白質。最後再接上一段能號召免疫系統來攻擊的「標籤蛋白 IgG-Fc」,就大功告成了!

目前這領域的領頭羊之一,是美國的 ALX Oncology,他們的產品 Evorpacept 已完成二期臨床試驗。但他們的標籤蛋白使用的是 IgG1,對巨噬細胞的吸引力較弱,需要搭配其他藥物聯合使用。

而另一個值得關注的,是總部在台北的漢康生技。他們利用噬菌體平台,從上億個可能性中,篩選出了理想的融合蛋白 HCB101。同時,他們選擇的標籤蛋白 IgG4,是巨噬細胞比較「感興趣」的類型,理論上能更有效地觸發吞噬作用。在臨床一期試驗中,就展現了單獨用藥也能讓腫瘤顯著縮小的效果以及高劑量對腫瘤產生腫瘤顯著部分縮小效果。因為它結合了前幾代藥物的優點,有人稱之為「第 3.5 代」藥物。

除此之外,還有漢康生技的FBDB平台技術,這項技術可以將多個融合蛋白「串」在一起。例如,把能攻擊 CD47、PD-L1、甚至能調整腫瘤微環境、活化巨噬細胞與T細胞的融合蛋白接在一起。讓這些武器達成 1+1+1 遠大於 3 的超倍攻擊效果,多管齊下攻擊腫瘤細胞。

結語

從撕掉「偽良民證」的 PD-L1 抑制劑,到破解「免死金牌」的 CD47 藥物,再到利用 AI 和噬菌體平台,設計出越來越精準的千里追魂香。 

對我們來說,最棒的好消息,莫過於這些免疫療法,從沒有停下改進的腳步。科學家們正一步步克服反應率不足、副作用等等的缺點。這些努力,都為癌症的「長期控制」甚至「治癒」,帶來了更多的希望。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
1

文字

分享

0
1
1
暗夜中「鬼魅蘑菇」的幽光
胡中行_96
・2022/06/23 ・2069字 ・閱讀時間約 4 分鐘

雨後無月的冬夜,南澳的森林裡水氣氤氳。樹幹上參差交疊的扇狀物,正靜靜地散發冷白的幽光。[1]近看每片直徑 20 到 40 公分左右,[2]向外展開。若用相機去捕捉那毛骨悚然的氛圍,肉眼所見的白,則會在照片中變成詭譎的螢光綠。[1]

這不是靈異現象,而是澳大利亞「鬼魅蘑菇」(ghost mushrooms;學名:Omphalotus nidiformis)與生俱來的特質。[1, 2]

  

鬼魅蘑菇日夜迥異的面貌:A – 白天,B – 夜晚。圖/參考資料 2

  

蘑菇發光的原理

鬼魅蘑菇體內,有一種叫做「乙烯基吡喃酮」(hispidin)的「螢光素」(luciferin),會在「螢光酵素」(luciferase)的催化下,與空氣中的氧氣結合,產生「氧化反應」。此時所形成的暫時性產物,具有極高的能量。在接下來的還原過程中,便會釋放出「生物光」(bioluminescence)。[3, 4]

-----廣告,請繼續往下閱讀-----

  

拍攝鬼魅蘑菇的技巧

鬼魅蘑菇盛產的六月,正值南半球的冬天。[2]拍攝發光奇景最佳的戶外環境,必須不見月亮和其他任何的光害。[1]換句話說,有志之士要在攝氏 4、5 度的夜晚,摸黑找蘑菇,架設相機與腳架,再耐心地以慢速快門曝光。(給對專業攝影有興趣的讀者參考:墨爾本大學Paul Whitington副教授某次成功的拍攝數值,為 ISO 800,F/2.8,曝光 216 秒。)[3]

  

生物光的顏色

鬼魅蘑菇發出 530nm 的光線,理應呈現綠色,跟相機拍到的一樣。肉眼所見卻非如此,是因為眼睛裡唯有超級敏感的「視桿細胞」(rod photoreceptors),能接收到微弱的生物光。偏偏視桿細胞不長在視網膜的正中央…[3]

-----廣告,請繼續往下閱讀-----

所以,如果哪天真有機會親眼目睹,請千萬別「正視」鬼魅蘑菇的存在,反而得用眼角餘光「偷瞄」它,[3]才會有較精確的體驗。

鬼魅蘑菇發出 530nm 的光線,理應呈現綠色。圖/Climate Science Investigations

  

生物光的功能

無論顏色如何,鬼魅蘑菇的外表,對遊客來說,都稱得上賞心悅目。然而,它們原本發出生物光的目的,應該不是為了討好人類。曾有科學家假設它和巴西螢光蘑菇 Neonothopanus gardneri 一樣,透過在夜間發光,吸引昆蟲來協助散播孢子。可是 2016 年的一篇期刊論文,指出鬼魅蘑菇整日不熄燈,卻也沒因此拐到比較多的昆蟲。研究團隊於是認為鬼魅蘑菇的生物光,僅是代謝過程中的意外產物。[2, 3]

  

巴西螢光蘑菇Neonothopanus gardneri特寫:C – 日間,D – 黑夜。圖/Photochemistry and Photobiology

  

-----廣告,請繼續往下閱讀-----

發光蕈類的歷史

根據化石資料推估,世界上第一株發出生物光的蕈類,出現在 1.6 億年前的侏羅紀。[5]遲至公元前 4 世紀,亞里斯多德(Aristotle,384 – 322 BC)才寫下人類史上,關於生物光最早的文字紀錄,描述一根腐木(上面的蕈類),散發有別於火焰的光芒。[1, 6]17 世紀時,德國植物學家Georg Eberhard Rumphius(1627‐1702),隨荷蘭東印度公司派駐印尼。[7]他在《安汶島植物名彙》(Herbarium Amboinense)中,提到當地人手持泛著藍光的蘑菇當燈籠。[6]不過,生物光其實在深海生物身上較為常見;相對地,目前所知的 15 萬種蕈類裡,僅有 70 幾種能發光[2, 8]而鬼魅蘑菇的分佈又只限於澳大利亞的南澳和塔斯馬尼亞。[1]

  

玲瓏可愛的發光小菇。圖/維基百科

  

臺灣的發光小菇與相關研究

話說回來,觀賞自帶光芒的蘑菇,並不困難。臺灣本地就有幾種會發光的蕈類,在阿里山、溪頭、墾丁等地都看得到。[8, 9]它們隸屬世界三大發光真菌支系之一的「小菇支系」(Mycenoid lineage)。中央研究院生物多樣性研究中心的團隊,曾發表論文探討它們的基因,還被選為 2020 年《美國國家科學院院刊》(PNAS)的封面故事。中研院的新聞稿中指出,目前發光蕈類的基因已被用於各種領域,例如:追蹤癌細胞的移轉,或製造生物感測的環境汙染警示器。[5]看來發光蕈類,有比單純供人玩賞,更嚴肅的使命。

-----廣告,請繼續往下閱讀-----

  

  1. Glencoe’s Ghost Mushroom Lane begins to flourish after heavy rainfall (ABC News, 2022)
  2. Weinstein P, Delean S, Wood T, Austin AD. (2016) ‘Bioluminescence in the ghost fungus Omphalotus nidiformis does not attract potential spore dispersing insects’. IMA Fungus (7): 229 – 236.
  3. Luminescent ghosts by A/Prof Paul Whitington (Life in a Southern Forest, 2019)
  4. Ke HM, Lee HH, Lin CYI, et al. (2020) ‘Mycena genomes resolve the evolution of fungal bioluminescence’, Proceedings of the National Academy of Sciences of the United States of America, 117(49): 31267-31277.
  5. 臺灣也有發光菇!中研院追溯基因演化史 找尋蕈類發光的意義 (中央研究院,2020)
  6. A History of Luminescence: From the Earliest Times Until 1900 by E. Newton Harvey (The American Philosophical Society, 1957)
  7. 尋找記憶的缺角:早期有關通草的記錄(國立臺灣大學)
  8. 螢光蕈(臺灣國家公園,2018)
  9. 施雨伸,2014,〈臺灣產螢光小菇的分布、分類及人工培養,並兼述一新種〉(臺灣博碩士論文加值系統)
-----廣告,請繼續往下閱讀-----
胡中行_96
169 篇文章 ・ 67 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。

0

1
0

文字

分享

0
1
0
深海鮟鱇魚 X 檔案:糾纏在暗黑大洋中的極端癡戀
Lea Tang
・2019/02/13 ・2803字 ・閱讀時間約 5 分鐘 ・SR值 527 ・七年級

說到鮟鱇魚,各位的腦海中是不是浮現一隻深黑色、相貌醜怪,細長尖齒,頭掛小燈的魚類,在黑暗的大洋中緩慢悠游的樣子?

神秘的鮟鱇魚。圖/wikipedia

鮟鱇魚(Anglerfish)因為其背鰭棘特化至嘴巴上方的釣竿狀結構–吻觸手(illicium)而得名(Angler 就是釣者的意思)。這個吻觸手的末端有一個餌球,能用不同方式吸引獵物靠近,例如發光或模擬小蟲子游泳的樣子。除此之外,他們的嘴巴大且身體柔軟,可以吞下比自己大許多倍的獵物。

目前已知有 300 多種的鮟鱇魚,棲息地從熱帶珊瑚礁區到極地都有,大多數的鮟鱇魚分布在全球海洋的陰暗深處,深達數千公尺。一般熟知會發光的鮟鱇魚,多指被稱為深海鮟鱇的角鮟鱇類,但這不代表深海鮟鱇都會發光,還是有少部分是不發光的。

這類奇異的深海物種神秘、而且難以在自然環境下觀察。過去,深海不易到達,所以科學家們只能從漁民意外打撈到的深海鮟鱇魚標本來進行研究。這就是為什麼這支在葡萄牙亞速爾群島周圍海域拍攝的新影片會令深海生物學家如此興奮。

永不分離!深海鮟鱇雌雄配對首度亮相

從影片中各位可以看到一個拳頭大小的雌性鮟鱇魚,身上凸出了一條條的細長皮瓣狀結構,這些是側線神經結的延伸 。若仔細觀察,她還有位伴侶:一隻嬌小的雄魚、附著在她身上成為永久的精子提供者

-----廣告,請繼續往下閱讀-----

這支影片是 2016 年 8 月由一對夫妻探險家 Kirsten 和 Joachim Jakobsen 在聖喬治島南側 800 公尺深的深海水層中拍攝的。在探險團隊即將完成他們的任務時,一個「有趣的小東西」吸引了他們的目光。於是他們決定追蹤這個奇怪生物,並通過潛水器 1.4 公尺寬的窗口捕捉他的動作。

Caulophryne jordani。圖/Rebikoff Foundation

經過專家鑑定,這個 16 公分長的生物是一種叫喬氏長鰭角鮟鱇 (Caulophryne jordani) 的深海鮟鱇。他身上的皮瓣和絲狀鰭條能偵測獵物,就像蜘蛛網,一旦碰到,這個垂釣者就能立刻轉向並吃掉對方。在食物極端缺乏的深海,這是他們確保自己不被餓死的殺手鐧。(註:何宣慶老師指出他們更可能藉此提前偵測並逃離敵人。)

嶄新資訊:鰭條上間隔性的美麗光點

除了我們熟知的吻觸手外,有注意到雌性鮟鱇魚那細細長長的鰭條上的美麗光點嗎?像其他深海鮟鱇一樣,雌性鮟鱇魚用「餌球」(Esca),一種共生的發光菌誘餌來吸引獵物。但這次的影片還提供了其它訊息:

她的鰭條似乎也會按照一定的間隔發光。

雖然不清楚這些光點是生物產生的亦或只是反射自潛水器的光,這項嶄新資訊還是令科學家們非常驚喜。

-----廣告,請繼續往下閱讀-----

盲目愛情:雄性深海鮟鱇的生世癡戀

小小的雄性鮟鱇魚也是這次影片的一大亮點。像許多其他種類的鮟鱇魚一樣,喬氏長鰭角鮟鱇的雌雄鮟鱇魚會形成一個永久的配對:

一旦雄性鮟鱇找到配偶,便會咬住對方,最終與她的組織融合,透過血液取得營養。

以部分深海鮟鱇來說,雌性有明顯的「釣竿」和明亮的餌球,雄性就不是這麼一回事了。他們的體型比起雌性小得多,外觀看起來就像普通小魚,而且不具有吻觸手這種吸引獵物的功能。你可能會很疑惑,那他們要如何吃東西呢?

比起吃,他們有著更重要的任務。

雄性鮟鱇魚擁有非常敏銳的嗅覺,幫助他們嗅探在深海黑暗中的未來配偶。當他找到她時,這個小小的追求者可能會面臨與四位男性一起分享伴侶的窘境。但愛是盲目的,對伴侶的渴望最終勝過一切。在雄性鮟鱇魚用他那小而鋒利的牙齒咬住雌性後,身體各部位就會逐漸退化,因為他不再需要這些構造;他身上的器官也會逐漸退化消失,只留下精巢持續發育,成為雌性鮟鱇魚身上不可移動的一個附屬品。

-----廣告,請繼續往下閱讀-----
深海鮟鱇的雌雄配對,紅色圈圈內的是雄性鮟鱇魚。圖/Rebikoff Foundation

鮟鱇魚是體外受精,所以雌性會以血管輸送賀爾蒙給雄性,讓她們在排卵的同時,雄鮟鱇也可以排出精子。於是,雄性鮟鱇魚成了她生命中不可或缺的一部分,確保雌性可以在她的餘生中產生受精卵,成為物種延續下去的關鍵角色。

這不是科學家第一次得知這項資訊,他們曾透過死去的鮟鱇魚得知這種奇怪的生殖策略,但一直到現在,他們才有幸一窺這「活生生」的例子。

死去的深海鮟鱇魚標本,看到那像肉瘤一般凸起的的小小公魚了嗎?圖/Natural History Museum

除了部分深海鮟鱇魚有寄生行為極端性別二態性(兩性間有明顯的外觀差異)外,其他的鮟鱇魚並不寄生也無雌雄間的極端差異,雄性和雌性體型通常相近。而這些自由自在的雄性鮟鱇魚會花上一輩子的時間來找他們的真命天女,聽起來快樂多了,對吧。

吃貨小教室:美味的鮟鱇

神秘的鮟鱇魚貌似離我們的生活十分遙遠,其實生活在淺海的鮟鱇魚可是日本人民的火鍋主角呢!在關東地區,鮟鱇被稱為人間極品。如果各位心臟夠強,可以先看看這部如何在家處理鮟鱇魚的教學影片 ↓

-----廣告,請繼續往下閱讀-----

俗話說「西有河豚、東有鮟鱇」,鮟鱇魚肉質綿密、口感彈牙,含有豐富的膠原蛋白,但因外型醜陋,少有人願意嘗試,因此在歐美有「窮人的龍蝦」之稱。鮟鱇魚肝更有「海底鵝肝」的美名,據說能清熱解毒、養顏美容,是煮火鍋的熱門首選。其實不只日本,在歐美國家食用鮟鱇魚已經有相當長久的歷史,近年價位更是節節攀升。

深海鮟鱇以外,其他棲息在海平面以下數十到數千公尺的鮟鱇,雖然也有吻觸手和餌球,但餌球缺乏發光菌,所以不會發光。棲息在淺海珊瑚礁區的躄魚科(又稱娃娃魚)成員外觀顏色較鮮豔,也是潛水攝影界最喜愛的魚類之一。

鮟鱇魚的族群多樣性很高,曾經因為棲息在海表以下數百到數千公尺的地方而不利研究,如今隨著深水探勘技術的發展,研究鮟鱇魚將不再那麼困難。相信在不久的將來,科學家們就能更進一步的了解這些神秘生物在他們漆黑無光家園中的實際樣貌。

(本文於 2020 年 9 月 12 日經過修改,提升了內容的正確跟詳實性,在此感謝國立海洋生物博物館副研究員何宣慶老師的指正與大力協助)

-----廣告,請繼續往下閱讀-----

參考資料:

  1. Exclusive: ‘I’ve never seen anything like it.’ Video of mating deep-sea anglerfish stuns biologists

  2. Anglerfish, nationalgeographic

  3. The bizarre love life of the anglerfish

  4. 鮟鱇魚家族300多種 1/4在台灣

  5. 鮟鱇魚知識大百科,翻轉你對牠的認知

___________
你是國中生或家有國中生或正在教國中生?
科學生跟著課程進度每週更新科學文章並搭配測驗。來科學生陪你一起唸科學!

-----廣告,請繼續往下閱讀-----