Loading [MathJax]/extensions/tex2jax.js

0

1
0

文字

分享

0
1
0

歷史悠久的消毒水:次氯酸鈉的過去與今天

行政院環境保護署毒物及化學物質局_96
・2018/10/19 ・2755字 ・閱讀時間約 5 分鐘 ・SR值 516 ・六年級

-----廣告,請繼續往下閱讀-----

本文由行政院環境保護署毒物及化學物質局委託,泛科學企劃執行

  • 撰文/楊朝源│自由寫手

炎熱的天氣,最適合來去游泳池泡水消暑了。且慢,出門之前滑個手機,看見新聞上說泳池員工誤將硫酸與次氯酸鈉混合,導致現場產生大量有毒煙霧,多名小朋友吸入後身體不適緊急送醫(相關新聞)。

真的是不看還好,一看嚇一跳,不如在家當個宅宅開心地掃廁所好了。(神轉折)咦?什麼?掃廁所用到的漂白水也是次氯酸鈉溶液?次氯酸鈉到底是什麼呢?為什麼各種需要消毒殺菌的場合都少不掉它呢?

次氯酸鈉是泳池中常使用的消毒水。圖/StockSnap @Pixabay,CC0

亂世出英雄,戰爭中立功的次氯酸鈉

次氯酸鈉(sodium hypochlorite)首先是在 1787 年被法國化學家柏瑟列(Berthollet)所發現,將氯氣通入鹼液製造而成註2018/10/20。1820 年,次氯酸鈉被法國化學家拉巴拉克 (Labarraque) 當作漂白水來使用。

-----廣告,請繼續往下閱讀-----

緊接著到了第一次世界大戰,當時為了幫大量的傷患進行傷口消毒,各國的學者醫生們都在找尋找一種既可以殺菌又不會傷害人體的消毒水,而其中最成功的人便是來自英國的化學家達金 (Dakin),他嘗試了許多種的物質,包含了酚、水楊酸、雙氧水……等,最後他發現同時具有殺菌與清理創傷效果的次氯酸鈉最為理想,而他所發明的配方後來被命名為達金溶液 (Dakin’s solution),到了二次世界大戰的時候,達金溶液已經被普及地用在傷口的消毒及清洗上面。

第一次世界大戰時,達金等人利用次氯酸鈉溶液來處理大量的傷患。圖/bmewett  @Pixabay,CC0

1990 年代末期,達金溶液的使用也開始受到質疑,其中最多的就是對於健康生物組織具有毒性的討論,因為一開始達金的建議配方是濃度 4% 的次氯酸溶液,而這樣的濃度對於細胞是有刺激性的。但現在發現即使只用 0.5% 甚至更低濃度的次氯酸鈉溶液也可以達到很好的效果,同時也較不具刺激性。儘管在使用上仍圍繞著爭議,臨床上的觀察結果還是可以證實達金溶液依舊是醫學中重要的消毒配方之一。

除了在醫學上的貢獻,次氯酸鈉在我們的生活也同樣扮演了重要的角色,游泳池、廁所乃至於免疫系統,都可以發現它的存在。

次氯酸鈉的殺菌守則:電子通通交出來

次氯酸鈉是如何殺掉細菌的呢?總歸一句話,就是靠著靈的……喔不,是電子的轉移。

-----廣告,請繼續往下閱讀-----

要了解次氯酸鈉怎麼殺菌和漂白,就要先知道什麼是氧化還原反應。氧化還原反應指的是過程中發生電子轉移的化學反應,例如說將鋅片放入含有銅離子的水溶液之後,鋅會開始被溶解,而銅則會逐漸覆蓋在鋅片之上,這就是一個氧化還原反應。因為鋅相較於銅更容易失去電子,因此在碰到銅離子之後會將電子轉移出去變成鋅離子,而銅離子獲得電子後會還原成銅(實驗看這邊)

或許你會納悶,只是增加或減少幾顆電子真的有差這麼多嗎?事實上在化學的世界裡,差一顆電子就可以是天差地遠。舉例來說,同樣都是鈉,金屬鈉 (Na) 和鈉離子 (Na+)就有完全不同的化學性質,前者個性火爆,碰到水就會燒起來,後者則是化學界中的好好先生,沒發生什麼大事絕不會起反應,兩個的差別大到都可以大聲說我們不一樣啦!

在我們的生活周遭,氧化還原反應可說是無所不在,包含了我們的呼吸作用、植物的光合作用、各式各樣的燃燒以及電池的放電,這些都是氧化還原反應的案例。

原來是個擅長氧化的朋友呢

故事回到主線,次氯酸鈉(NaClO)溶在水中會解離成次氯酸離子(ClO)和鈉離子(Na+),其中的次氯酸離子很容易就會將其他物質的電子搶過來,也就說能夠氧化許多的物質,透過氧化就可以破壞細菌的細胞機能,最後導致細菌死亡。而漂白的功能也是因為氧化了含有顏色的化合物而造成褪色。

-----廣告,請繼續往下閱讀-----

消毒水有毒?使用次氯酸鈉要注意

這麼看起來次氯酸鈉簡直是人類偉大的發明之一,那為何會有這麼多意外事件會因它而起呢?沒錯我們這邊就要來首尾呼應一下了。事實上與其說是「消毒」,次氯酸鈉的作用更應該說是「殺菌」。

這邊要提醒大家一下,雖然說常被稱為漂白水的次氯酸鈉可以在超商就買得到,但如果是對外營業的清潔公司(像是辦公大樓或包租公寓常將清潔外包),使用次氯酸溶液進行環境衛生殺菌像是用在地板、牆面的消毒,則歸屬於「環境用藥管理法」的「病媒防治業」的服務範圍,需要領得許可執照後才可以從事這項專業服務。

為什麼這麼麻煩呢?就如同前言的新聞案例,次氯酸鈉可以殺菌,就代表它具有一定的生物毒性,若是不慎喝下或觸碰到高濃度的次氯酸鈉就可能會產生危險;除此之外,它的某些化學反應也會釋放出有毒物質。為了要知道怎麼安全的使用,就讓我們來看看與次氯酸鈉相處時,有哪些事情需要去避免的吧。

1. 禁止飲用與避免觸摸

次氯酸鈉具有生物毒性,喝下太多會有中毒的危險,除非必要也應該盡量不要直接觸摸;若要稀釋高濃度的次氯酸鈉建議戴上手套及口罩等防護措施。

-----廣告,請繼續往下閱讀-----

2. 避免高溫及陽光

次氯酸鈉受到高溫或曬到陽光會分解產生有毒的氯氣,因此平時不用的話要保存在陰涼的地方,使用時也不要加進熱水裡面。

3. 避免與酸混合

次氯酸鈉若碰到酸也會產生氯氣,一開始所提到游泳池的案例就是如此,在家中清潔時也要避免與鹽酸等家中的酸性物質接觸,以免產生危險。

次氯酸鈉,一種常見的化學物質,從戰爭中的醫學、到生活中居家的環境消毒殺菌、泳池的殺菌,廣泛的應用使得它成為人類歷史上重要的一環。然而水能載舟亦能覆舟,聰明小心地使用才能讓我們在享受它帶來的方便時,也不會有意外的發生。

  1. Ueno, C. M., Mullens, C. L., Luh, J. H., & Wooden, W. A. (2018). Historical Review of Dakin’s Solution Applications. Journal of Plastic, Reconstructive & Aesthetic Surgery.
  2. Duarte, B., Cabete, J., Formiga, A., & Neves, J. (2017). Dakin’s solution: is there a place for it in the 21st century?. International wound journal, 14(6), 918-920.
  3. 衛生署 漂白水的使用
  4. 環境用藥管理法
  5. 環境用藥管理資訊系統
  6. Vogt, H., Balej, J., Bennett, J. E., Wintzer, P., Sheikh, S. A., Gallone, P., … & Pelin, K. (2000). Chlorine oxides and chlorine oxygen acidsUllmann’s Encyclopedia of Industrial Chemistry.( 2018/10/22 補充)

註 2018/10/20:勘誤次氯酸鈉(sodium hypochlorite)首先是在 1787 年被法國化學家柏瑟列(Berthollet)所發現,原段落誤植為當時製造次氯酸鈉的方法是透過電解海水,實際應為將氯氣通入鹼液製造而成;特此更正。

-----廣告,請繼續往下閱讀-----

本文由行政院環境保護署毒物及化學物質局委託,泛科學企劃執行

-----廣告,請繼續往下閱讀-----
文章難易度
行政院環境保護署毒物及化學物質局_96
52 篇文章 ・ 10 位粉絲
行政院環境保護署毒物及化學物質局,落實毒物及化學物質之源頭管理及勾稽查核,從源頭預防管控食安風險,追蹤有害化學物質,維護國民健康。 網站:https://www.tcsb.gov.tw/

0

1
0

文字

分享

0
1
0
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

3
3

文字

分享

0
3
3
減碳新招:二氧化碳再利用!光觸媒材料可以把二氧化碳還原成工業化學原料?——專訪中研院原分所陳貴賢特聘研究員
研之有物│中央研究院_96
・2023/11/03 ・5793字 ・閱讀時間約 12 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自中央研究院「研之有物」,為「中研院廣告」

  • 採訪撰文|簡克志
  • 責任編輯|簡克志
  • 美術設計|蔡宛潔

降低碳排還不夠,奈米材料幫你直接減少二氧化碳!

氣候變遷問題日益嚴重,2023 年 9 月成為全球有史以來最熱的月份,臺灣夏天飆破 38 ℃ 的頻率逐漸增加。為了避免地表升溫超過工業化前水準的 +1.5 ℃,世界各國訂出 2050 年淨零排放的目標,設法減少大氣中的溫室氣體。減碳解方除了低碳電力之外,直接減少二氧化碳也是一條路徑。中央研究院「研之有物」專訪院內原子與分子科學研究所陳貴賢特聘研究員,他的研究專長是奈米能源材料,我們將介紹一種複合光催化材料:硫化鋅(ZnS)/硫化銦鋅(ZnIn2S4,簡稱 ZIS),在太陽光照射下,此材料表面發生的氧化還原反應,會將二氧化碳還原成有用的工業化學原料!

為了避免全球升溫超過工業化前水準的 +1.5 ℃,我們需要減少碳排放與開發負碳技術,並盡量在 2050 年左右達到全球溫室氣體淨零排放量的目標。所謂的「工業化前水準」是指 1850-1900 年的平均溫度。
圖|iStock

地球「保冷」計畫——減碳是關鍵

我們每天排放多少二氧化碳?根據 Our World in Data 的人均二氧化碳排放數據,2021 年全球每人排放的二氧化碳為 4.69 噸,而燃燒 1 公升的汽油大概會產生 2.3 公斤的二氧化碳。換算一下,每人每天排放二氧化碳約為 12.8 公斤,相當於每人每天消耗 5.6 公升的汽油!

根據聯合國政府間氣候變化專門委員會(IPCC)的特別報告「全球暖化 1.5 ℃」,人類活動排放的溫室氣體,已經讓地球表面平均溫度上升了 1 ℃。若以人類目前經濟模式發展下去,碳排放量可預期將不斷上升,大量溫室氣體將讓暖化現象與極端天氣事件更加劇。

氣候科學家警示,地球表面平均溫度需控制在 +1.5 ℃ 以內 註 1,否則將有不可逆的後果,例如生物多樣性大幅度降低的風險。因此,世界各國有了 2050 年淨零排放的共同目標,並不是說都不排碳了,而是要設法讓溫室氣體的碳排放量和碳減少量相互抵消,達到「淨零」的目標。

-----廣告,請繼續往下閱讀-----

要達到淨零的目標,除了尋找與開發減碳電力之外,直接減少二氧化碳也是一個方法。想像一下,如果可以像植物一樣,只要照太陽光,就把二氧化碳變成有價值的碳氫化合物,聽起來不錯吧?但是二氧化碳做為燃燒後的產物已相當穩定,要如何以人工方式讓二氧化碳再次參與反應?

我們可運用「陽光」與「光催化材料」(又稱光觸媒,photocatalyst),不僅可以減碳,還能產生有價值的碳氫化合物,是一種「一舉兩得」的方法!

光觸媒(光催化)材料是什麼?

在談到光催化材料之前,先複習一下「催化劑」這個概念,催化劑不參與化學反應,但是它讓原先不可能的化學反應變得可行!陳貴賢分享,這就像過去從臺北到宜蘭需要翻過雪山,經過九彎十八拐的北宜公路;但如今有了「雪山隧道」之後,就大大降低臺北到宜蘭的時間與難度。「雪山隧道」就是臺北通往宜蘭的催化劑。

除此之外,催化劑也可以說是推進人類歷史發展的重要角色!在過去,農作物施肥只有天然氮肥可以使用,產量有限。而肥料意味著糧食增加與生產力增加,《巫師與先知》這本書就提到位於秘魯的鳥糞島嶼成為各家跨國公司必爭之地。另一方面,波斯人也在各地建造供鳥類休息的高塔,用來收集當肥料用的鳥糞。

-----廣告,請繼續往下閱讀-----

到了近代,陳貴賢提到在 20 世紀初,德國科學家哈伯(Fritz Haber)透過催化劑,在高溫高壓的條件下,以鐵粉做為催化劑,讓氮氣和氫氣轉換成氨。這讓人工固氮成為可能,人類不用再依賴緩慢的生物固氮反應就可以合成化學氮肥,農作物產量也大幅提昇。

本文主角「光催化材料」,顧名思義就是協助光化學反應的催化劑,但光催化材料與一般催化劑不同的地方在於,其化學反應通常發生在固態的表面環境,目標反應物、光子和電子都有參與反應。

比起光催化材料,你可能更常聽到它的同義詞「光觸媒」,例如某某產品宣稱具有「奈米光觸媒消毒」的功能,其實就是照射足夠的光,讓材料表面的氧化還原反應把細菌分解。而之所以光觸媒需要做到奈米尺寸,這是因為奈米小顆粒可以改變物質的電子能量結構,且大幅增加反應的表面積,讓光催化反應更有效率。

陳貴賢:「一個高表面積的奈米粉末,它的表面積可能是薄膜的一萬倍,甚至於十萬倍。」

給你電子,還你原形!光催化材料上的氧化還原反應是怎麼發生的?

光催化材料之所以能夠減少二氧化碳,是因為照光後材料表面發生「氧化還原反應」,氧化反應會失去電子,還原反應會得到電子。陳貴賢與團隊開發的複合光催化材料:硫化鋅(ZnS)/硫化銦鋅(ZnIn2S4,簡稱 ZIS),可以讓二氧化碳還原成甲醇(CH3OH)和乙醛(CH3CHO),這兩種產物都是工業常用的化學原料。反應式如下:

-----廣告,請繼續往下閱讀-----

要持續減少二氧化碳,就要持續發生上述還原反應,持續供給電子。不過,我們要怎麼讓電子快速又順利的補充到材料表面?這裡就開始涉及到半導體的核心問題:電子與電洞的產生、分離和傳輸

陳貴賢與團隊開發的複合光催化材料:ZnS/ZIS,是結合兩種奈米半導體材料,透過水熱法合成,將 0 維的 ZnS 奈米顆粒沉積在 2 維的 ZIS 奈米片之上,形成 0D-2D 結構的 ZnS/ZIS 複合物,就像製作巧克力豆餅乾,不過要複雜得多。

陳貴賢團隊將 0 維的 ZnS 奈米顆粒沉積在 2 維的 ZIS 奈米片之上,就好像做巧克力豆餅乾一樣,形成複合的異質半導體,做為光催化材料用途。左圖是示意圖,右圖是電子顯微鏡下的照片,Zn:In 比例為 1:0.46。
圖|研之有物(資料來源|Nano Energy

既然 ZnS/ZIS 是半導體,當受到光照之後,原來的價帶(valence band)電子會被光激發成導帶(conduction band)電子,原本價帶電子佔據的位置則留下一個空位,就是電洞。電子和電洞的遷移,就是半導體形成電流的原因,因此電子和電洞都稱為「載子」(charge carrier)

還記得上面的還原反應嗎?

-----廣告,請繼續往下閱讀-----

對光催化材料來說,為了在光照環境下把二氧化碳還原成乙醛和甲醇,必須獲得穩定的電子來源,材料內部要迅速補充電子到表面,因此:

照光產生的電荷載子數量越多越好;產生的電子和電洞要傾向分離,分得越遠越好;電子和電洞越快移動到表面參與反應越好。

載子輸送要快速穩定,首先照光產生的載子要多,就有更多電子和電洞參與反應。分離載子是為了避免復合,照光產生的電子和電洞很容易復合,一旦復合,等同於減少載子。再來是載子越快移動到表面越好,可以讓每次的氧化還原反應都是最佳效率。

尋找最有效的光催化材料

陳貴賢團隊總共做了 4 種不同比例的 ZnS/ZIS 光催化材料,依照 Zn:In 比例 1:0.12、1:0.26、1:0.46 和 1:0.99,分別標記為 ZnS/ZIS-1、ZnS/ZIS-2、ZnS/ZIS-3 和 ZnS/ZIS-4。其中,ZnS/ZIS-3 的光催化效果最好,可以有效減少二氧化碳,產生最多的乙醛和甲醇(如下圖)。

水熱法製備的 ZnS/ZIS-3 光催化效果最好,可以有效減少二氧化碳,產生最多的乙醛和甲醇。最右邊是將 ZnS 和 ZIS 簡單物理混合的對照組,沒有介面效應的輔助,催化效果不佳。
圖|研之有物(資料來源|Nano Energy

為了驗證光催化材料產生有效載子的效率,陳貴賢團隊計算了 ZnS/ZIS-3 的總 AEQ 值(apparent quantum efficiency),用來評估「照到光催化材料上的每顆光子數量,產生了多少實際參與催化反應的電子數」。測量之後,ZnS/ZIS-3 的 AEQ 值為 0.8%,量子效率比單獨的 ZnS 材料提高了將近 200 倍!

-----廣告,請繼續往下閱讀-----

這也是為什麼陳貴賢團隊要使用兩種不同的材料結合,因為單一半導體材料照光產生的電子和電洞有很高的復合機率,選擇兩種不同的半導體材料組合,讓兩種材料形成特殊的「能量階梯」就可以有效分離電子和電洞,並且把電子送到它該去的材料表面。

此外,使用兩種半導體材料的好處還有「二次激發電子到更高能階」,以符合光催化反應的能量門檻,自由電子掙脫 ZnS 的束縛之後,繼續往 ZIS 跑,光的能量會繼續把電子往上送到更高能級的材料表面,還原二氧化碳的反應在此發生。

Z 字形跑比較快!控制材料之間的微應變提升氧化還原效率

關於光催化材料的二次激發,陳貴賢提到:「材料低能階,然後光子進來後,把電子激發到高能階去做反應,太陽能電池也是這樣。但是呢,有時候沒那麼剛好,例如激發後的能階不夠高,雖然激發上去了,但電子沒有辦法跟二氧化碳做反應。那我把兩個材料拼在一起,電子上去以後又下來,然後再吸收第二個光子上去,那就變得很高了,高了以後它的反應效率就提升很多。」

如果我們把光催化材料的二次激發過程畫成示意圖,如下圖所示,電子在 ZnS 束縛區受到第一次光子的激發,變成自由電子,接著經過設計完善的材料介面,先降到較低的 ZIS 束縛區,受到第二次光子的激發,再次變成自由電子,跑到光催化材料的表面,和二氧化碳發生還原反應,將二氧化碳變成可再利用的乙醛和甲醇。

-----廣告,請繼續往下閱讀-----

看看電子走過的路,如果向左歪著頭看,是不是就是一個 Z 字呢?科學家把這個過程稱為「直接 Z 方案」(Direct Z-scheme)。「直接」的意思是,電子從 ZnS 跑到 ZIS 的過程,不需要再經過一個中間地帶,降低電子和電洞復合的機會。

為了將二氧化碳轉換成可用化學原料,電子在材料內部能階走 Z 字路徑,過程中受到光的二次激發,最後到達材料表面。電子參與還原反應,將二氧化碳變成乙醛和甲醇。電洞參與氧化反應,將水變成氧氣。
圖|研之有物(資料來源|Nano Energy

為什麼陳貴賢團隊設計的「直接 Z 方案」光催化材料,電子可以不需要中間的「轉接站」,直接轉移到另一個材料上呢?這裡也有一個巧思:不同材料之間的「微應變」

不同材料的晶體排列規律是不一樣的,當兩種材料接在一起時,接面處會發生「晶格不匹配」,也就是兩種材料的原子會互相卡到、晶格微微變形。但是,如果我們可以控制微應變(Strain)的程度,就可以控制兩種材料「能量階梯」的相對位置,微應變可以讓材料接面自動帶有「轉接站」的功能,進而形成一個內部電場,讓電子和電洞更能快速分離,提高光催化效率。

總之,陳貴賢團隊開發的這套材料組合,是有微應變誘導的直接 Z 方案光催化材料,可做為未來量產光催化材料的研發設計參考,同時也是減碳的解方之一。

-----廣告,請繼續往下閱讀-----
ZnS 奈米顆粒接在 ZIS 奈米片上,兩邊的晶格排列方式不一樣,發生「晶格不匹配」,接面處晶格會微微變形。如果控制微應變(Strain)的程度,就可以微調材料能階的相對位置,微應變可以讓接面帶有「轉接站」的功能,形成一個內部電場,讓電子和電洞更能快速分離,提高光催化效率。
圖|研之有物(資料來源|Nano Energy
ZnS 奈米顆粒接在 ZIS 奈米片上,兩邊的晶格排列方式不一樣,發生「晶格不匹配」,接面處晶格會微微變形。如果控制微應變(Strain)的程度,就可以微調材料能階的相對位置,微應變可以讓接面帶有「轉接站」的功能,形成一個內部電場,讓電子和電洞更能快速分離,提高光催化效率。
圖|研之有物(資料來源|Nano Energy

綠能趨勢——光催化材料未來可期

陳貴賢表示,目前表面科學和材料是中研院原分所的主要研究領域,他的實驗室選擇能源材料作為研究主軸,有太陽能電池和熱電材料,同時團隊也專注研究可還原二氧化碳的光催化材料,以及與燃料電池相關的催化劑。

陳貴賢看好將來能源材料的發展,因為在 2050 淨零排放之前,有愈來愈多企業紛紛加入「RE100 倡議」的行列,企業必須承諾最晚於 2030 年前使用 100% 再生能源。最著名案例是科技巨頭蘋果Google 和微軟等公司都已宣布其全球供應鏈將符合 RE100 的要求。其中,台積電為蘋果主要供應商,2020 年也加入 RE100,目前為臺灣再生能源的主要買家

可以預見,將來風能、太陽能與燃料電池的相關材料有其市場需求,而能夠減少二氧化碳的光催化材料,也將成為全球減碳的利器。陳貴賢提到,當前光催化材料還在基礎研究階段,目前的人工光合作用效率約 1%,接近大自然效率,而團隊希望提升到至少 5% 到 10% 以上,方能有其實用價值。

陳貴賢進一步強調,未來效率提高之後,能夠轉化二氧化碳的光催化材料就會有很大的經濟價值,不僅轉化後的燃料可以賣錢,處置二氧化碳原料亦可以收取負碳費用,是一種前所未有的概念。

陳貴賢強調,未來效率提高之後,能夠轉化二氧化碳的光催化材料就會有很大的經濟價值。
圖|研之有物

註解

  1. 根據 IPCC 的資料,如果要將全球暖化幅度控制在 +1.5 °C 以內,必須在 2050 年左右達到二氧化碳的淨零排放目標,同時也要大幅度降低非二氧化碳的溫室氣體排放,特別是甲烷。
-----廣告,請繼續往下閱讀-----
研之有物│中央研究院_96
296 篇文章 ・ 3662 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

1
1

文字

分享

0
1
1
暗夜中「鬼魅蘑菇」的幽光
胡中行_96
・2022/06/23 ・2069字 ・閱讀時間約 4 分鐘

雨後無月的冬夜,南澳的森林裡水氣氤氳。樹幹上參差交疊的扇狀物,正靜靜地散發冷白的幽光。[1]近看每片直徑 20 到 40 公分左右,[2]向外展開。若用相機去捕捉那毛骨悚然的氛圍,肉眼所見的白,則會在照片中變成詭譎的螢光綠。[1]

這不是靈異現象,而是澳大利亞「鬼魅蘑菇」(ghost mushrooms;學名:Omphalotus nidiformis)與生俱來的特質。[1, 2]

  

鬼魅蘑菇日夜迥異的面貌:A – 白天,B – 夜晚。圖/參考資料 2

  

蘑菇發光的原理

鬼魅蘑菇體內,有一種叫做「乙烯基吡喃酮」(hispidin)的「螢光素」(luciferin),會在「螢光酵素」(luciferase)的催化下,與空氣中的氧氣結合,產生「氧化反應」。此時所形成的暫時性產物,具有極高的能量。在接下來的還原過程中,便會釋放出「生物光」(bioluminescence)。[3, 4]

-----廣告,請繼續往下閱讀-----

  

拍攝鬼魅蘑菇的技巧

鬼魅蘑菇盛產的六月,正值南半球的冬天。[2]拍攝發光奇景最佳的戶外環境,必須不見月亮和其他任何的光害。[1]換句話說,有志之士要在攝氏 4、5 度的夜晚,摸黑找蘑菇,架設相機與腳架,再耐心地以慢速快門曝光。(給對專業攝影有興趣的讀者參考:墨爾本大學Paul Whitington副教授某次成功的拍攝數值,為 ISO 800,F/2.8,曝光 216 秒。)[3]

  

生物光的顏色

鬼魅蘑菇發出 530nm 的光線,理應呈現綠色,跟相機拍到的一樣。肉眼所見卻非如此,是因為眼睛裡唯有超級敏感的「視桿細胞」(rod photoreceptors),能接收到微弱的生物光。偏偏視桿細胞不長在視網膜的正中央…[3]

-----廣告,請繼續往下閱讀-----

所以,如果哪天真有機會親眼目睹,請千萬別「正視」鬼魅蘑菇的存在,反而得用眼角餘光「偷瞄」它,[3]才會有較精確的體驗。

鬼魅蘑菇發出 530nm 的光線,理應呈現綠色。圖/Climate Science Investigations

  

生物光的功能

無論顏色如何,鬼魅蘑菇的外表,對遊客來說,都稱得上賞心悅目。然而,它們原本發出生物光的目的,應該不是為了討好人類。曾有科學家假設它和巴西螢光蘑菇 Neonothopanus gardneri 一樣,透過在夜間發光,吸引昆蟲來協助散播孢子。可是 2016 年的一篇期刊論文,指出鬼魅蘑菇整日不熄燈,卻也沒因此拐到比較多的昆蟲。研究團隊於是認為鬼魅蘑菇的生物光,僅是代謝過程中的意外產物。[2, 3]

  

巴西螢光蘑菇Neonothopanus gardneri特寫:C – 日間,D – 黑夜。圖/Photochemistry and Photobiology

  

-----廣告,請繼續往下閱讀-----

發光蕈類的歷史

根據化石資料推估,世界上第一株發出生物光的蕈類,出現在 1.6 億年前的侏羅紀。[5]遲至公元前 4 世紀,亞里斯多德(Aristotle,384 – 322 BC)才寫下人類史上,關於生物光最早的文字紀錄,描述一根腐木(上面的蕈類),散發有別於火焰的光芒。[1, 6]17 世紀時,德國植物學家Georg Eberhard Rumphius(1627‐1702),隨荷蘭東印度公司派駐印尼。[7]他在《安汶島植物名彙》(Herbarium Amboinense)中,提到當地人手持泛著藍光的蘑菇當燈籠。[6]不過,生物光其實在深海生物身上較為常見;相對地,目前所知的 15 萬種蕈類裡,僅有 70 幾種能發光[2, 8]而鬼魅蘑菇的分佈又只限於澳大利亞的南澳和塔斯馬尼亞。[1]

  

玲瓏可愛的發光小菇。圖/維基百科

  

臺灣的發光小菇與相關研究

話說回來,觀賞自帶光芒的蘑菇,並不困難。臺灣本地就有幾種會發光的蕈類,在阿里山、溪頭、墾丁等地都看得到。[8, 9]它們隸屬世界三大發光真菌支系之一的「小菇支系」(Mycenoid lineage)。中央研究院生物多樣性研究中心的團隊,曾發表論文探討它們的基因,還被選為 2020 年《美國國家科學院院刊》(PNAS)的封面故事。中研院的新聞稿中指出,目前發光蕈類的基因已被用於各種領域,例如:追蹤癌細胞的移轉,或製造生物感測的環境汙染警示器。[5]看來發光蕈類,有比單純供人玩賞,更嚴肅的使命。

-----廣告,請繼續往下閱讀-----

  

  1. Glencoe’s Ghost Mushroom Lane begins to flourish after heavy rainfall (ABC News, 2022)
  2. Weinstein P, Delean S, Wood T, Austin AD. (2016) ‘Bioluminescence in the ghost fungus Omphalotus nidiformis does not attract potential spore dispersing insects’. IMA Fungus (7): 229 – 236.
  3. Luminescent ghosts by A/Prof Paul Whitington (Life in a Southern Forest, 2019)
  4. Ke HM, Lee HH, Lin CYI, et al. (2020) ‘Mycena genomes resolve the evolution of fungal bioluminescence’, Proceedings of the National Academy of Sciences of the United States of America, 117(49): 31267-31277.
  5. 臺灣也有發光菇!中研院追溯基因演化史 找尋蕈類發光的意義 (中央研究院,2020)
  6. A History of Luminescence: From the Earliest Times Until 1900 by E. Newton Harvey (The American Philosophical Society, 1957)
  7. 尋找記憶的缺角:早期有關通草的記錄(國立臺灣大學)
  8. 螢光蕈(臺灣國家公園,2018)
  9. 施雨伸,2014,〈臺灣產螢光小菇的分布、分類及人工培養,並兼述一新種〉(臺灣博碩士論文加值系統)
-----廣告,請繼續往下閱讀-----
胡中行_96
169 篇文章 ・ 67 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。