5

12
3

文字

分享

5
12
3

如果人類的祖先是猴子,為什麼我們沒有尾巴?

暐恩咖啡_96
・2022/02/18 ・3120字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

尾巴幾乎是脊椎動物的標配,它能幫助魚類游泳、爬蟲類爬行、鳥類飛翔。在哺乳類動物身上,尾巴的功能更是包羅萬象,狗狗用尾巴表達情緒、草食動物用尾巴驅趕蚊蟲,我們的猴子表親甚至能用尾巴抓握東西。

功能多變又實用的尾巴,就好像動物身上的瑞士刀一樣,根本是「居家旅行必備良品」。這麼棒的東西,為什麼人類偏偏沒有呢?這一切還得從人類的起源說起。

人類是從猴子演化而來的嗎?

在大約 6600 萬年前,也就是恐龍經歷隕石浩劫後的 1000 萬年內,具有靈長類生理機能的小型哺乳動物就出現了。牠有一條又長又結實的尾巴,這也許能幫牠在枝條間捕捉昆蟲時,更容易保持平衡。 

阿喀琉斯基猴屬想像圖,這類生物大約生活在五千五百萬年前,可能是靈長類動物最後的共同祖先。 圖 / Wikipedia

隨著時間推移,原始的靈長類動物逐漸演化成雜食性的猴子。這類生物的尾巴特別的靈活又有力,幾乎就像是手腳以外的「第五肢」,使得這群動物在樹梢上的生活更加活動自如。

然而,生物的演化從不停止。大約在2000 萬年前,猴子當中出現了「沒有尾巴」的一支——人猿。牠們的後代包括長臂猿、紅毛猩猩、大猩猩、黑猩猩,當然了,也包含我們人類。配合下圖,你可以看出,人猿在演化成真正的人類以前,尾巴這個構造已經消失了數百萬年,所以人類理所當然長不出尾巴。

-----廣告,請繼續往下閱讀-----
約 2500 萬年前,人猿起源於舊大陸猴(Old world monkeys),經過長久的演化與分化形成多個類群,最終,人類與黑猩猩在六百萬年前分家。由上而下依序是:屬於人猿的人類、黑猩猩、大猩猩、紅毛猩猩、長臂猿,以及不屬於人猿的舊大陸猴、新大陸猴、眼鏡猴與狐猴。圖 / 參考資料 1

人類真的沒有尾巴嗎?

生物學上,總有些令人印象深刻的例外會發生。有些人類嬰兒(通常是男性)出生時還帶著小小的胚胎尾巴,這通常不會造成健康上的問題,甚至在有些案例中,這個小尾巴具有肌肉,而且可以動作!

在巴西就有一名 35 週早產的男嬰,出生時長著一條長達 12 公分的細長尾巴,尾巴末端還有一個 4 公分寬的肉球。醫生進行檢查後發現,這個構造僅由組織和脂肪組成、完全沒有骨頭,排除了先天性脊椎畸形的可能,認為這是罕見的「人類尾巴」,在醫學史上大約只有 40 個相同病例的記錄。[2]

巴西一名男嬰出生時長著 12 公分長的尾巴。圖 / 參考資料 2

事實上,每個人都曾擁有過尾巴,只不過,那時你還在媽媽肚子裡。在妊娠期的第 31 至 35 天左右,尾巴長度就會達到人生巔峰,尺寸大概佔胚胎長度的六分之一左右。不久後,尾巴就會停止生長,其中一部分尾巴會被身體吸收掉,另一些部分則退化、癒合成尾椎骨。

雖然人類的尾椎骨退化、失去了大部分原有的功能,但可別以為它是無用的器官!尾椎的前後兩面都有肌肉與韌帶附著,這些構造將骨盆底部的開口大部分封住,避免腹腔內的器官往下掉、造成疝氣,也具有避免失禁的功能。出力時,這些肌肉與韌帶能提高腹腔內的壓力,輔助排尿、提重物、嘔吐、前傾身體等動作。

人類胚胎在發育時是具有尾巴的。圖/ WIKIPEDIA

我們的祖先是怎麼失去尾巴的?

人體內有些基因被認為是「自私的基因」,它們平時唯一的功能便是自我複製,比如 Alu 序列(Alu element)就是個典型的例子,它本身沒什麼用,卻在人類基因裡複製了超過一百萬份,佔據了人類基因組中約 10.7% 的空間,有時還會插進有功能的基因片段裡,造成人體病變或異常。然而某些時候,它們卻能以獨特的方式發揮作用。紐約大學最近的一篇研究就表明,我們的祖先會失去尾巴,就是因為有一段 Alu 序列插入。

這回,被插入的對象是 TBXT 基因,這個基因對於胚胎發育非常重要,它與脊索(脊椎的前身)發育有關。紐約大學的研究團隊發現,無尾的猿類與有尾的猴類有個關鍵的基因差異,那就是 TBXT 基因的其中一段(exon 6)被 AluY 與 AluSx1 前後夾住,形成一個環狀結構,使得 exon 6 基因片段無法正常表現——這很可能就是猿類沒有尾巴的原因!

-----廣告,請繼續往下閱讀-----

為了證實這個假設,科學家剔除小鼠基因裡的 exon 6 片段,果真發現小鼠會出現無尾或短尾的特徵!值得注意的是,exon 6 片段被剔除的小鼠表現出了胚胎脊髓畸形的現象,這個現象在人類新生兒身上,也有約千分之一的機率出現,情形嚴重的話會造成下肢癱瘓或大小便失禁,可見沒有尾巴風險極高,但也能合理推測此特徵也伴隨巨大的優勢,否則就無法在殘酷的天擇中延續下來,只不過,科學家對於尾巴消失究竟帶來什麼樣的演化優勢還沒達成共識。

人猿 TBXT 基因的 exon 6 片段被 AluY 與 AluSx1 前後夾住,形成一個環狀結構。圖 / 參考資料 1
exon 6 基因片段被剔除的小鼠出現了無尾或短尾的特徵。圖 / 參考資料 1

所以,如果人類保留了健全的尾巴會怎樣?

如果現代人的尾椎延長、超出身體一大截,搭配上(與其他動物相比)幾乎「衣不蔽體」的體毛,那看起來就像「在屁股上掛串白腸」,畫面太美我不敢看

想要一條功能健全的尾巴,那肯定需要周遭肌肉、韌帶與骨骼的固定與驅動,但是,你還記得尾椎附近的肌肉與韌帶拿去做什麼了嗎?它們在骨盆底部承托著腹腔!我想,如果將它們調離原本的崗位,失禁與疝氣的機會也許會上升,或許人類將不再能夠直立著軀幹追趕跑跳,只能像大多數動物一樣,平時將軀幹水平匍匐於地面,避免肚子裡的東西靠向脆弱的骨盆底部。

現實中難道就沒有尾巴發達、又能常常直立活動的靈長類動物嗎?有的,那就是狐猴

-----廣告,請繼續往下閱讀-----

雖然大多數狐猴是屬於樹棲性的物種,但有些狐猴能在兩樹之間連續側跳一百公尺 [3]。另外,還有喜歡生活在地面上的環尾狐猴,牠們每天早晨都會或站或坐,朝向太陽張開雙臂,花些時間將體溫升高,然後成群穿梭在草原上,取食花、果實、葉子或種子,偶爾也吃吃葷,取食昆蟲、小鳥、變色龍,甚至是蜘蛛絲 [4],雜食的習性就和我們的猿猴祖先一樣。

看來,直立活動跟發達的尾巴也是能夠兼得的!如果人類真的有尾巴,或許尾巴高度會成為地位的象徵,於是人們開始用髮蠟把尾巴尖端的毛抓翹,往尾巴噴香水求偶或宣示主權;長輩會要求晚輩放低尾巴,情侶們逛街時也改用勾尾巴取代牽手,這樣就不用擔心流手汗造成尷尬了。

參考資料

  1. The genetic basis of tail-loss evolution in humans and apes | bioRxiv
  2. A true human tail in neonate – ScienceDirect
  3. Ring-tailed lemur – Parc Animalier d’Auvergne (parcanimalierdauvergne.fr)
  4. ADW: Lemur catta: INFORMATION (animaldiversity.org)
  5. What if Humans Had Kept Their Tails? (sciencealert.com)
  6. Archicebus – Wikipedia
  7. Alu element – Wikipedia
  8. TBXT gene: MedlinePlus Genetics
  9. 猿 – 維基百科,自由的百科全書 (wikipedia.org)
  10. 尾骨痛的成因與治療 (chiropractors.com.hk)
  11. Lemurs (Lemuridae) | Encyclopedia.com
-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 5
暐恩咖啡_96
3 篇文章 ・ 0 位粉絲
一入生科 一生科科 我是說熱愛科普啦~ 努力將科學知識 譜寫成大家都能會心一笑的文章

0

1
1

文字

分享

0
1
1
貓咪也會學鳥叫?揭秘貓貓發出「喀喀聲」背後的可能原因
F 編_96
・2024/12/24 ・2480字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

F 編按:本文編譯自 Live Science

貓是一種神秘而又引人注目的動物,牠們看似深居簡出,但擁有多元的聲音表達:從吸引人類注意的「喵喵叫」,到面對威脅時的「嘶嘶聲」與低沉的「咆哮」。

延伸閱讀:貓咪為什麼總愛對人喵喵叫?看貓如何用聲音征服人類的心

然而,細心的貓奴們可能會注意到,貓有時會對著窗外的鳥兒或屋內小動物玩具,發出一種獨特的「卡卡聲」或「咯咯聲」。這種聲音既像牙齒打顫,又好似一陣陣輕微的顫鳴,卻很難歸類到常見的喵叫或咆哮裡。這種名為「chatter」的行為,究竟在貓的生活中扮演什麼角色?目前科學界尚未對此有定論,但有幾種廣為討論的假說,或許能為我們提供一些思考方向。

卡卡叫:情緒的釋放或表達?

有些貓行為專家推測,貓咪在看到獵物(如窗外的鳥、老鼠)卻無法接近時,會因「欲捕無法」的挫折感或興奮感,發出這種「卡卡聲」。就像人類遇到障礙時,可能會發出抱怨的咕噥聲或乾著急的嘆息聲一樣,貓咪的「喀喀聲」也可能只是把當下的情緒外顯,並非有特別針對人或其他動物的溝通目的。

  • 情緒假說
    • 挫折:當貓看見鳥兒在窗外飛舞卻無法撲殺,內心焦躁,遂用聲音抒發。
    • 興奮:或許貓在準備捕獵時也感到高度亢奮,因此嘴部不自覺抖動並出聲。
貓咪的「喀喀聲」可能源於挫折或興奮情緒,表達捕獵受阻的內在反應。圖/envato

要在科學上驗證「情緒假說」並不容易,因為需要同時測量貓咪行為和生理指標。例如,研究人員可能需要測量貓咪在卡卡叫時的壓力荷爾蒙變化,才能確認牠們究竟是帶著正面興奮,或是負面挫折的情緒。不過,由於貓的獨立特質,實驗設計往往困難重重,樣本量要足夠也不容易,所以至今沒有定論。

-----廣告,請繼續往下閱讀-----

增強嗅覺?貓咪的「第二鼻子」

另一種說法則認為,貓咪發出「卡卡聲」時,可能同時開啟了其位於口腔上顎的「犁鼻器」(vomeronasal organ),也稱作「賈氏器官(Jacobson’s organ)」。這個感知器官能捕捉一般鼻腔聞不到的化學分子,如費洛蒙或特定氣味分子,因此對貓的求偶、社交和獵捕行為都非常重要。

  • 嗅覺假說
    • 張口呼吸:如果貓咪一邊「咯咯咯」地開合上下顎,可能在嘗試讓空氣(及其中所含的氣味分子)進入犁鼻器。
    • 蒐集更多環境資訊:在確定下手前,更完整的嗅覺分析或能提高牠們獵捕成功率,或是幫助判斷環境中是否有其他潛在威脅或機會。

然而,要科學驗證「增強嗅覺假說」同樣不簡單。研究人員不僅要觀察貓咪在卡卡叫時的行為,也需要測量牠們是否真的打開了更大的氣道,並在那個同時有效使用犁鼻器。這些行為與生理測量都必須在相對可控卻又不影響貓自由行動的實驗環境中進行,實務上難度頗高。

聲音模仿:貓咪的「偽鳥叫」?

貓咪的「卡卡聲」或許是為了模仿獵物的聲音,讓獵物降低警戒。圖/envato

第三種最有趣也最具「野性色彩」的假說,是「模仿獵物聲音」。在野外,一些中南美洲的小型貓科動物(例如:長尾虎貓,又稱美洲豹貓或瑪家貓,Margay)曾被觀察到,在捕獵小猴群時,發出類似猴子叫聲的音調;有些當地原住民族群也傳說,叢林裡的某些捕食者會模仿目標獵物的聲音來誘捕。由此推測,家貓看到鳥兒時發出的「卡卡聲」,可能包含些微模仿鳥兒啁啾的元素,試圖降低獵物警戒或甚至吸引獵物靠近。

  • 模仿假說
    • 案例參考:野生貓科動物曾出現學習或偽裝聲音的紀錄。
    • 家貓可能繼承的行為:家貓的祖先——北非野貓(African wildcat)及其他小型貓科物種,是否具備聲音模仿能力?這在生物演化研究上仍是未解之謎。
    • 缺乏大規模觀察:由於小型野生貓科動物研究資料有限,且家貓實驗更不易做大樣本長期追蹤,最終導致此理論尚未獲得廣泛實證。

貓咪行為研究的挑戰:野性祖先的重要性

探討貓咪行為,常常需要回溯至野生祖先的棲地環境。家貓(Felis catus)普遍被認為源自北非野貓(Felis lybica),然而,野貓習性的研究本就不多,尤其是關於聲音與捕獵策略更是資料有限。我們想知道「為什麼家貓會卡卡叫」,首先要確定:「牠們的野性祖先或其他小型貓科,也有同樣的行為嗎?」若有,家貓則可能繼承自古老基因;若無,則可能是家貓在與人類共處的環境中演化出的新行為。

-----廣告,請繼續往下閱讀-----
如果要探查家貓「卡卡叫」的原因,還需要了解其祖先或其他小型貓科是否具有類似行為。圖/envato

再者,貓在實驗室中的「不可控」因素相當多。貓不像狗般樂於服從人類指令,常有自己的規律與個性。要在實驗情境下穩定地誘發貓的「卡卡叫」行為、同時檢測牠們的生理和心理反應,並確保每隻貓的個體差異都被考慮到,這些都對研究團隊是極大考驗。

對於許多貓奴來說,貓咪坐在窗邊,一邊盯著外頭的鳥兒或松鼠,一邊發出獨特的「卡卡聲」,是一幕既可愛又神祕的風景。究竟牠們是在抒發情緒、強化嗅覺、抑或真的在「假扮鳥叫」以誘捕獵物?目前沒有確切的答案。然而,也正因為這層未知,貓貓才更顯得迷人。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

F 編_96
21 篇文章 ・ 0 位粉絲
一個不小心闖入霍格華茲(科普)的麻瓜(文組).原泛科學編輯.現任家庭小精靈,至今仍潛伏在魔法世界中💃

0

3
2

文字

分享

0
3
2
誠實面對人類參與的「自然」——太田欽也專訪
顯微觀點_96
・2024/07/11 ・3228字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自顯微觀點

斑馬魚是最知名的模式生物之一,其基因、型態與發育深受了解,並用於探討深度同源等重要演化生物學問題。但也有科學家提出,演化生物學該持續隨環境演進,並嘗試以新的實驗物種——金魚——探討人類世(Anthropocene)環境下的生物演化。

育種歷史與基因巧合 奠定金魚的演化生物學價值

例如有千年馴化歷史、型態千變萬化的金魚,就相當適合探討人類因素與生物型態演化的關聯。

中研院細生所派駐臨海研究站的演化與發育生物學家太田欽也指出,斑馬魚與金魚兩者的胚胎都可以透過顯微鏡仔細觀察,相對於受精一年後才成熟的金魚,斑馬魚有成熟較快,基因組較為單純等優點,也具備許多現成基因研究工具。

-----廣告,請繼續往下閱讀-----

但斑馬品系間仍以其生理機能與基因為主要差別,對型態差異的演化並未那麼明顯。因為,科學家為了操作基因與細胞特徵而培育斑馬魚,使不同品系的差異大多來自目標明確的基因工程。

金魚型態演化圖。Courtesy of Kinya Ota and Gembu Abe

而金魚的型態變異,則完全來自飼養者對型態的偏好和育種,蘊藏更多元的型態變化與發育差異。其悠長的馴養歷史以及更古老的基因重複(Gene Duplication)機遇,使其值得成為演化發育生物學的新模式生物。研究器材和方法上的調整,則是生物學家展現才智的機會。

太田欽也舉例,「一般的解剖顯微鏡工作距離適合觀察和操作斑馬魚,但是經過我們自己的創意,也改裝出可以對金魚進行顯微手術的器具和適合拍攝的大型解剖顯微鏡。設備上的差異並不難克服。」

金魚胚胎的發育生物學優勢

太田欽也說,現代生物學家以果蠅和微生物育種進行遺傳與演化實驗,擴大時間維度來看,千年來金魚愛好者挑選、強化金魚外觀特徵的過程,可以比擬長時間的人擇實驗。

金魚不僅適合用來觀察人擇壓力如何影響成年生物的型態。太田欽也更想進一步探索,從胚胎階段的差異進行選擇,是否可能改變生物的型態。

-----廣告,請繼續往下閱讀-----

太田欽也提到,人工育種對發育與型態的影響力也展現在其他物種上,例如家犬與鴿子也被培育出許多特殊表型。但是哺乳動物和鳥類的胚胎觀察不易,需要相當高的技術與成本。

相對於動物子宮與鳥類蛋殼內的胚胎,在透明卵囊中發育的半透明金魚胚胎,就是非常容易觀察的研究對象。只要有恰當的複式顯微鏡、解剖顯微鏡和顯微手術能力,金魚的胚胎從受精到孵化都可以全程順利紀錄,而且每次繁殖可以蒐集到上百筆資料。

現代顯微攝影技術搭配容易觀察的金魚胚胎,讓太田欽也可以拍攝清晰影片,在網路上生動地分享發育生物學知識。攝影:楊雅棠

自製影片 盼演化生物學跨過學院圍牆

除了將金魚研究成果發表在 Nature 等科學期刊,太田欽也同時努力當起「Youtuber」。他希望能將演化發育生物學、金魚飼育經驗、臨海研究站的學術特色,甚至是宜蘭的風光,透過網路傳達給大眾。

武漢肺炎導致的漫長隔離,是他學習影音製作的契機。最初他在百無聊賴之下看了大量影片,後來逐漸萌發「我也要拍自己的題材!」的企圖心。開始搜尋拍攝、後製、配樂等網路教學,在隔離的單人房中逐漸進步。

-----廣告,請繼續往下閱讀-----

太田欽也說,拍攝影片最重要的動機是「分享」。他解釋,「科學的頻道不管累積再多追蹤者,例如數十萬人追蹤的 Nature, Science, 觀眾也以科學領域工作者為主。現代知識逐漸朝向『專家』與『外人』的兩極化狀態發展,我不喜歡這樣的社會。」

如同他推進學術研究的方法,他也透過自學、自己組裝基礎設備如空拍機、手機等,在節省開支的情況下拍出了中研院同僚為之驚艷的影片。

太田欽也為臨海研究站拍攝的簡介影片,基本款空拍機呈現了頭城的舒暢美景。

在早已開始的人類世 何謂自然?

太田欽也熱衷以空拍影片介紹宜蘭的郊野與人文,但他對主流輿論的「自然環境」內涵存疑,他認為「自然」早已被人類行為大幅改變。自從農業擴張、工業革命發生,人類對環境與生物的改變程度早已無法恢復「自然原貌」。

他以金魚的馴化過程為例,從宋朝開始的愛好者,透過育種極力凸顯特殊形態,從沒有背鰭的「蛋種」,到眼周水泡足以遮蔽視線的「水泡眼」。都不是基於適應「自然」而進行的育種。

-----廣告,請繼續往下閱讀-----

太田欽也強調,「如果是宋朝或明朝人有今天的生物學工具,以他們的追求珍奇的育種態度,一定會用 CRISPR 編輯金魚基因,製造出更奇特的變異型態。」

他說,這樣的行為會在現代科學圈與社會輿論上遭到反對,「認為動物被修改基因、型態變異很可憐」,但人類採用動物進行藥物實驗或經濟用途時,也並未優先考慮「自然原則」。

太田欽也反問,「若是透過基因編輯技術將金魚修改回類似野生鯽魚的型態,更適應野外環境,這樣算是自然或不自然呢?」

建立科技倫理 而非堅守「自然」想像

他指出,金魚的馴化與育種反映著東亞社會的自然觀念,不同於西方基督教倫理的「人統御、保護自然」意識形態。可以促進人們反思,人類也身在其中的「自然」的標準是什麼?而非執著於保護想像中的自然「原狀」。

太田欽也強調,「本質化『自然』、建構一個保守不變的形象,不會幫助人們了解生物學。」

他認為,宋朝人、明朝人的自然觀念與今日不同;甚至現代人常引用的「道法自然」倡議者老子,他所提倡的自然,與現代許多人想像、意圖恢復的也是不同的自然。

背鰭退化、尾鰭倍增的蛋種雙尾金魚,是古代貴族最青眼有加的奇特型態之一。作者:清 馬文麟 來源:國立故宮博物院

太田欽也建言,科學地面對人類因素影響世界各地生態的現實、建立基因科技的社會倫理與規範,都是比恢復建構出的「自然」意象更重要的生物學議題。

-----廣告,請繼續往下閱讀-----

來自日本和歌山縣鄉間的太田欽也說,長期駐守宜蘭頭城的臨海研究站不僅是因為設施與職位,也是因為此處環境與故鄉有幾分神似。

「但我不會說這兩個地方都很『自然』,在人們對我說『這裡很自然!』的時候。」太田欽也無奈地笑說,「想到周遭可以釣起吳郭魚的溪流、被整治疏濬成田園的原洪氾濕地,反而會讓我很疑惑彼此對『自然』的共識。」

1995 年諾貝爾化學獎得主克魯岑(Paul Crutzen)指出,現代已是由人類行為影響地質特性的人類世。此概念引起地質科學界激烈討論,從新石器時代、工業革命到核彈試爆頻繁的 1960 年代都有學者認為是人類世的開端。

最後由國際地層委員會的人類世工作小組投票決定,視第二次世界大戰後、人口與人類活動高速成長的20世紀中葉為人類世起點。

查看原始文章

參考資料

  1. Li IJ, Lee SH, Abe G, Ota KG. Embryonic and postembryonic development of the ornamental twin-tail goldfish. Dev Dyn. 2019 Apr;248(4):251-283.
  2. Abe G, Lee SH, Chang M, Liu SC, Tsai HY, Ota KG. The origin of the bifurcated axial skeletal system in the twin-tail goldfish. Nat Commun. 2014 Feb 25;5:3360.
  3. 太田欽也實驗室
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

顯微觀點_96
25 篇文章 ・ 5 位粉絲
從細微的事物出發,關注微觀世界的一切,對肉眼所不能見的事物充滿好奇,發掘蘊藏在微觀影像之下的故事。

0

2
1

文字

分享

0
2
1
陸地上的首批動物是什麼?又是如何上岸的呢?——《直立猿與牠的奇葩家人》
大塊文化_96
・2023/08/19 ・3911字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

從志留紀末期到泥盆紀這段時間,地球的大陸成了首批陸生動物的家園。
狀似馬陸的呼氣蟲是最早的節肢動物先驅。
同時,蜘蛛與蠍子的早期親屬,也利用已在地球表面建立起來的植物與真菌生態系。
牠們在陸地上進食、繁殖與死亡,為陸地食物網增添了新的複雜性,也為後來從水邊冒險登陸的其他動物提供了獎勵。

動物隨著地球的演化踏上岸

隨著地球表面被植物染綠,動物跟隨植物的腳步上岸只是時間問題。

隨著地球表面被植物染綠,動物跟隨植物的腳步上岸只是時間問題。圖/envato

第一批維管束植物在地球大陸的年輕土壤中安家後不久,節肢動物踏進了這些矮樹叢。這些無畏探險家留下的最古老證據之一,是在蘇格蘭亞伯丁附近出土的一塊化石,名為呼氣蟲(Pneumodesmus)。

牠是一種多足類,與馬陸和蜈蚣屬於同一個群體。雖然原本將牠的年代界定在四億兩千三百萬年前的志留紀,但是近期研究顯示牠可能更年輕,生活在最早期的泥盆紀。

無論如何,到了泥盆紀,動物已經在陸地上站穩腳跟,而呼氣蟲更是最早在地球上行走的動物之一。

-----廣告,請繼續往下閱讀-----

發現目前唯一的呼氣蟲化石

目前出土的呼氣蟲化石只有一件,而且只是一塊一公分(○.四英寸)的身體碎片。

然而在這一小塊化石中,可以清楚看到很多隻腳,從一隻可識別的馬陸狀動物的六個體節長出來。

呼氣蟲的外觀可能和這種現代的馬陸很像。圖/大塊文化

更重要的是,呼吸結構的細節清楚可見:外骨骼角質層上有稱作氣門的孔。這些氣門讓氧氣與其他氣體進入並離開身體,這塊化石也是根據這項特徵而命名為呼氣蟲(Pneumodesmus 的「pneumo」來自希臘文的「呼吸」或「空氣」)。

這塊化石提供了第一個呼吸空氣的決定性證據,這是一種全新的演化適應,為數百萬微小的節肢動物探索者,以及追隨牠們的捕食者,開放了大陸的表面。

-----廣告,請繼續往下閱讀-----

最古老的多足類演化過程

在泥盆紀,呼氣蟲並非獨自生活在植被中。還有許多多足類和牠一起生活,最古老的多足類化石出現在志留紀與泥盆紀的岩層。

儘管不屬於任何現代的馬陸或蜈蚣群體,牠們是現存馬陸與蜈蚣的早期親戚,外表與馬陸和蜈蚣非常相似,具有分節的長條狀身體許多腳―馬陸每個體節的兩側各有兩隻腳,蜈蚣則只有一隻。

目前已知有最多腳的馬陸是全足顛峰馬陸(Illacme plenipes),擁有七百五十隻腳。現存的大多數馬陸都是食碎屑動物,以腐爛的植物為食。這些動物的化石紀錄很少,因此每一件化石對於我們瞭解生命從水裡浮現的過程都特別珍貴。

一隻有著 618 條腿的雌性 Illacme plenipes。圖/wikipedia

最早的多足類,可能是受到早期植物產生的新食物來源所吸引,才來到陸地上。

-----廣告,請繼續往下閱讀-----

最早的蛛形綱動物也充分利用了頭頂上的廣闊天地。蛛形綱動物包括蟎、蠍子、蜘蛛與盲蛛。牠們有八隻腳(不同於昆蟲的六隻腳),大多數仍生活在陸地上,儘管少數(如水蛛〔Argyroneta〕)又回到水中生活。

奧陶紀與志留紀的化石顯示,蛛形綱動物和其他節肢動物可能在更早的時候就偶爾會出現在陸地上,但是到了泥盆紀,有些已經完全過渡到能夠呼吸空氣的狀態。最早的蛛形綱動物是角怖蛛,這是一個已經滅絕的群體,看起來像是蜘蛛與蟎的雜交體。

蟎與擬蠍也很多,後來還有類似蜘蛛、具有吐絲管能製造絲的始蛛(Attercopus)。就像今天一樣,這些早期的蛛形綱動物大多是捕食者,可能以其他從水邊冒出來的節肢動物為食。

到泥盆紀末期,出現了第一批昆蟲,據估計,昆蟲構成今日地球上所有動物生命的 90%。最後,一些脊椎動物也過渡到陸地上,這或許是受到尋找新的食物來源所驅動。

-----廣告,請繼續往下閱讀-----

我們所知的陸地生命基礎終於到位了。自此之後,演化在這些群體中繼續發揮作用,創造出我們今日所見的驚人多樣與多量。

節肢動物牠們有什麼用處呢?

節肢動物通常被看作是害蟲,昆蟲尤其如此。

然而,牠們在整個地球的運行中扮演十分重要的角色。現在有超過一萬六千個多足類物種、六萬種蛛形綱動物,以及大約一千萬種的昆蟲。

牠們不僅在地球最早期生態系中舉足輕重,至今對自然界及人類的世界仍然非常重要。

-----廣告,請繼續往下閱讀-----

多足類處理森林中的落葉,成為營養循環中的一個重要齒輪。蜈蚣通常是捕食者,最大的蜈蚣甚至能吃小型哺乳動物與爬蟲類。

蛛形綱動物大多也是捕食性的,因此在調節獵物的族群數量方面,發揮重要的作用。這裡所指的包括昆蟲害蟲在內,這些害蟲數量不受控制,就會損害植物的族群數量。因此,不起眼的蜘蛛對人農業非常重要。

蟎與蜱可以寄生並傳染疾病,對人類及其他動物構成威脅,其他昆蟲也會造成類似的危險。然而,昆蟲的角色變化多端,其價值確實無法估量,包括生產蜂蜜,甚至以其勤奮的活動精明操控整個生態系,例如蜜蜂、螞蟻與白蟻。

許多節肢動物都有毒,有些對人類甚至具有致命性。然而,讓獵物喪失能力和死亡的毒液也可發揮其他用處;蜘蛛毒液已被用作替代的殺蟲劑,科學家也正在研究其醫藥用途,以及在新材料上的應用。

-----廣告,請繼續往下閱讀-----
蜘蛛毒液已被用作替代的殺蟲劑,科學家也正在研究其醫藥用途,以及在新材料上的應用。圖/envato

此外,節肢動物可以為包括彼此在內的無數動物提供食物來源。許多節肢動物是人類的食物,包括狼蛛、蠍子、蚱蜢、白蟻與象鼻蟲等。

目前,世界各地有多達二千零八十六種節肢動物被當成食物,而且至少從舊石器時代開始,牠們已經成為食物的來源。

有人認為,隨著人類人口不斷增加,昆蟲尤其可能在未來提供重要的蛋白質來源―這是資源密集型肉類養殖的替代方案。

我們很難想像一個沒有節肢動物的地球;事實上,這樣的地球可能無法存在。早在泥盆紀,世界就是節肢動物的天下。

-----廣告,請繼續往下閱讀-----

但牠們冒險去到的地方,捕食者也在不遠處。節肢動物的存在,為另一個從水中出現的動物群體提供了食物,而這個動物群體在人類的演化史上特別重要:這裡講的是四足動物。

——本文摘自《直立猿與牠的奇葩家人:47種影響地球生命史的關鍵生物》,2023 年 7 月,大塊文化,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
大塊文化_96
11 篇文章 ・ 13 位粉絲
由郝明義先生創辦於1996年,旗下擁有大辣出版、網路與書、image3 等品牌。出版領域除了涵括文學(fiction)與非文學(non-fiction)多重領域,尤其在圖像語言的領域長期耕耘不同類別出版品,不但出版幾米、蔡志忠、鄭問、李瑾倫、小莊、張妙如、徐玫怡等作品豐富的作品,得到讀者熱切的回應,更把這些作家的出版品推廣到國際市場,以及銷售影視版權、周邊產品的能力與經驗。

5

12
3

文字

分享

5
12
3
如果人類的祖先是猴子,為什麼我們沒有尾巴?
暐恩咖啡_96
・2022/02/18 ・3120字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

尾巴幾乎是脊椎動物的標配,它能幫助魚類游泳、爬蟲類爬行、鳥類飛翔。在哺乳類動物身上,尾巴的功能更是包羅萬象,狗狗用尾巴表達情緒、草食動物用尾巴驅趕蚊蟲,我們的猴子表親甚至能用尾巴抓握東西。

功能多變又實用的尾巴,就好像動物身上的瑞士刀一樣,根本是「居家旅行必備良品」。這麼棒的東西,為什麼人類偏偏沒有呢?這一切還得從人類的起源說起。

人類是從猴子演化而來的嗎?

在大約 6600 萬年前,也就是恐龍經歷隕石浩劫後的 1000 萬年內,具有靈長類生理機能的小型哺乳動物就出現了。牠有一條又長又結實的尾巴,這也許能幫牠在枝條間捕捉昆蟲時,更容易保持平衡。 

阿喀琉斯基猴屬想像圖,這類生物大約生活在五千五百萬年前,可能是靈長類動物最後的共同祖先。 圖 / Wikipedia

隨著時間推移,原始的靈長類動物逐漸演化成雜食性的猴子。這類生物的尾巴特別的靈活又有力,幾乎就像是手腳以外的「第五肢」,使得這群動物在樹梢上的生活更加活動自如。

然而,生物的演化從不停止。大約在2000 萬年前,猴子當中出現了「沒有尾巴」的一支——人猿。牠們的後代包括長臂猿、紅毛猩猩、大猩猩、黑猩猩,當然了,也包含我們人類。配合下圖,你可以看出,人猿在演化成真正的人類以前,尾巴這個構造已經消失了數百萬年,所以人類理所當然長不出尾巴。

-----廣告,請繼續往下閱讀-----
約 2500 萬年前,人猿起源於舊大陸猴(Old world monkeys),經過長久的演化與分化形成多個類群,最終,人類與黑猩猩在六百萬年前分家。由上而下依序是:屬於人猿的人類、黑猩猩、大猩猩、紅毛猩猩、長臂猿,以及不屬於人猿的舊大陸猴、新大陸猴、眼鏡猴與狐猴。圖 / 參考資料 1

人類真的沒有尾巴嗎?

生物學上,總有些令人印象深刻的例外會發生。有些人類嬰兒(通常是男性)出生時還帶著小小的胚胎尾巴,這通常不會造成健康上的問題,甚至在有些案例中,這個小尾巴具有肌肉,而且可以動作!

在巴西就有一名 35 週早產的男嬰,出生時長著一條長達 12 公分的細長尾巴,尾巴末端還有一個 4 公分寬的肉球。醫生進行檢查後發現,這個構造僅由組織和脂肪組成、完全沒有骨頭,排除了先天性脊椎畸形的可能,認為這是罕見的「人類尾巴」,在醫學史上大約只有 40 個相同病例的記錄。[2]

巴西一名男嬰出生時長著 12 公分長的尾巴。圖 / 參考資料 2

事實上,每個人都曾擁有過尾巴,只不過,那時你還在媽媽肚子裡。在妊娠期的第 31 至 35 天左右,尾巴長度就會達到人生巔峰,尺寸大概佔胚胎長度的六分之一左右。不久後,尾巴就會停止生長,其中一部分尾巴會被身體吸收掉,另一些部分則退化、癒合成尾椎骨。

雖然人類的尾椎骨退化、失去了大部分原有的功能,但可別以為它是無用的器官!尾椎的前後兩面都有肌肉與韌帶附著,這些構造將骨盆底部的開口大部分封住,避免腹腔內的器官往下掉、造成疝氣,也具有避免失禁的功能。出力時,這些肌肉與韌帶能提高腹腔內的壓力,輔助排尿、提重物、嘔吐、前傾身體等動作。

人類胚胎在發育時是具有尾巴的。圖/ WIKIPEDIA

我們的祖先是怎麼失去尾巴的?

人體內有些基因被認為是「自私的基因」,它們平時唯一的功能便是自我複製,比如 Alu 序列(Alu element)就是個典型的例子,它本身沒什麼用,卻在人類基因裡複製了超過一百萬份,佔據了人類基因組中約 10.7% 的空間,有時還會插進有功能的基因片段裡,造成人體病變或異常。然而某些時候,它們卻能以獨特的方式發揮作用。紐約大學最近的一篇研究就表明,我們的祖先會失去尾巴,就是因為有一段 Alu 序列插入。

這回,被插入的對象是 TBXT 基因,這個基因對於胚胎發育非常重要,它與脊索(脊椎的前身)發育有關。紐約大學的研究團隊發現,無尾的猿類與有尾的猴類有個關鍵的基因差異,那就是 TBXT 基因的其中一段(exon 6)被 AluY 與 AluSx1 前後夾住,形成一個環狀結構,使得 exon 6 基因片段無法正常表現——這很可能就是猿類沒有尾巴的原因!

-----廣告,請繼續往下閱讀-----

為了證實這個假設,科學家剔除小鼠基因裡的 exon 6 片段,果真發現小鼠會出現無尾或短尾的特徵!值得注意的是,exon 6 片段被剔除的小鼠表現出了胚胎脊髓畸形的現象,這個現象在人類新生兒身上,也有約千分之一的機率出現,情形嚴重的話會造成下肢癱瘓或大小便失禁,可見沒有尾巴風險極高,但也能合理推測此特徵也伴隨巨大的優勢,否則就無法在殘酷的天擇中延續下來,只不過,科學家對於尾巴消失究竟帶來什麼樣的演化優勢還沒達成共識。

人猿 TBXT 基因的 exon 6 片段被 AluY 與 AluSx1 前後夾住,形成一個環狀結構。圖 / 參考資料 1
exon 6 基因片段被剔除的小鼠出現了無尾或短尾的特徵。圖 / 參考資料 1

所以,如果人類保留了健全的尾巴會怎樣?

如果現代人的尾椎延長、超出身體一大截,搭配上(與其他動物相比)幾乎「衣不蔽體」的體毛,那看起來就像「在屁股上掛串白腸」,畫面太美我不敢看

想要一條功能健全的尾巴,那肯定需要周遭肌肉、韌帶與骨骼的固定與驅動,但是,你還記得尾椎附近的肌肉與韌帶拿去做什麼了嗎?它們在骨盆底部承托著腹腔!我想,如果將它們調離原本的崗位,失禁與疝氣的機會也許會上升,或許人類將不再能夠直立著軀幹追趕跑跳,只能像大多數動物一樣,平時將軀幹水平匍匐於地面,避免肚子裡的東西靠向脆弱的骨盆底部。

現實中難道就沒有尾巴發達、又能常常直立活動的靈長類動物嗎?有的,那就是狐猴

-----廣告,請繼續往下閱讀-----

雖然大多數狐猴是屬於樹棲性的物種,但有些狐猴能在兩樹之間連續側跳一百公尺 [3]。另外,還有喜歡生活在地面上的環尾狐猴,牠們每天早晨都會或站或坐,朝向太陽張開雙臂,花些時間將體溫升高,然後成群穿梭在草原上,取食花、果實、葉子或種子,偶爾也吃吃葷,取食昆蟲、小鳥、變色龍,甚至是蜘蛛絲 [4],雜食的習性就和我們的猿猴祖先一樣。

看來,直立活動跟發達的尾巴也是能夠兼得的!如果人類真的有尾巴,或許尾巴高度會成為地位的象徵,於是人們開始用髮蠟把尾巴尖端的毛抓翹,往尾巴噴香水求偶或宣示主權;長輩會要求晚輩放低尾巴,情侶們逛街時也改用勾尾巴取代牽手,這樣就不用擔心流手汗造成尷尬了。

參考資料

  1. The genetic basis of tail-loss evolution in humans and apes | bioRxiv
  2. A true human tail in neonate – ScienceDirect
  3. Ring-tailed lemur – Parc Animalier d’Auvergne (parcanimalierdauvergne.fr)
  4. ADW: Lemur catta: INFORMATION (animaldiversity.org)
  5. What if Humans Had Kept Their Tails? (sciencealert.com)
  6. Archicebus – Wikipedia
  7. Alu element – Wikipedia
  8. TBXT gene: MedlinePlus Genetics
  9. 猿 – 維基百科,自由的百科全書 (wikipedia.org)
  10. 尾骨痛的成因與治療 (chiropractors.com.hk)
  11. Lemurs (Lemuridae) | Encyclopedia.com
-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 5
暐恩咖啡_96
3 篇文章 ・ 0 位粉絲
一入生科 一生科科 我是說熱愛科普啦~ 努力將科學知識 譜寫成大家都能會心一笑的文章