0

0
0

文字

分享

0
0
0

搜救英雄 生化電子蟑螂

陸子鈞
・2012/11/22 ・794字 ・閱讀時間約 1 分鐘 ・SR值 515 ・六年級

-----廣告,請繼續往下閱讀-----

北卡羅萊納州立大學(North Carolina State University)iBionics實驗室的科學家開發1種技術,能準確控制蟑螂爬行的方向,期待未來能應用到搜救任務中。

電子及電腦工程學系的助理教授巴扎克和博士候選人拉提夫,設計了1個小型的「背包」,掛在馬達加斯加蟑螂(Gromphadorhina portentosa)的背後。「背包」包含一小塊電路板、無線接收器、電極還有電池,能產生電流,控制蟑螂往左或右。

「其實就跟騎馬一樣,蟑螂在正常情況下爬行,然後我們送電流刺激它的觸角,讓它以為遇到障礙。」巴扎克在接受《美國科學人》(Scientific American)採訪時表示,「因為蟑螂靠觸角來感測障礙,當觸角『撞到』阻礙時,就會往另一個方向移動。」

這項發明在第44屆IEEE國際年會中發表,因為「生化電子蟑螂」能在險惡的地形上巡邏,很適合搜尋災區的受難者,對救災任務將很有幫助。

-----廣告,請繼續往下閱讀-----

震災中災民被困在崩塌的建築瓦礫堆中,搜救蟑螂體積小、能感測障礙物,或許能夠幫助搜救。

除了電子蟑螂以外,iBionics實驗室也針對電子蛾進行相同研究,令其可擔任飛行任務。在此之前,2010年柏克萊大學的工程師馬哈.別茲(Michel M. Maharbiz)和早稲田大學的佐藤(Hirotaka Sato)亦在拖瓜塔花金龜(Mecynorrhina torquata)上裝置電子晶片,控制它飛行的方向。

昆蟲的神經系統及行為相對脊椎動物簡單,且電子零件日漸微小,未來可以有更多「蟲機介面」整合的例子及應用,或許各式昆蟲賽博格(Insect Cyborgs) 將在下一場大地震時派上用場。

(本文原發表於行政院國家科學委員會-科技大觀園「科技新知」。歡迎大家到科技大觀園的網站看更多精彩又紮實的科學資訊,也有臉書喔!)

-----廣告,請繼續往下閱讀-----

資料來源:

文章難易度
陸子鈞
294 篇文章 ・ 4 位粉絲
Z編|台灣大學昆蟲所畢業,興趣廣泛,自認和貓一樣兼具宅氣和無窮的好奇心。喜歡在早上喝咖啡配RSS,克制不了跟別人分享生物故事的衝動,就連吃飯也會忍不住將桌上的食物作生物分類。

0

2
2

文字

分享

0
2
2
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 54 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

1

4
0

文字

分享

1
4
0
露兜樹象鼻蟲的身世之考察——分類學家偵探事件簿(四)
蕭昀_96
・2023/12/25 ・3950字 ・閱讀時間約 8 分鐘

一般大眾或甚至其他領域生物學家們,對於基礎生物分類學家的刻板印象,無非是常常在顯微鏡下進行形態解剖比較來鑑定物種、描述並發表新物種,或者常常東跑西跑去採集標本,頂多是抽取遺傳物質進行 DNA 分析。然而一位稱職的分類學家,為了搞清楚物種學名的分類地位,將整個命名系統修訂成一個穩定並適合大家使用的狀態,往往需要做大量的歷史文獻,造訪各大博物館並進行模式標本考察,其中的繁瑣和複雜程度,往往令人出乎意料。

再讓我們複習一次模式標本是什麼和其重要性?

如果有閱覽過這系列的文章便會很清楚的知道,模式標本是物種發表時的實體存證,是學者對分類地位有疑慮時,用以判別的客觀證據。每個物種都有其模式標本,而每個屬也有其模式物種,是判定該屬別的決定性物種,模式種和模式標本是進行物種與屬別層級的基礎分類研究時,不可或缺的重要資訊。

這個故事的主角是一類來自南亞和東南亞的露兜樹象鼻蟲,本文將講述其模式標本和背後歷史脈絡的考察,以及我們對於分類處理過程的案例分享。

分布於南亞、東南亞的露兜樹象鼻蟲和研究緣起

露兜樹科(Pandanus)為分布於東半球的亞熱帶及熱帶地區的灌木或喬木植物,其中林投(Pandanus tectorius)具有抗風、耐鹽的特性,是常見的海岸防風定砂植物,而俗稱斑蘭葉(pandan)的七葉蘭(Pandanus amaryllifolius),則是東南亞常見的料理與糕點製作材料,而南亞和東南亞的露兜樹上棲息著一群黑色扁平的小型象鼻蟲——露兜樹象鼻蟲(Lyterius)。

-----廣告,請繼續往下閱讀-----
露兜樹是東半球的亞熱帶及熱帶地區的灌木或喬木植物。(攝/B.navez from Wikipedia)
小小扁扁的露兜樹象鼻蟲(Lyterius)是與露兜樹有伴生關係的特別物種。(圖/論文原文)

而故事的緣起可追溯到 2022 年,當時筆者正在澳洲進行博士論文題目「澳洲蘇鐵授粉象鼻蟲的多樣性與演化」的研究,我們意外地發現澳洲的蘇鐵授粉象鼻蟲與東南亞產的露兜樹象鼻蟲親緣關係接近,因此我們便想進一步探究本類群的分類。在我們初步搜索模式標本時,我們驚奇地發現德國象鼻蟲學者延斯・普雷納博士 Dr. Jens Prena 似乎曾經有研究過這類象鼻蟲,出於好奇,我們聯繫了普雷納博士,進而開啟了本類群錯綜複雜的分類歷史考察之旅。

露兜樹象鼻蟲分類研究的現存問題

首先露兜樹象鼻蟲的分類問題分成兩個面向,一個是屬別層級的,而另一個是物種層級的。屬別層級的問題比較簡單,我們發現露兜樹象鼻蟲屬有三個相關的屬別,分別為 Lyterius Schönherr, 1844、Barisoma Motschulsky, 1863 和 Plaxes Pascoe, 1885,根據牠們形態的相似性和地理分布的重疊,我們認為牠們應該被合併成單一屬別,也就是說只要我們確認三個屬別的模式種都是屬於同一個屬別後,那自然我們就能依照優先權原則,把 1863 年發表的 Barisoma 和 1885 年發表的 Plaxes 處理為最早發表的 Lyterius 的同物異名。

但是!分類學研究最困難的就是這個但是!

我們雖然追蹤到 Barisoma Plaxes 的模式種和其模式標本,但是 Lyterius 的模式種問題,卻將這個研究的難度拉向了另一個層面——也就是物種層級的問題。

模式標本來源和流向超級複雜的 Lyterius

Lyterius 這個屬別是由瑞典昆蟲學家卡爾・約翰・舍恩赫爾(Carl Johan Schönherr)於 1844 年所提出,並以 Rhynchaenus musculus Fabricius, 1802,這個 1802 年由丹麥昆蟲學家約翰・克里斯蒂安・法布里丘斯(Johan Christian Fabricius )所發表的種類作為模式物種。他的合作對象瑞典昆蟲學家卡爾・亨利克・博赫曼(Carl Henrik Boheman)也在同一本書中使用了 Lyterius musculus (Fabricius, 1802) 這個學名組合,同時他將德國昆蟲學家弗里德里希・韋伯(Friedrich Weber)在 1802 年所描述的 Curculio abdominalis Weber, 1801 也拉進這個屬別,學名組合變成 Lyterius abdominalis (Weber, 1801) ,並且描述一個菲律賓的新物種 Lyterius instabilis Boheman in Schönherr, 1844 。這其中最為複雜難解的,便是 Lyterius musculus (Fabricius, 1802) 和 Lyterius abdominalis (Weber, 1801) 之間的關係了,因為這兩個物種的模式標本來源,都源自於達戈貝爾特・達爾多夫 Dagobert Karl von Daldorff 這位在俄羅斯出生,擁有德裔血統的丹麥博物學家,在 18 世紀末葉任職丹麥東印度公司時,於 1795 年在蘇門答臘的一次採集。

-----廣告,請繼續往下閱讀-----
除了我們常常聽到的荷蘭、英國東印度公司,丹麥也曾經創立了東印度公司。(攝/Wikipedia)

根據我們對於 19 世紀初期的歐洲甲蟲分類歷史文獻的爬梳,達爾多夫在蘇門答臘的標本被帶回歐洲後,應該至少被他贈與或交換給五位學者或機構,而這五位學者就包含剛剛提到的德國昆蟲學家弗里德里希・韋伯(Friedrich Weber),以及丹麥昆蟲學家約翰・克里斯蒂安・法布里丘斯(Johan Christian Fabricius),這兩位顯然同時對這批標本進行分類學研究。

令人存疑的 Lyterius abdominalisLyterius musculus

因此第一個疑點就是,韋伯和法布里丘斯分別在 1801 年和 1802 年用達爾多夫所採集的同一批蘇門答臘象鼻蟲標本,發表了後來在 1844 年被博赫曼放在同一個屬別的物種 Lyterius abdominalisLyterius musculus,這讓人很難不懷疑,這兩個名字會不會根本就是同一個物種,這在當年資訊不流通、分類研究還很粗淺的年代,是非常容易發生的事情。

而支持這樣想法的關鍵則有二,首先德國昆蟲學家約翰・卡爾・威廉・伊利格(Johann Karl Wilhelm Illiger)其實在 1805 年的著作中,就已經提出這兩個物種是同一個物種的論點了,然而這項分類處理卻被博赫曼在 1844 年的著作中,不明地忽略了。雖然博赫曼不小心遺漏了伊利格的分類處理,他卻也在看過兩種的模式標本後,在他那 1844 年的著作中,提出了兩個物種只不過是同一個物種的雄蟲和雌蟲的猜想,然而因為他手邊就只有兩隻標本,一隻是雄的 Lyterius abdominalis ,一隻是雌的 Lyterius musculus ,因此他無法下這個決定情有可原,而我們如今已經知道露兜樹象鼻蟲有很明顯的雌雄二形性,雄蟲的口喙比較短,且足部的前腳腿節有明顯的突起,博赫曼的猜想不證自明。

總而言之,從上述的歷史文獻爬梳,我們可以從

-----廣告,請繼續往下閱讀-----
  1. 韋伯和法布里丘斯研究的都是同一批蘇門答臘採集的標本
  2. 同時代的伊利格和後來的博赫曼都直接或間接的認為 Lyterius abdominalisLyterius musculus 是同一個物種

來推斷,這兩個種類很有可能是同一個種類!

瑞典昆蟲學家卡爾・亨利克・博赫曼。(攝/Wikipedia)

找不到模式標本啊!

在爬梳大量文獻後,我們同時也造訪歐陸各大標本蒐藏去尋找這些物種的模式標本下落。我們很幸運的在德國基爾的動物學博物館找到兩隻 Lyterius musculus 的總/群模式標本。然而,在尋找 Lyterius abdominalis 模式標本的過程中卻碰了壁,不管是文獻還是實際探訪,幾乎都找不到韋伯收藏的下落,韋伯所發表的模式標本有極大的可能已經遺失了,那要怎麼辦呢?

分類學家的決策

雖然沒辦法找到 Lyterius abdominalis 的模式標本,然而我們從以上的間接證據,可以合理相信 Lyterius abdominalisLyterius musculus 就是同一個物種。為了最適當的處理分類議題,穩定整個分類命名系統。我們使用了一個技術性的分類學處理,首先我們指定了 Lyterius musculus 的選模式標本,並且我們將「這一個」標本,再次的指定為 Lyterius abdominalis 的新模式標本,這個時候,這兩個學名便產生了動物命名法規上所謂的「客觀同物異名(objective synonym)」關係,相較於分類學家自行主觀認定的同物異名(主觀同物異名 subjective synonym ),客觀同物異名指的是用同一個標本發表不同學名的狀況,這樣這兩個名字無庸置疑的是同物異名關係,只有最早被發表的名字有優先權,因此我們的 Lyterius abdominalis (Weber, 1801) 獲得了優先被使用的地位,也成為露兜樹象鼻蟲屬的模式種。經由這一波操作,我們確立了 Lyterius 的模式和包含的物種,也因此我們終於能進一步處理剛剛提到的 BarisomaPlaxes 的同物異名,最後我們可以大聲的說:露兜樹象鼻蟲屬的學名是 Lyterius Schönherr, 1844 !

番外篇的 Plaxes 模式標本調查

另外一方面,我們在調查 Plaxes 的模式標本時,也發現到其模式種 Plaxes impar Pascoe, 1885 的總/群模式標本散落在英國倫敦自然史博物館、德國柏林自然史博物館、德國德勒斯登森肯堡博物館、義大利熱拿亞自然史博物館、澳洲國立昆蟲館,幾乎涵蓋了半個地球。這些標本可以分為來自婆羅洲砂拉越和蘇門答臘的標本,採自砂拉越的標本無疑是一個獨立的物種,我們也指定砂拉越的總/群模式標本為本種選模式標本。而來自蘇門答臘的標本,無獨有偶地都和 Lyterius abdominalis 是同一個物種,顯然這個物種在蘇門答臘當地是個常見的物種,這又再次加強我們上面提到的,達爾多夫所採集的同一批蘇門答臘象鼻蟲標本應該就只有一種露兜樹象鼻蟲的推測。

-----廣告,請繼續往下閱讀-----

這個研究重新梳理了露兜樹象鼻蟲的分類歷史並考察了歷史文獻和模式標本,最終作出了適宜的分類學處理,為亞洲地區的象鼻蟲研究推進了一步。

  • 本論文日前已經線上刊載於《動物分類群 Zootaxa 》
  • 此文響應 PanSci 「自己的研究自己分享」,以增進眾人對基礎科學研究的了解。

參考資料

  • Prena, J., Hsiao, Y., Oberprieler, R.G. (2023) New combinations and synonymies in the weevil genus Lyterius Schönherr (Coleoptera, Curculionidae), with a conspectus of historical works on Daldorff’s Sumatran beetles. Zootaxa 5380(1): 26-36. https://doi.org/10.11646/zootaxa.5380.1.2
所有討論 1
蕭昀_96
22 篇文章 ・ 17 位粉絲
澳洲國立大學生物學研究院博士,在澳洲聯邦科學與工業研究組織國立昆蟲標本館完成博士研究,目前是國立臺灣大學生態學與演化生物學研究所博士後研究員,曾任科博館昆蟲學組蒐藏助理。研究興趣為鞘翅目(甲蟲)系統分類學和古昆蟲學,博士研究主題聚焦在澳洲蘇鐵授粉象鼻蟲的系統分類及演化生物學,其餘研究題目包括菊虎科(Cantharidae)、長扁朽木蟲科(Synchroidae)、擬步總科(Tenebrionoidea)等,不時發現命名新物種,研究論文發表散見於國內外學術期刊 。

3

14
4

文字

分享

3
14
4
【2023 年搞笑諾貝爾獎快訊】10 項怪奇獲獎研究出爐
PanSci_96
・2023/09/15 ・3874字 ・閱讀時間約 8 分鐘

一年一度、讓你廢到笑出來的搞笑諾貝爾獎,今年在美東時間 9 月 14 日下午 6 點準時直播。

今年的主題為「水」,這次 10 項獲獎都或多或少與「水」有關(但大部分是口水),現在就快讓我們一起來看看今年的得獎快訊,並一起期待後續的個別研究報導吧~

化學和地質獎:為什麼地質學家與古生物學家會舔化石

這是一封說明「過去」地質學家與古生物學家,為什麼會有舔化石習慣的「快訊」(發表在期刊上,但被歸類為快訊),這封快訊說了幾個故事,其中最讓我印象深刻的,是「義大利地質之父」的喬瓦尼·阿爾杜伊諾(Giovanni Arduino,1714-1795)用自己的舌頭「品嚐」這些化石,分類出可能是史上第一個「地質時期」

故事的亮點是引用了喬瓦尼·阿爾杜伊諾的研究紀錄,看起來就像是個美食家在品嚐化石。

-----廣告,請繼續往下閱讀-----

文學獎:重複寫字,直到感覺不對勁

A 編小學時,曾被老師罰抄生字 100 遍,寫到一半突然懷疑這個字是不是這樣寫,趕緊回頭看前面寫的字,還把課本翻出來看才確定自己沒有寫錯。

上述的情境,稱為「猶昧感」(Jamais Vu),「猶昧感」是「既視感」(Deja Vu)的反義詞,描述人們對熟悉的事物,突然感到陌生,也是這篇論文主要探討的主題。

這研究的笑點在於他的實驗,他們讓受試者一直重複寫同一個字,跟小學被老師罰抄生字一樣。

實驗中,約有三分之二的受試者體驗到「猶昧感」,這些受試者大約在重複 30 次或一分鐘後開始感到異狀。另外,研究也發現平常越容易發生「既視感」的人,也更容易發生「猶昧感」,未來「猶昧感」的相關研究,可能會加深我們對「既視感」的理解。

-----廣告,請繼續往下閱讀-----
  • 原文研究: “The The The The Induction of Jamais Vu in the Laboratory: Word Alienation and Semantic Satiation,” Chris J. A. Moulin, Nicole Bell, Merita Turunen, Arina Baharin, and Akira R. O’Connor, Memory, vol. 29, no. 7, 2021, pp. 933-942.  doi.org/10.1080/09658211.2020.1727519

機械工程獎:死靈機器蜘蛛

會招喚骷髏或操縱屍體的死靈法師稱為 Necromancer,而科學家再次中二病發作,把用液壓操控的蜘蛛屍體,稱作 Necrorobotics 死靈機器。

我跟同事討論這種死靈機器,算不算是一種仿生科技?他覺得是,我覺得不是,你們覺得呢?

  • 原文研究:“Necrobotics: Biotic Materials as Ready-to-Use Actuators,” Te Faye Yap, Zhen Liu, Anoop Rajappan, Trevor J. Shimokusu, and Daniel J. Preston, Advanced Science, vol. 9, no. 29, 2022, article 2201174.  doi.org/10.1002/advs.202201174
死靈機器蜘蛛。

公共醫學獎:斯坦福馬桶

恩,就是接上各種感應器的物聯網馬桶,能即時檢測使用者的糞便與尿液。這東西最酷的是能「肛門辨識」,只要坐到馬桶上,斯坦福馬桶就能透過肛門的型態,辨識出使用者!

因為這個獎項,我才知道原來每個人的肛門都長得不一樣……謝謝你,搞笑諾貝爾獎。

-----廣告,請繼續往下閱讀-----
  • 原文研究:
    •  “A Mountable Toilet System for Personalized Health Monitoring via the Analysis of Excreta,” Seung-min Park, Daeyoun D. Won, Brian J. Lee, Diego Escobedo, Andre Esteva, Amin Aalipour, T. Jessie Ge, et al., Nature Biomedical Engineering, vol. 4, no. 6, 2020, pp. 624-635.  doi.org/10.1038/s41551-020-0534-9
    • “Digital Biomarkers in Human Excreta,” Seung-min Park, T. Jessie Ge, Daeyoun D. Won, Jong Kyun Lee, and Joseph C. Liao, Nature Reviews Gastroenterology and Hepatology, vol. 18, no. 8, 2021, pp. 521-522.  doi.org/10.1038/s41575-021-00462-0
    • “Smart Toilets for Monitoring COVID-19 Surges: Passive Diagnostics and Public Health,” T. Jessie Ge, Carmel T. Chan, Brian J. Lee, Joseph C. Liao, and Seung-min Park, NPJ Digital Medicine, vol. 5, no. 1, 2022, article 39.  doi.org/10.1038/s41746-022-00582-0
    • “Passive Monitoring by Smart Toilets for Precision Health,” T. Jessie Ge, Vasiliki Nataly Rahimzadeh, Kevin Mintz, Walter G. Park, Nicole Martinez-Martin, Joseph C. Liao, and Seung-min Park, Science Translational Medicine, vol. 15, no. 681, 2023, article eabk3489.  doi.org/10.1126/scitranslmed.abk3489

傳播獎:嗎話說著倒能你?

趣有超也獎學播傳,心擔別,的常正是來過反來起看子句得覺在現你!

你有試過快速把彩虹的顏色順序倒著背,或是把你說話中的每個名詞都倒過來講嗎?大家都知道這超難,但這份研究中的兩位受試著確有著超強「顛倒單字或語句」的能力。

研究對象以西班牙語為母語,他們能在對話中輕鬆地將 banana 念成 ananab,或是將「 basket is fun」念成「nuf si teksab」。研究著重在這兩位有著特殊能力的人,推理、記憶能力是否優於常人,以及大腦灰質、白質比例與一般人(對照組)是否有差別。

大腦如何組織語言一直都是個有趣的研究題目,像是為什麼中文的序順不會響影到閱讀,這也是 A 編跟大家都一樣好奇的。而了解大腦語言是如何形成的,也能推進對於失語症、癡呆症的症狀研究。

-----廣告,請繼續往下閱讀-----
  • 原文研究:“Neurocognitive Signatures of Phonemic Sequencing in Expert Backward Speakers,” María José Torres-Prioris, Diana López-Barroso, Estela Càmara, Sol Fittipaldi, Lucas Sedeño, Agustín Ibáñez, Marcelo L. Berthier, and Adolfo M. García, Scientific Reports, vol. 10, no. 10621, 2020.  doi.org/10.1038/s41598-020-67551-z

醫學獎:屍體兩個鼻孔的鼻毛數量是否一致?

俗稱鬼剃頭的「圓禿」(Alopecia areata)不只會頭髮脫落,同時睫毛、眉毛與鼻毛也會脫落,其中,鼻毛脫落會增加得到過敏、呼吸道感染的機率。

由於鼻毛的相關研究非常少,為此,研究者調查 20 具「遺體」的鼻毛數量與長度,並收集相關病史、死往原因…等數據,來評估正常人的鼻毛數量與長度。研究結果顯示,平均每個鼻孔的鼻毛數量約為 120~122 根,左右鼻孔並沒有顯著差異,鼻毛平均長度大約是 1 公分。

  • 原文研究:“The Quantification and Measurement of Nasal Hairs in a Cadaveric Population,” Christine Pham, Bobak Hedayati, Kiana Hashemi, Ella Csuka, Margit Juhasz, and Natasha Atanaskova Mesinkovska, Journal of The American Academy of Dermatology, vol. 83, no. 6, 2020, pp. AB202-AB202.  doi.org/10.1016/j.jaad.2020.06.902

營養獎:電流有一股「電味」

日本明治大學教授宮下芳明 (Homei Miyashita)與他的團隊,發現在筷子與吸管上附加微弱電流,會改變食物的味道。

他們發現微弱電流刺激舌頭時,會產生一股「電味」(論文上寫 Electric taste,你說我要怎麼翻比較好) 。這股「電味」味道如何呢?基本上沒有味道(不能啟動味覺細胞),但如果有其他味道存在,例如鹹味(氯化鈉)或鮮味(麩胺酸鈉),電味會讓食物吃起來更鹹或更鮮。

-----廣告,請繼續往下閱讀-----

接著,他們發明了連著電線的通電筷子與吸管(看起像整人玩具),證明了通電筷子與吸管確實能在不改變食物味道的情況下,讓人們吃進更少的鹽跟味精。

通電吸管構造
  • 原文研究:“Augmented Gustation Using Electricity,” Hiromi Nakamura and Homei Miyashita, Proceedings of the 2nd Augmented Human International Conference, March 2011, article 34.  doi.org/10.1145/1959826.1959860

教育獎:系統性研究課堂上感覺無聊的學生與老師

你覺得上課無聊嗎?多半人都會問答「是」,而這系列研究仔細分析了為什麼上課無聊,且越來越無聊的原因。

你可能會想:「那不就是老師上課很無聊啊,老師不有趣阿。」我只能說你們這樣太沒同理心了,搞不好老師也在想:「教你們真無聊!」

所以,研究者第一個想探討的問題是:「老師如果覺得無聊,會不會讓學生也覺得無聊。」先說結論,不會。

-----廣告,請繼續往下閱讀-----

雖然學生不會刻意去了解老師的心情。但如果學生明確感受到老師很無聊,像是死氣沉沉地念課文,學生就會覺得這堂課更無聊,進而影響學習動機與學習成效。某種程度上,研究還是印證了「老師不有趣覺得無聊」這件事,但老師是否在強顏歡笑,這就不得而知了。

另一個問題則是:「是不是想著上課很無聊,就會覺得更無聊?」沒錯,的確是這樣!只要上課前預期這堂課很無聊,那這堂課就會比你預期的還要更無聊!

  • 原文研究:
    • “Boredom Begets Boredom: An Experience Sampling Study on the Impact of Teacher Boredom on Student Boredom and Motivation,” Katy Y.Y. Tam, Cyanea Y. S. Poon, Victoria K.Y. Hui, Christy Y. F. Wong, Vivian W.Y. Kwong, Gigi W.C. Yuen, Christian S. Chan, British Journal of Educational Psychology, vol. 90, no. S1, June 2020, pp. 124-137.  https://pubmed.ncbi.nlm.nih.gov/31342514/
    • “Whatever Will Bore, Will Bore: The Mere Anticipation of Boredom Exacerbates its Occurrence in Lectures,” Katy Y.Y. Tam, Wijnand A.P. Van Tilburg, Christian S. Chan, British Journal of Educational Psychology, epub 2022.   doi.org/10.1111/bjep.12549

心理學獎:你會跟著抬頭看天空嗎?

他們到底在看什麼?眼前一群人停下腳步抬頭看著上方,你一定會跟著將視線移向相同的地方,看看他們到底在看什麼。

沒錯,這就是著名的從眾效應,或稱做群聚效應、羊群效應。這個1969年進行的經典實驗,應該很多人也聽說過。Stanley Milgram、Leonard Bickman、Lawrence Berkowitz 三人組,在紐約的街道上測試要有多少人同時往上看,才能吸引其他人也駐足湊熱鬧。

-----廣告,請繼續往下閱讀-----

這個實驗能得獎感覺毫不意外,甚至覺得怎麼現在才得獎!

群聚效應引響甚遠,因為整個社會的運作都養類人與人之間的互動與連結。不管是跟風買東西、參與熱鬧的大型活動、政治意識型態的抉擇等等,都能看到群聚效應影響著人們的身影。

大家都有可能是羊群裡面的羊。

  • 原文研究:“Note on the Drawing Power of Crowds of Different Size,” Stanley Milgram, Leonard Bickman, and Lawrence Berkowitz, Journal of Personality and Social Psychology, vol. 13, no. 2, 1969, pp. 79-82. psycnet.apa.org/doi/10.1037/h0028070

物理學獎:一群鯷魚能影響海流?

一隻拍翅膀的蝴蝶能讓海的對面產生颶風,那一群在海中游泳的鯷魚呢?他們可能直接影響了洋流與海面的大氣流動。

如果要計算颱風能量或是海洋鹽分的變化,我們通常會考慮海面風速與氣壓,要不然就是洋流、海溫和密度的垂直梯度等等。但這份研究發現,我們或許忽視了大海居民造成的影響。

研究發現只要到了鯷魚的產卵季,當天晚上海面附近海水的垂直混合程度會增加10~100倍。也就是這群游動的小魚們,像是攪拌棒一樣攪混了上層海洋,程度相當於地球物理現象造成的影響,對海溫與營養鹽分布的作用可能比我們想像的還大。

  • 原文研究: “Intense Upper Ocean Mixing Due to Large Aggregations of Spawning Fish,” Bieito Fernández Castro, Marian Peña, Enrique Nogueira, Miguel Gilcoto, Esperanza Broullón, Antonio Comesaña, Damien Bouffard, Alberto C. Naveira Garabato, and Beatriz Mouriño-Carballido, Nature Geoscience, vol. 15, 2022, pp. 287–292.  doi.org/10.1038/s41561-022-00916-3
所有討論 3