Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

同性戀可能源於子宮

陸子鈞
・2012/12/14 ・1600字 ・閱讀時間約 3 分鐘 ・SR值 530 ・七年級

從演化的角度來看,同性戀並不是一種將自己的基因傳給下一代的好方法,那麼同性戀是怎麼持續存在人類族群中的呢?再說,目前為止也沒找到任何「同性戀基因」,那麼是什麼機制決定先天的性向呢?

最近新提出的假說認為,答案可能不是DNA,而可能是胎兒在母親子宮內發育的過程中,為了因應母體內由胎兒跟母親共同產生的荷爾蒙濃度改變,與性有關的基因被開啟或關閉。這樣如同拔河般的動態對於未出生的小孩是有益的,可以讓胎兒在發展成男孩或女孩的過程中保持穩定,不受賀爾蒙高高低低影響。但如果這樣的表徵遺傳學(epigenetic)上的改變,持續到他們出生之後,並且有了下一代,那一部份的子代就有可能成為同性戀。

加州大學聖塔芭芭拉分校(University of California, Santa Barbara)的演化遺傳學家萊斯(William Rice)好奇,為什麼同性戀並未隨著世代漸漸從族群中消失?據估計,人類族群中有8%的同性戀者,而且已經知道同性戀有家族史;在雙胞胎中,如果其中一位是同性戀者,有20%的可能另一位也是。

此外,萊斯強調「同性戀並非人類獨有。」像是他辦公室窗外的加州鷗Larus californicus),有14%的伴侶就是「雌鳥和雌鳥的」組合。還有像是黑天鵝,有6%是雄鳥和雄鳥的組合;有8%的公綿羊會受公羊的吸引。

-----廣告,請繼續往下閱讀-----

然而,很多基因檢測都找不到到底是哪些基因與性向有關。因此,為了解釋同性戀是如何在族群中保留,萊斯和其他研究人員開始搜尋相關文獻。

過去,科學家認為胎兒的性別取決於卵子是和帶有X或Y染色體的精子結合;胎兒Y染色體上的基因,大約在懷孕期8周左右,會開始發展睾丸,而睾丸則開始製造男性荷爾蒙,像是睪固酮(testosterone),所以胎兒就成為男孩。假如沒有Y染色體,自然也就不會製造睪固酮,便成為女孩。

不過科學家發現睪固酮無法完整解釋一切。首先,女嬰胚胎還會接收微量來自腎上腺、胎盤和母親內分泌系統的荷爾蒙。而且在懷孕期間,男嬰和女嬰的胚胎其實接受的睪固酮濃度相當;有時女嬰接受的睾酮比一般來得高,男嬰接受的比一般來得低,但都不會影響生殖器或者大腦發育。

一些研究發現,男嬰和女嬰對子宮環境的荷爾蒙濃度有不同的反應-即使荷爾蒙只是很短暫的偏高。萊斯和他的同事將研究發表在《生物學綜合評論季刊》(The Quarterly Review of Biology)。研究團隊認為,對性荷爾蒙的敏感程度不同,是源自於表徵遺傳學的差異。這些差異決定了基因何時、是否啟動,以及要啟動多少,而非直接改變基因的組成結構。方式是以化學調控基因的啟動子(promoter)區域,或「開關」。研究者假設,舉例來說,在睾酮對胎兒發揮作用的過程中,表徵遺傳在某些關鍵點上的改變,可以依照需要鈍化或加強該賀爾蒙的活性。

-----廣告,請繼續往下閱讀-----

雖然表徵遺傳學的改變通常都是暫時的,但有時候這個改變能傳給後代(舉例來說,像是〈吃高脂食物會債留子孫〉)。根據萊斯提出的假設,同性戀的父母,在他們(父母)自己出生前的胎兒時期就對異性的賀爾蒙產生抗拒,免於受到干擾。然而這些表徵遺傳標記(epi-marks)調控了父母的基因,以拒絕過量的睪固酮,卻也可能影響改變了他們的孩子腦中與性向、性偏好相關腦區的基因表現活躍程度。也就是說,上一代在胎兒時期為了應對過量賀爾蒙而產生的基因保護反應,傳到了下一代,影響了其性向。

萊斯說:「表徵遺傳學上的改變,可能在(父母自己的)胎兒發育初期,提供對父母的保護。」這項演化上的優勢,可能使同性戀在世代中保留下來。

明尼蘇達大學(University of Minnesota)的演化生物學家佐克(Marlene Zuk)表示:「萊斯的研究非常驚人!解釋了遺傳差異的可能成因,而且這差異還得以保留,因為和生殖有密切的關係。」不過她補充到,目前科學家還是無法解釋為什麼這樣的表徵遺傳上的差異,會讓一個人受到同性的吸引。顯然科學家還沒把故事講完。

資料來源:Homosexuality May Start in the Womb. ScienceNow [11 December 2012]

-----廣告,請繼續往下閱讀-----

原始文獻:William R. Rice, Urban Friberg, and Sergey Gavrilets. Homosexuality as a Consequence of Epigenetically Canalized Sexual Development. The Quarterly Review of Biology, 2012; 87 (4)

-----廣告,請繼續往下閱讀-----
文章難易度
陸子鈞
294 篇文章 ・ 4 位粉絲
Z編|台灣大學昆蟲所畢業,興趣廣泛,自認和貓一樣兼具宅氣和無窮的好奇心。喜歡在早上喝咖啡配RSS,克制不了跟別人分享生物故事的衝動,就連吃飯也會忍不住將桌上的食物作生物分類。

0

0
0

文字

分享

0
0
0
LDL-C 正常仍中風?揭開心血管疾病的隱形殺手 L5
鳥苷三磷酸 (PanSci Promo)_96
・2025/06/20 ・3659字 ・閱讀時間約 7 分鐘

本文與 美商德州博藝社科技 HEART 合作,泛科學企劃執行。

提到台灣令人焦慮的交通,多數人會想到都市裡的壅塞車潮,但真正致命的「塞車」,其實正悄悄發生在我們體內的動脈之中。

這場無聲的危機,主角是被稱為「壞膽固醇」的低密度脂蛋白( Low-Density Lipoprotein,簡稱 LDL )。它原本是血液中運送膽固醇的貨車角色,但當 LDL 顆粒數量失控,卻會開始在血管壁上「違規堆積」,讓「生命幹道」的血管日益狹窄,進而引發心肌梗塞或腦中風等嚴重後果。

科學家們還發現一個令人困惑的現象:即使 LDL 數值「看起來很漂亮」,心血管疾病卻依然找上門來!這究竟是怎麼一回事?沿用數十年的健康標準是否早已不敷使用?

膽固醇的「好壞」之分:一場體內的攻防戰

膽固醇是否越少越好?答案是否定的。事實上,我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(High-Density Lipoprotein,簡稱 HDL)和低密度脂蛋白( LDL )。

-----廣告,請繼續往下閱讀-----

想像一下您的血管是一條高速公路。HDL 就像是「清潔車隊」,負責將壞膽固醇( LDL )運來的多餘油脂垃圾清走。而 LDL 則像是在血管裡亂丟垃圾的「破壞者」。如果您的 HDL 清潔車隊數量太少,清不過來,垃圾便會堆積如山,最終導致血管堵塞,甚至引發心臟病或中風。

我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(HDL)和低密度脂蛋白(LDL)/ 圖片來源:shutterstock

因此,過去數十年來,醫生建議男性 HDL 數值至少應達到 40 mg/dL,女性則需更高,達到 50 mg/dL( mg/dL 是健檢報告上的標準單位,代表每 100 毫升血液中膽固醇的毫克數)。女性的標準較嚴格,是因為更年期後]pacg心血管保護力會大幅下降,需要更多的「清道夫」來維持血管健康。

相對地,LDL 則建議控制在 130 mg/dL 以下,以減緩垃圾堆積的速度。總膽固醇的理想數值則應控制在 200 mg/dL 以內。這些看似枯燥的數字,實則反映了體內一場血管清潔隊與垃圾山之間的攻防戰。

那麼,為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。我們吃下肚或肝臟製造的脂肪,會透過血液運送到全身,這些在血液中流動的脂肪即為「血脂」,主要成分包含三酸甘油酯和膽固醇。三酸甘油酯是身體儲存能量的重要形式,而膽固醇更是細胞膜、荷爾蒙、維生素D和膽汁不可或缺的原料。

-----廣告,請繼續往下閱讀-----

這些血脂對身體運作至關重要,本身並非有害物質。然而,由於脂質是油溶性的,無法直接在血液裡自由流動。因此,在血管或淋巴管裡,脂質需要跟「載脂蛋白」這種特殊的蛋白質結合,變成可以親近水的「脂蛋白」,才能順利在全身循環運輸。

肝臟是生產這些「運輸用蛋白質」的主要工廠,製造出多種蛋白質來運載脂肪。其中,低密度脂蛋白載運大量膽固醇,將其精準送往各組織器官。這也是為什麼低密度脂蛋白膽固醇的縮寫是 LDL-C (全稱是 Low-Density Lipoprotein Cholesterol )。

當血液中 LDL-C 過高時,部分 LDL 可能會被「氧化」變質。這些變質或過量的 LDL 容易在血管壁上引發一連串發炎反應,最終形成粥狀硬化斑塊,導致血管阻塞。因此,LDL-C 被冠上「壞膽固醇」的稱號,因為它與心腦血管疾病的風險密切相關。

高密度脂蛋白(HDL) 則恰好相反。其組成近半為蛋白質,膽固醇比例較少,因此有許多「空位」可供載運。HDL-C 就像血管裡的「清道夫」,負責清除血管壁上多餘的膽固醇,並將其運回肝臟代謝處理。正因為如此,HDL-C 被視為「好膽固醇」。

-----廣告,請繼續往下閱讀-----
為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。/ 圖片來源:shutterstock

過去數十年來,醫學界主流觀點認為 LDL-C 越低越好。許多降血脂藥物,如史他汀類(Statins)以及近年發展的 PCSK9 抑制劑,其主要目標皆是降低血液中的 LDL-C 濃度。

然而,科學家們在臨床上發現,儘管許多人的 LDL-C 數值控制得很好,甚至很低,卻仍舊發生中風或心肌梗塞!難道我們對膽固醇的認知,一開始就抓錯了重點?

傳統判讀失準?LDL-C 達標仍難逃心血管危機

早在 2009 年,美國心臟協會與加州大學洛杉磯分校(UCLA)進行了一項大型的回溯性研究。研究團隊分析了 2000 年至 2006 年間,全美超過 13 萬名心臟病住院患者的數據,並記錄了他們入院時的血脂數值。

結果發現,在那些沒有心血管疾病或糖尿病史的患者中,竟有高達 72.1% 的人,其入院時的 LDL-C 數值低於當時建議的 130 mg/dL「安全標準」!即使對於已有心臟病史的患者,也有半數人的 LDL-C 數值低於 100 mg/dL。

-----廣告,請繼續往下閱讀-----

這項研究明確指出,依照當時的指引標準,絕大多數首次心臟病發作的患者,其 LDL-C 數值其實都在「可接受範圍」內。這意味著,單純依賴 LDL-C 數值,並無法有效預防心臟病發作。

科學家們為此感到相當棘手。傳統僅檢測 LDL-C 總量的方式,可能就像只計算路上有多少貨車,卻沒有注意到有些貨車的「駕駛行為」其實非常危險一樣,沒辦法完全揪出真正的問題根源!因此,科學家們決定進一步深入檢視這些「駕駛」,找出誰才是真正的麻煩製造者。

LDL 家族的「頭號戰犯」:L5 型低密度脂蛋白

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。他們發現,LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷,如同各式型號的貨車與脾性各異的「駕駛」。

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。發現 LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷。/ 圖片來源:shutterstock

早在 1979 年,已有科學家提出某些帶有較強「負電性」的 LDL 分子可能與動脈粥狀硬化有關。這些帶負電的 LDL 就像特別容易「黏」在血管壁上的頑固污漬。

-----廣告,請繼續往下閱讀-----

台灣留美科學家陳珠璜教授、楊朝諭教授及其團隊在這方面取得突破性的貢獻。他們利用一種叫做「陰離子交換層析法」的精密技術,像是用一個特殊的「電荷篩子」,依照 LDL 粒子所帶負電荷的多寡,成功將 LDL 分離成 L1 到 L5 五個主要的亞群。其中 L1 帶負電荷最少,相對溫和;而 L5 則帶有最多負電荷,電負性最強,最容易在血管中暴衝的「路怒症駕駛」。

2003 年,陳教授團隊首次從心肌梗塞患者血液中,分離並確認了 L5 的存在。他們後續多年的研究進一步證實,在急性心肌梗塞或糖尿病等高風險族群的血液中,L5 的濃度會顯著升高。

L5 的蛋白質結構很不一樣,不僅天生帶有超強負電性,還可能與其他不同的蛋白質結合,或經過「醣基化」修飾,就像在自己外面額外裝上了一些醣類分子。這些特殊的結構和性質,使 L5 成為血管中的「頭號戰犯」。

當 L5 出現時,它並非僅僅路過,而是會直接「搞破壞」:首先,L5 會直接損傷內皮細胞,讓細胞凋亡,甚至讓血管壁的通透性增加,如同在血管壁上鑿洞。接著,L5 會刺激血管壁產生發炎反應。血管壁受傷、發炎後,血液中的免疫細胞便會前來「救災」。

-----廣告,請繼續往下閱讀-----

然而,這些免疫細胞在吞噬過多包括 L5 在內的壞東西後,會堆積在血管壁上,逐漸形成硬化斑塊,使血管日益狹窄,這便是我們常聽到的「動脈粥狀硬化」。若這些不穩定的斑塊破裂,可能引發急性血栓,直接堵死血管!若發生在供應心臟血液的冠狀動脈,就會造成心肌梗塞;若發生在腦部血管,則會導致腦中風。

L5:心血管風險評估新指標

現在,我們已明確指出 L5 才是 LDL 家族中真正的「破壞之王」。因此,是時候調整我們對膽固醇數值的看法了。現在,除了關注 LDL-C 的「總量」,我們更應該留意血液中 L5 佔所有 LDL 的「百分比」,即 L5%。

陳珠璜教授也將這項 L5 檢測觀念,從世界知名的德州心臟中心帶回台灣,並創辦了美商德州博藝社科技(HEART)。HEART 在台灣研發出嶄新科技,並在美國、歐盟、英國、加拿大、台灣取得專利許可,日本也正在申請中,希望能讓更多台灣民眾受惠於這項更精準的檢測服務。

一般來說,如果您的 L5% 數值小於 2%,通常代表心血管風險較低。但若 L5% 大於 5%,您就屬於高風險族群,建議進一步進行影像學檢查。特別是當 L5% 大於 8% 時,務必提高警覺,這可能預示著心血管疾病即將發作,或已在悄悄進展中。

-----廣告,請繼續往下閱讀-----

對於已有心肌梗塞或中風病史的患者,定期監測 L5% 更是評估疾病復發風險的重要指標。此外,糖尿病、高血壓、高血脂、代謝症候群,以及長期吸菸者,L5% 檢測也能提供額外且有價值的風險評估參考。

隨著醫療科技逐步邁向「精準醫療」的時代,無論是癌症還是心血管疾病的防治,都不再只是單純依賴傳統的身高、體重等指標,而是進一步透過更精密的生物標記,例如特定的蛋白質或代謝物,來更準確地捕捉疾病發生前的徵兆。

您是否曾檢測過 L5% 數值,或是對這項新興的健康指標感到好奇呢?

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
1

文字

分享

0
1
1
貓咪也會學鳥叫?揭秘貓貓發出「喀喀聲」背後的可能原因
F 編_96
・2024/12/24 ・2480字 ・閱讀時間約 5 分鐘

F 編按:本文編譯自 Live Science

貓是一種神秘而又引人注目的動物,牠們看似深居簡出,但擁有多元的聲音表達:從吸引人類注意的「喵喵叫」,到面對威脅時的「嘶嘶聲」與低沉的「咆哮」。

延伸閱讀:貓咪為什麼總愛對人喵喵叫?看貓如何用聲音征服人類的心

然而,細心的貓奴們可能會注意到,貓有時會對著窗外的鳥兒或屋內小動物玩具,發出一種獨特的「卡卡聲」或「咯咯聲」。這種聲音既像牙齒打顫,又好似一陣陣輕微的顫鳴,卻很難歸類到常見的喵叫或咆哮裡。這種名為「chatter」的行為,究竟在貓的生活中扮演什麼角色?目前科學界尚未對此有定論,但有幾種廣為討論的假說,或許能為我們提供一些思考方向。

卡卡叫:情緒的釋放或表達?

有些貓行為專家推測,貓咪在看到獵物(如窗外的鳥、老鼠)卻無法接近時,會因「欲捕無法」的挫折感或興奮感,發出這種「卡卡聲」。就像人類遇到障礙時,可能會發出抱怨的咕噥聲或乾著急的嘆息聲一樣,貓咪的「喀喀聲」也可能只是把當下的情緒外顯,並非有特別針對人或其他動物的溝通目的。

  • 情緒假說
    • 挫折:當貓看見鳥兒在窗外飛舞卻無法撲殺,內心焦躁,遂用聲音抒發。
    • 興奮:或許貓在準備捕獵時也感到高度亢奮,因此嘴部不自覺抖動並出聲。
貓咪的「喀喀聲」可能源於挫折或興奮情緒,表達捕獵受阻的內在反應。圖/envato

要在科學上驗證「情緒假說」並不容易,因為需要同時測量貓咪行為和生理指標。例如,研究人員可能需要測量貓咪在卡卡叫時的壓力荷爾蒙變化,才能確認牠們究竟是帶著正面興奮,或是負面挫折的情緒。不過,由於貓的獨立特質,實驗設計往往困難重重,樣本量要足夠也不容易,所以至今沒有定論。

-----廣告,請繼續往下閱讀-----

增強嗅覺?貓咪的「第二鼻子」

另一種說法則認為,貓咪發出「卡卡聲」時,可能同時開啟了其位於口腔上顎的「犁鼻器」(vomeronasal organ),也稱作「賈氏器官(Jacobson’s organ)」。這個感知器官能捕捉一般鼻腔聞不到的化學分子,如費洛蒙或特定氣味分子,因此對貓的求偶、社交和獵捕行為都非常重要。

  • 嗅覺假說
    • 張口呼吸:如果貓咪一邊「咯咯咯」地開合上下顎,可能在嘗試讓空氣(及其中所含的氣味分子)進入犁鼻器。
    • 蒐集更多環境資訊:在確定下手前,更完整的嗅覺分析或能提高牠們獵捕成功率,或是幫助判斷環境中是否有其他潛在威脅或機會。

然而,要科學驗證「增強嗅覺假說」同樣不簡單。研究人員不僅要觀察貓咪在卡卡叫時的行為,也需要測量牠們是否真的打開了更大的氣道,並在那個同時有效使用犁鼻器。這些行為與生理測量都必須在相對可控卻又不影響貓自由行動的實驗環境中進行,實務上難度頗高。

聲音模仿:貓咪的「偽鳥叫」?

貓咪的「卡卡聲」或許是為了模仿獵物的聲音,讓獵物降低警戒。圖/envato

第三種最有趣也最具「野性色彩」的假說,是「模仿獵物聲音」。在野外,一些中南美洲的小型貓科動物(例如:長尾虎貓,又稱美洲豹貓或瑪家貓,Margay)曾被觀察到,在捕獵小猴群時,發出類似猴子叫聲的音調;有些當地原住民族群也傳說,叢林裡的某些捕食者會模仿目標獵物的聲音來誘捕。由此推測,家貓看到鳥兒時發出的「卡卡聲」,可能包含些微模仿鳥兒啁啾的元素,試圖降低獵物警戒或甚至吸引獵物靠近。

  • 模仿假說
    • 案例參考:野生貓科動物曾出現學習或偽裝聲音的紀錄。
    • 家貓可能繼承的行為:家貓的祖先——北非野貓(African wildcat)及其他小型貓科物種,是否具備聲音模仿能力?這在生物演化研究上仍是未解之謎。
    • 缺乏大規模觀察:由於小型野生貓科動物研究資料有限,且家貓實驗更不易做大樣本長期追蹤,最終導致此理論尚未獲得廣泛實證。

貓咪行為研究的挑戰:野性祖先的重要性

探討貓咪行為,常常需要回溯至野生祖先的棲地環境。家貓(Felis catus)普遍被認為源自北非野貓(Felis lybica),然而,野貓習性的研究本就不多,尤其是關於聲音與捕獵策略更是資料有限。我們想知道「為什麼家貓會卡卡叫」,首先要確定:「牠們的野性祖先或其他小型貓科,也有同樣的行為嗎?」若有,家貓則可能繼承自古老基因;若無,則可能是家貓在與人類共處的環境中演化出的新行為。

-----廣告,請繼續往下閱讀-----
如果要探查家貓「卡卡叫」的原因,還需要了解其祖先或其他小型貓科是否具有類似行為。圖/envato

再者,貓在實驗室中的「不可控」因素相當多。貓不像狗般樂於服從人類指令,常有自己的規律與個性。要在實驗情境下穩定地誘發貓的「卡卡叫」行為、同時檢測牠們的生理和心理反應,並確保每隻貓的個體差異都被考慮到,這些都對研究團隊是極大考驗。

對於許多貓奴來說,貓咪坐在窗邊,一邊盯著外頭的鳥兒或松鼠,一邊發出獨特的「卡卡聲」,是一幕既可愛又神祕的風景。究竟牠們是在抒發情緒、強化嗅覺、抑或真的在「假扮鳥叫」以誘捕獵物?目前沒有確切的答案。然而,也正因為這層未知,貓貓才更顯得迷人。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

F 編_96
20 篇文章 ・ 1 位粉絲
一個不小心闖入霍格華茲(科普)的麻瓜(文組).原泛科學編輯.現任家庭小精靈,至今仍潛伏在魔法世界中💃

0

1
0

文字

分享

0
1
0
演化力量下的運動場:男性為什麼在大部分運動中比女性更有優勢?——《運動基因》
行路出版_96
・2024/08/12 ・8527字 ・閱讀時間約 17 分鐘

天擇與性擇:決定人類性別差異的雙重力量

大衛.吉里(David C. Geary)在他大辦公室窗台上一本像電話簿一般厚的字典旁,放著一個女性頭骨,她俯視著密蘇里大學的校園。吉里說:「你可以看出它的顱腔很小。」吉里有張瘦削的臉,青綠色的眼珠,額前一綹灰白鬈髮看上去有點像個問號,為他的臉賦予一股好問的氣息。他開玩笑說:「她的腦大概只有我們的三分之一那麼大,所以她得待在字典旁邊,勤加練習。」吉里指的是他的「露西」頭骨等比縮小模型,而露西(Lucy)正是現代人著名的阿法南猿(Australopithecus afarensis)祖先,她的骨頭是在衣索比亞發現的,年代距今 320 萬年前。

吉里花很多時間思索大腦。他是認知發展心理學家,研究生涯主要投入於理解孩童如何學習數學,而這讓他從 2006 年到 2008 年進入布希總統召集的「全國數學顧問小組」(National Mathematics Advisory Panel)。他在性別差異研究方面也是活的資料庫。

吉里從 1980 年代還在加州大學河濱分校讀研究所時,就對人類性別差異的演化很感興趣,但考慮到生物性別差異(至少是那些超出生殖器以外的差異)的研究,本質上經常引起焦慮,吉里等到獲得終身教職之後,才開始發表人類演化方面的研究結果。接著他就爆發了。他和人合寫出一本厚達千頁的教科書,這僅僅彙集了過去一百年關於性別差異(從出生體重到社會態度)的每一項嚴肅科學研究的結果。

吉里對運動界最有趣的貢獻,是 550 頁的大部頭書《男性、女性:人類性別差異的演化》(Male, Female: The Evolution of Human Sex Differences),雖然他在我出現在他辦公室門口之前,可能還沒有這麼認為。這本書是把針對人類性別差異做過的所有研究納入性擇架構的第一本著述。

-----廣告,請繼續往下閱讀-----

查爾斯.達爾文(Charles Darwin)首先闡明了「性擇」的原則,不過比起他的另一個獨創概念「天擇」,性擇得到的主流大幅報導少了許多。天擇指的是人類 DNA 當中,應自然環境而留存或拔除的改變;而性擇是指由於競爭擇偶,而廣傳或消亡的那些 DNA 的改變。性擇是人類大部分性別差異的源頭,對理解人類運動能力至為重要。

性擇是人類多數性別差異的源頭。 圖/envato

在兩性的身體差異當中,男性通常比較重、比較高,手臂和腿相對於身高來說比較長,心臟和肺也比較大。男性慣用左手的機率是女性的兩倍──這在一些運動項目上是優點。〔3〕男性脂肪較少,骨密度較高,攜氧紅血球較多,骨骼較重而能支撐更多肌肉,而且臀部較窄,因此跑步更有效率,跑跳時受傷的機會減少──譬如前十字韌帶撕裂傷,就很常發生在女運動員身上。凱斯西儲大學(Case Western Reserve University)人類學兼解剖學教授布魯斯.拉提摩(Bruce Latimer)說:「女性骨盆較寬,與膝蓋的角度就比較大,所以會浪費很多力氣去壓縮髖關節,這對前進沒有幫助。……骨盆越寬,浪費的力氣越多。」

兩性在身體方面極明顯的一項差異在於肌肉量。男性身體內任何一塊空間裡堆積的肌纖維比女性多,而且上半身的肌肉量比女性多出 80%,腿部則多 50%。這意味著兩性上半身的肌力相差了三個標準差。也就是說,若從街上拉一千個男性,有 997 人的上半身會比普通女性強壯有力。

吉里說:「上半身的肌力差異,就跟你在大猩猩身上看到的差不多。差異非常大。大猩猩是人類近親當中雌雄差異最大的,雄性的體型大約是雌性的兩倍大,所以體型大小的差異比人類大,但上半身力氣的差異差不多。」

-----廣告,請繼續往下閱讀-----

我們和大猩猩相似的原因,正反映性擇如何塑造出人類(與大猩猩)的運動能力。倘若你想了解某物種的雄性或雌性體型是否比較大、是否比較孔武有力,那麼這個訊息特別有用:哪個性別的潛在繁殖率較高

由於懷孕期和哺乳期很長,雌性大猩猩大約每四年才會產下一隻小猩猩。雄性大猩猩會建立並捍衛自己的妻妾群,所以潛在繁殖率高出許多。但每出現一隻妻妾成群的雄性大猩猩,就會有幾隻雄性大猩猩完全沒有繁殖機會,以致牠們要為多隻雌性激烈競爭,而這種「雄性間競爭」屬於搏鬥,至少是裝作要搏鬥的架勢,於是天擇就會凸顯讓大猩猩看起來比較會打架的表徵。吉里解釋說:「雌性有較高繁殖率的那些物種,情況就反過來了,雌性的體型會比較大,也比較具攻擊性。」負責照顧卵的雄海馬會偏好壯碩的雌海馬,就不令人意外了。

在更難靠體力巡邏保護的競爭區域,如天空,雌性的擇偶眼光就更加重要,這時天擇會凸顯一些像鳥羽顏色鮮豔動人、求偶鳥鳴聲悅耳等雄性表徵。但對於主要在陸地上生活的靈長類動物,如大猩猩和原始人類,肉搏戰可能就很重要,而演化彰顯了蠻力。

這一切都蘊涵了某些與人類有關、關於我們這種地球上的靈長類動物、特別是跟男性有關,而且不太討喜的看法:男性身上選出某些表徵的目的,是讓他們能夠弄傷、殺死或者至少威嚇彼此,而且最有辦法弄傷、殺死或威嚇其他男性的男性,有時會利用這份成就和多位女性成為配偶,生下許多子女。

-----廣告,請繼續往下閱讀-----

證據的分量證實了上述這兩個含意。在狩獵採集社會中,約有 30% 的男子在搏鬥或打劫中死於其他男子之手,而且搏鬥或打劫經常是為了爭奪女人。哈佛大學心理學家史蒂芬.平克(Steven Pinker)的著作《人性中的良善天使》,談的是人類暴力的歷史與暴力在現代社會的減少。他在談到自己這本書時便說:「結果發現(湯瑪斯.)霍布斯是對的。在自然狀態下,人的生命是汙穢、野蠻、短暫的。」

至於第二個含意,即我們的祖先會爭奪多位配偶,從遺傳學證據來看是不容置疑的。由於父親的 Y 染色體 DNA 只會傳遞給兒子,只有母親會傳遞「粒線體 DNA」,所以我們可以分頭上溯母系和父系的祖先。世界各地的研究結果都很清楚:不論科學家朝哪裡看,我們的男性祖先都少於女性祖先。要孕育出目前的世界人口數,需要的亞當比夏娃少了許多。(在某些情況下居然明顯如此:有 1,600 萬個亞洲男性〔即世上男性人口的 0.5%〕有一部分的 Y 染色體幾乎相同,遺傳學家認為這可能來自以后妃上百人著稱的成吉思汗。)

在雄性間有激烈競爭的物種和靈長類身上,看得到另一個模式:對搏鬥很重要的體能,會透過青春期在雄性身上增強。對於迅速發育中的成年動物或成人,青春期凸顯了其在繁殖上很快就會需要的特質。因此,如果揮拳、擲石塊等運動特徵對繁殖很重要,就會在青春期增強。同樣的,男性完全遵循暴力的靈長類模式。女孩發育得比較早又快,男孩的青春期又晚又長,所以有更多時間成長,他們的運動能力也在這段期間爆發。

青春期的劇變:為什麼男孩在體能上後來居上?

男孩和女孩在十歲以前身體很相似,女孩長得比較高,已經有稍多的體脂肪,但一些運動特徵在男女孩身上幾乎無法區分開來。十歲男孩和女孩的最快跑步速度幾乎一致,直到十四歲之前還是相近,而當男孩到十四歲時,就很像服了天然類固醇。

-----廣告,請繼續往下閱讀-----

十四歲時,已經拉開的投擲差距會變成顯著的鴻溝。男孩發育出更強壯的手臂、更寬闊的肩膀;到十八歲時,普通男孩的投擲距離可以達到普通女孩的三倍遠。成年男性還會發展出比男孩和成年女性更難擊倒的特徵:有比較重而可以保護眼睛的眉弓,且下顎增大,讓臉部在承受重擊時更有回復能力。玻璃做的下巴顯然不符合男性祖先的條件。

睪固酮在男性青春期急劇分泌,也會刺激紅血球生成,因此男性可用的氧氣比女性多,這也讓男性對疼痛比女性不敏感〔4〕──就像接受睪固酮注射的動物和人一樣。

在青春期之後,男女的體能差異開始出現。 圖/envato

接近十四歲左右,普通女孩逐漸逼近她生涯中的最快速度了。還未進入青春期的九歲男孩和女孩,短跑項目的分齡世界紀錄幾乎不相上下,這個年紀在運動方面的性別差異沒什麼生物學上的理由。然而過了十四歲,這些紀錄就不再屬於同一個運動世界了。〔5〕

在某些情況下,進入青春期的女性,其某些運動特質會變得更糟。由於雌性素導致脂肪堆積在變寬的臀部,大多數女孩在垂直跳項目上會停滯不前或退步。就連最瘦的馬拉松成年女子選手,努力減掉大約 6% 到 8% 的體脂肪,還是男子選手的兩倍。

-----廣告,請繼續往下閱讀-----

針對奧運選手所做的研究都顯示,女運動員在某些項目的重要特徵,就是她們不像其他女性發育出較寬的臀部。如果女子體操菁英選手的身高或臀部突然明顯增長,她們的運動生涯高峰可以說就結束了。體型大小增加得比肌力快,攸關空中動作的動力體重比(power-to-weight ratio)就會朝錯誤的方向發展,她們在半空中做旋轉的能力也是如此。

據稱,在二十歲時女性體操選手就過了顛峰期,而男性體操選手仍處於生涯初期。國際奧會在確定女子體操選手董芳霄比最低參賽年齡十六歲還小兩歲之後,取消了中國隊在 2000 年雪梨奧運時奪得的女子體操團體銅牌。我們很有把握,在男子體操比賽中絕對不會看到類似的造假醜聞。如此說來,有些女運動員具備的優勢,來自某些更常見於男性身上的特徵,例如低體脂肪、窄臀等。

現在看來,1970 年代和 1980 年代時,女性在田徑運動方面之所以趕上男性的主要原因,以及《自然》期刊上的論文並未說明的原因,在於她們都只是透過注射睪固酮,來彌補所欠缺的 SRY 基因。從 1960 年代開始,冷戰競賽擴及運動場,有計畫地給女孩用禁藥(往往是在她們渾然不知的情況下),在像東德這樣的國家很普遍。

從那個時代起,最需爆發力的比賽項目的頂尖參賽女性情況變得更糟,舉例來說,女子組推鉛球的前八十名紀錄,就有七十五個是在 1970 年代中期到 1990 年創下的,而且多半來自中東歐國家。

-----廣告,請繼續往下閱讀-----
某些女性運動員身上許多優勢,在男性運動員身上更容易出現。圖/envato

第八十個成績是東德選手海蒂.克里格(Heidi Krieger)擲出來的,數十年後她在法庭上作證,說東德有系統地讓女性使用禁藥。那時她的身分已變成安德列斯.克里格(Andreas Krieger),由於使用大量類固醇(睪固酮的結構類似物)以致身體變得男性化,她最終選擇像男性一樣生活。時至今日,幾乎所有女子組短跑和爆發力型項目的世界紀錄,都是在 1980 年代創下的,這證明了男性荷爾蒙對女性選手具有強大效應。

使用禁藥的極端時代一結束,有和沒有 SRY 基因的人之間的成績差距,就重新拉開了。現在我們很清楚,在大部分運動項目中,男性勝過女性的遺傳優勢非常強大,最好的解決之道就是把男女分開來。

西北大學費恩柏格醫學院(Feinberg School of Medicine)臨床醫學人文與生物倫理教授、運動性別檢測史權威愛麗絲.德雷格(Alice Dreger)告訴我:「在運動方面把女性區隔開來,是因為許多項目中最優秀的女子選手,無法跟最優秀的男子選手競爭。大家都心知肚明,但沒有人願意說出來。基於我認為的各種好理由,女性的身體構造就像某類殘疾人士。」

判斷誰能獲准進入該類別,在 2009 年世界田徑錦標賽時是一大難題,當時800公尺賽跑的南非年輕黑馬卡絲特.賽門亞(Caster Semenya),回頭朝肌肉發達的肩膀後方望了一眼,就一路領先到底,奪得世界冠軍。賽門亞的對手在全球媒體上嘲笑她。決賽中名列第五的俄羅斯選手瑪莉亞.薩維諾娃(Mariya Savinova)語帶譏諷說:「你們看看她。」她指的是賽門亞的窄臀和宛如鎧甲般的軀幹。然而,光看著她是看不出答案的。

-----廣告,請繼續往下閱讀-----

世界錦標賽後,有報導指稱賽門亞有隱睪,沒有卵巢或子宮,而且有高濃度的睪固酮。(賽門亞未曾證實該報導或做出回應。)如果屬實,那麼應該把她歸入哪個類別?耶魯大學小兒科學教授麥倫.吉內爾(Myron Genel)表示,若想開始按照特定生物表徵來細分運動類別,「就必須進行像『西敏寺狗展』這樣的國際比賽,每個品種都有專屬的競賽。」西班牙跨欄選手馬丁內茲-帕提尼奧有 Y 染色體也有 SRY 基因,但由於她對睪固酮的作用不敏感,所以最後獲准參加女子組競賽。

2012 倫敦奧運前夕,由於賽門亞一例持續引發爭議,國際田徑總會和國際奧會宣布,將採睪固酮濃度作為性別判斷依據。不單要測分泌的睪固酮量,還要測身體能夠利用的量。

睪固酮濃度值並非連續的。典型女性體內的睪固酮濃度為每公合(deciliter,一公合等於 100 毫升)血液低於 75 毫微克,男性一般是在 240 到 1,200 毫微克之間,因此男性濃度範圍的最低值,仍比女性的最高值高出 200%。2011 年,全美大學體育聯盟經某個贊同全美女同志權益中心(National Center for Lesbian Rights)的智囊團指導,決定凡是接受變性手術成為女性的男性,都必須停賽一年等睪固酮濃度下降,才可以加入女子隊伍。

睪固酮的威力:它如何讓男性在運動中佔據優勢?

由此可以看出,大家已把睪固酮視為男性運動能力優勢的根源。不過,它可能不是唯一的源頭。我訪談研究雄性素不敏感症候群女性患者的內分泌學家時,他們全都認為,像馬丁內茲-帕提尼奧那樣染色體為 XY,卻根本無法利用睪固酮的女性,在體育圈裡的人數超出人口比例,而非低於比例。

1996 年亞特蘭大夏季奧運,即進行口腔擦拭取樣檢測的最後一屆奧運,發現 3,387 名參賽選手中有 7 位女性(大約是 1/480),帶有 SRY 基因且患有雄性素不敏感症候群。據估計,雄性素不敏感症候群的典型發生率,介於 1/20,000 和 1/64,000 之間。

五屆奧運會中,平均每 421 名女性參賽者,就有 1 人經判定有 Y 染色體,因此在世界最大的運動競技舞台上,患有雄性素不敏感症候群的女性人數大幅超出人口比例。如此說來,除了睪固酮,帶來優勢的東西也許和 Y 染色體有關。

患有雄性素不敏感症候群的女性,四肢的比例往往比較像男性,她們的手臂和腿相對於身體的比例比較長,平均身高也比一般女性高個十公分。譬如身高一米八的巴西排球選手、2000 年奧運銅牌得主艾麗卡.寇因布拉(Erika Coimbra),就是少數幾位患有雄性素不敏感症候群,而且名字被公開的運動員。(我訪談過的其中兩位內分泌學家說,在模特兒界,染色體為 XY 的女性也有人數遠多於典型發生率的現象,因為她們除了身高很高又有雙長腿外,外形上往往也非常女性化。在個人醫療資料不幸在媒體上曝光之前,高金髮的寇因布拉有「巴西芭比」的稱號。)

染色體為 XY 且對睪固酮不敏感的女性,身高之所以增高可能是成長期延長所致,因為她們沒有聽從荷爾蒙的停止訊息,也可能是 Y 染色體上會影響身高的基因導致的。多一個 Y 染色體的男性往往長得很高,國際高個子俱樂部(Tall Clubs International)裡身高最高的會員戴夫.拉斯姆森(Dave Rasmussen)有 221公分高,他就是染色體為 XYY 的男性,他父母親的身高分別是 193 公分和 175公分。

《英國運動醫學期刊》曾有篇論文指出,染色體為 XY 的女性人數超過人口比例,這個現象僅僅「觸及體育界雙性人問題的表面」。休士頓的內分泌科醫生傑夫.布朗(Jeff Brown)就在幫助一些最優秀的美國運動員(他的病人總共奪得十五面奧運金牌),他治療過許多患有局部 21-羥化酶缺乏症(partial 21-hydroxylase deficiency)的女性奧運選手,這種疾病會在家族中擴散,導致睪固酮分泌過量。〔6〕據布朗估計,這種病症在女性運動員當中的人數嚴重超出人口比例。布朗說:「問題可能是,那會不會讓她們比沒有此病症的人更有優勢?答案當然是肯定的。但那是老天賜予的。……我在跳躍運動員、短跑及長跑選手當中都看過這種疾病。」

沒有哪位科學家能夠聲稱,自己了解睪固酮對個別運動員有何確切影響,不過 2012 年有一項研究,花了三個月追蹤包括田徑和游泳等多項運動的女運動員,結果發現,菁英級競技者的睪固酮濃度,一直維持在非菁英級的兩倍以上。而且還有具渲染力的趣聞軼事。〔7〕

五十五歲的醫學物理師喬安娜.哈珀(Joanna Harper)生為男兒身,後來轉變成女性,而且恰好也是全美成績優異的分齡賽跑選手,她在 2004 年 8 月開始,用荷爾蒙療法抑制體內的睪固酮,身體轉變成女性之後,她就像任何一位優秀的科學家一樣,開始收集數據。哈珀認為她會逐漸變慢,但意外發現自己在第一個月結束前已經越跑越慢,越變越虛弱無力。

她說:「我在跑步時沒覺得不同,但就是不像以前那麼快。」哈珀在 2012 年奪得全美 55 至 59 歲組越野跑冠軍,不過年齡和性別分級的成績標準卻顯示,哈珀如今身為女性的表現,與過去身為男性的表現具同樣的競爭力。也就是說,女身哈珀相對於女性而言的表現,和轉變前相對於男性的表現一樣好,但是遠比她自己的高睪固酮前身跑得慢。

哈珀在 2003 年以男子的身分,在波特蘭主辦的赫爾維提亞半程馬拉松(Helvetia Half-Marathon)以 1 小時 23 分 11 秒完賽,而於 2005 年以女子的身分在同個比賽中跑出 1 小時 34 分 01 秒的成績,男身哈珀的完賽時間比女身時間每英里快了大約 50 秒。她也收集了其他五名從男變女的賽跑者的數據,發現全都顯示她們的速度大幅減慢。有位跑者連續十五年參加同一個 5K 賽,前八次以男性的身分,後七次是在進行過睪固酮抑制治癒後以女性身分參賽;結果,男性身分的成績始終在 19 分鐘以內,女性身分一直超過 20 分鐘。〔8〕

為何女性在耐力賽中仍然可以勝過男性?

因此,男性典型的荷爾蒙模式(高睪固酮)、骨架(身高較高、肩膀較寬、骨密度較高、手臂較長、臀部較窄)和基因(SRY 及其他基因),能夠賦予某些運動優勢。那麼接下來就有個有趣的演化問題,即:為什麼女性還會擅長運動?

女性在某些運動項目上,仍有其天生優勢。圖/envato

就像男性祖先,我們的女性祖先也需要夠擅長運動,才能長途跋涉、背孩子和木柴、砍樹、挖塊莖。不過,女性不太有機會打鬥、奔跑,或是由爬樹等費力的活動去練就出上半身的肌力。吉里和其他幾位科學家告訴我,女性擅長運動的部分原因,或許是男性也擅長運動。

想一想類似的問題:為什麼男性有乳頭?答案是因為女性有乳頭,所以男性也有。乳頭對於女性成功繁殖是絕對必要的,而在男性身上又沒什麼害處,沒有非捨棄不可的天擇壓力。哈佛大學人類學家丹.李伯曼(Dan Lieberman)研究的,是肌耐力跑(endurance running)在人類狩獵和演化上的作用,他就曾告訴我:「男性和女性不能完全分開來設計,不能像訂紅色或藍色車子那樣訂製我們。我們的基本生理特性大致相同,只有一點點差別。如果女人不需要跑步,你就可以辯稱她們的腿部不需要充當彈簧的跟腱,但這要怎麼辦到?你必須讓某個性別失去跟腱。」相反的,自然界替人類保留了一套系統,讓荷爾蒙能夠選擇性地啟動基因來達成不同效果,而不是讓大量基因產生變化。

男人和女人有幾乎完全相同的基因,但那些很小的基因差異,如 SRY 基因,會引發大量的生理結果,這會導致比賽場上的龐大差距,而不僅僅是影響身高、四肢長度之類的明顯固定特徵。男性的肌肉在舉重時增長得比女性更快,心臟對肌耐力練習的反應也比女性大又快。所以,Y 染色體上有一些小小的 DNA 差異,最後會影響此人的可訓練性(trainability,指目標能力因訓練而進步的幅度)。

而且影響其人是否為可造之才的,不只有這條染色體上的基因。

——本文摘自 大衛・艾普斯坦(David Epstein),《運動基因:頂尖運動表現背後的科學》,2020 年 12 月,行路出版,未經同意請勿轉載。

註解:

  • 慣用左手的人很少,所以對手不常面對左撇子,腦中的對應身體動作資料庫也就很淺陋,套用科學家的話來說,這就給了左撇子「負頻率相依優勢」(negative frequency dependent advantage)。以 1980 年莫斯科奧運花式擊劍賽為例,進入決賽的六個人全是左撇子。法國科學家夏洛特.弗里(Charlotte Faurie)和米榭爾.雷蒙(Michel Raymond)分析了徒手搏鬥較多的土著社會中,左撇子比例較高的情況,他們和其他研究者假設,天擇把左撇子視為一種搏鬥優勢而留下了一些人,特別是男性。
  • 認為女性因為要經歷分娩過程而比男性更能忍受疼痛,這種看法是個迷思,針對該主題做過的每項研究都反駁了這個論調。女性對疼痛比較敏感,成為慢性疼痛病患的機率更大。
    不過,女性在臨近分娩時的確對疼痛變得比較不敏感。
  • 400 公尺短跑紀錄:
    九歲男孩:1:00.87 十四歲男孩:46.96
    九歲女孩:1:00.56 十四歲女孩:52.68
  • 布朗也在男性病患身上看過局部 21- 羥化.缺乏症,但效果沒那麼引人矚目。布朗表示,大體來說,菁英運動員的內分泌系統與大多數成年人明顯不同。他說:「運動員有各種獨特的特徵,就荷爾蒙環境而言,他們就生得跟我不一樣。」
  • 研究運動員和睪固酮的生理學家克里斯提安.庫克(Christian J. Cook)說:「有個正在浮現的模式是,頂尖級的瞬間爆發力型菁英女運動員,睪固酮濃度往往和男性比較相近……那些女性往往很有本事藉由訓練增添爆發力。」庫克在 2013 年所做的小型研究發現,睪固酮濃度較高的女運動員,會比睪固酮濃度較低的夥伴選擇更劇烈的肌力訓練。
  • 我跟哈珀初次進行訪談,是為了 2012 年《運動畫刊》的文章〈跨性別運動員〉,這篇報導是我和帕布羅.托雷(Pablo S. Torre)一起寫的。我和帕布羅還採訪了凱.阿倫斯(Kye Allums),他曾是喬治華盛頓大學女子籃球隊員,也是史上第一位公開跨性別的 NCAA 一級男籃球隊選手。為了變成男性之身,阿倫斯最近開始注射睪固酮。他說他的手腳和頭部已經有所增長,聲音越來越低沉,開始長出少量鬍子,而且能夠跑得更快。醫學研究已經在病患身上發現,睪固酮的施打劑量,與增加的肌肉量和肌力之間有相依關係。
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

行路出版_96
21 篇文章 ・ 8 位粉絲
行路為「讀書共和國」出版集團旗下新創的出版社,出版知識類且富科普或哲普內涵的書籍,科學類中尤其將長期耕耘「心理學+腦科學」領域重要、具時代意義,足以當教材的出版品。 行路臉書專頁:https://www.facebook.com/WalkPublishing