0

6
2

文字

分享

0
6
2

氣候變遷、能源廢熱怎麼辦?——專訪國立陽明交通大學材料科學與工程學系吳欣潔教授

科技大觀園_96
・2021/08/04 ・2555字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

在科技迅速發展的時代,加上溫室效應等因素,用電量逐年攀升,「電」成了人類社會中不可或缺的存在。然而,你知道嗎?各種能源產生的電力,有 60% 以廢熱形式逸散到大氣中,而真的拿來用的大約只有 40%。這些大量的廢熱也造成溫室效應加劇,其中工廠以及車輛引擎為能源廢熱的大宗。「氣候變遷」及「能源需求」兩大議題,逐漸形成彼此相扣的存在,究竟孰輕孰重,能否在這之中尋找一個平衡點,成為現今科學家們亟需解決的難題。

工廠、引擎產生的廢熱會加劇溫室效應。圖/pixabay

小孩子才做選擇,熱電材料:我都要!

「我常看著窗外想著,如果能把這些熱收集起來,拿來發電,是不是就同時能夠解決廢熱和氣候變遷的問題了?」吳欣潔教授說。

現為國立陽明交通大學材料科學與工程學系的吳欣潔教授,是今年 (2021)台灣傑出女科學家第十四屆新秀獎得主,近年來專注研究綠色能源的開發與應用,從熱力學探討至熱電材料。其實,吳教授在大學時主修的是化工,後來轉至研究材料領域。吳欣潔教授說:「我當時想研究綠色能源,甚至有點天馬行空地想找出完全環保的材料來發電,因為希望作對世界有意義的事情。」

因此,吳欣潔教授的實驗室稱作「高效能熱電材料與綠色能源實驗室」,那熱電材料到底是什麼呢?基本上熱電材料是以半導體材料為主,可以讓「熱」和「電」互相轉換,目前「碲化鉍 (Bi2Te3)」與「碲化鉛 (PbTe)」是最常用的兩種熱電材料。而熱電材料究竟是怎麼做到不同能量形式的轉換呢?

-----廣告,請繼續往下閱讀-----

遇上溫度差,DoReMeSo~產生電流

首先,熱電材料是如何發電的,如同吳教授實驗室網站的第一行字「Where is a Delta-T, there is an Electricity(哪裏有溫度差,哪裏就有電)」。關鍵就在——「溫差」,我們將P型和N型半導體排列成迴路,再於兩端施加不同溫度,半導體上的電子就會往低溫處跑,電子的濃度不同而形成了電位差,便產生電流,就像瀑布會由高處往低處流,這便是所謂的塞貝克效應 (Seebeck effect),例如太空探測器便是在核反應器周圍貼上熱電元件,且熱電材料為全固態,相當安全,常用的材料系統為碲化鉛 (PbTe)。

那如果我們把發電的原理反過來,將電流通給它,也可以讓半導體電子往同一端跑,電子流動的同時也會帶走熱,進而產生溫差,達到致冷的效果,稱為皮爾特效應 (Peltier effect)。這在民生用品上較為常見,像是有些紅酒櫃便是利用熱電致冷的原理,因此不需要壓縮機,體積也可以縮小許多,常用的材料系統為碲化鉛 (PbTe)為碲化鉍 (Bi2Te3)。

茫茫材料海中能夠遇見你

那我們理解到溫差能夠產生電流後,就從此過著幸福快樂的日子了嗎?當然沒有,有句話說:「理想很豐滿,現實卻很骨感。」

而熱電材料所面臨的現實就是,大家最關心的「轉換效率」,而能夠代表熱電材料轉換效率的數值稱為「ZT 值」,ZT 值若大於 1,表示轉換效率有機會大於 10%。「如果我們想找到 ZT 值高的材料,就要它的導熱差,但導電好,目前多鎖定在半導體材料。」吳欣潔解釋。除此之外,依據塞貝克效應,會在材料的兩端施予溫差,並且期望未來能夠規模化生產,因此必須是具穩定性的材料。且希望熱電材料能夠是一種綠色能源,所以也不能含有會汙染環境的成分。總而言之,細數這些考量及條件後,發現要找到適合的熱電材料簡直比找到靈魂伴侶還難!

-----廣告,請繼續往下閱讀-----

吳欣潔笑著說:「所以就像找伴侶一樣,先確定你的首要條件,我們做的是綠色能源,所以希望能從環境友善的材料出發。」半導體材料通常是一個母元素再參雜其他微量元素,比如常用的碲化鉛 (PbTe)之中的鉛 Pb 對環境有污染性,尋找其他可替代的發電用無鉛熱電材料,也是目前迫切之議題。

刪去不符合首要條件的元素後,接著要開始尋找適合的材料比例,吳教授的實驗室採用的方法是「相圖(phase diagram)」,它就像是材料界中的 google map,相圖可以告訴我們對這個材料而言,最好的組成配比是什麼,哪個區間的 ZT 值可能最高,哪裡的狀態最穩定。然而,要製作出一張相圖需要耗費的時間與人力成本十分可觀,但相圖資料庫的累積卻對未來材料科學的發展有很大的幫助,因此吳欣潔也希望,之後可以和人工智慧結合,加速數據的分析以及材料系統的研究。

基本的相圖可以告訴我們在不同的溫度與壓力時,材料的狀態變化。本圖為水的相圖。文中的相圖會再融入不同材料混合後的狀態。圖/wikipedia

用熱發電行不行?熱電材料的未來發展

吳欣潔也提及,熱電材料的研究需要跨領域的專業,例如化工、物理、電機、製成等,台灣在 2019 年成立了台灣熱電學會,希望能夠推廣熱電相關學術研究在台灣的普及,提升基礎研究與產業界的交流。

關於熱電材料未來的發展,吳教授表示,未來若能將環境中大量的廢熱回收,就能大幅度減緩溫室效應及能源耗竭的問題。在民生用途上,或許能夠在穿戴式裝置安裝熱電元件,利用人體體溫及環境的溫差來發電。

-----廣告,請繼續往下閱讀-----
利用熱電材料製作的穿戴式智慧恆溫貼片。圖/UC San Diego

此外,吳教授說,台灣在熱電材料領域有一定的優勢,例如環境上我們有地熱溫泉,而她也認為台灣的學生相當聰明且基礎訓練佳,適合進行前端研究。在「找材料比找伴侶還難」的熱電材料領域進行研究,或許會遇到很多瓶頸,但吳教授卻說:「做研究的每天都有挫折,每天都有不盡人意的事情,但我覺得重點是從甚麼角度看待,保持樂觀、彈性的態度,就會覺得每一天都有新的發現。」

資料來源

文章難易度
科技大觀園_96
82 篇文章 ・ 1124 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。

0

0
0

文字

分享

0
0
0
為何電子元件已經做了塗膠防護處理,仍會發生腐蝕甚至導致產品失效?
宜特科技_96
・2023/12/22 ・5635字 ・閱讀時間約 11 分鐘

-----廣告,請繼續往下閱讀-----

電子元件發生腐蝕
圖/宜特科技

像電動車、充電樁使用於車用、工業用與戶外級別的電子產品,因應使用環境電子元件都需要採用三防膠塗佈保護,才能防止污染、腐蝕等問題。但為什麼,產品即便已經做了塗膠防護處理,仍會發生硫化腐蝕最終導致故障呢?原因可能就出在「膠」選得不對!

本文轉載自宜特小學堂〈為何已採用三防膠塗佈的電子產品,仍然發生硫化腐蝕失效〉,如果您對半導體產業新知有興趣,歡迎按下右邊的追蹤,就不會錯過宜特科技的最新文章!

選對三防膠材材有效 影片
點擊圖片收看影片版

近年來,伴隨環保概念提升與綠能意識抬頭,燃油類設備機具減少、電子產品數量增加,生活中最常見的就是電動車和充電樁變得越來越多。由於這類電子硬體設備會長期待在室外環境,加上日趨嚴重的空氣污染威脅,腐蝕性氣體、水分、污染物、懸浮微粒會直接或間接地造成產品中的元件生鏽或腐蝕,就會發生故障影響產品的使用壽命。而三防膠就是為了加強保護電子元件、延長設備壽命、確保安全性與可靠性所誕生的一種塗料。

一、 什麼是三防膠(Conformal Coating)?哪些產品特別需要使用三防膠?

有三防膠塗佈的電路板。圖/百度百科

三防膠又稱三防漆,跟大家概念中的膠或是漆有點像,它是常用於電路板上的一種特殊塗料。三防膠具有良好的耐高低溫特性,經由三防膠塗佈的電路板會產生一層「透明聚合物薄膜」,就能維持電路板外形並保護好電子元件,達到「防濕氣」、「防污」、「防腐蝕」的效果,因此才被稱為「三防」膠。

前面有談到,因應全球環境變化,電子產品卻越來越多元、越來越精密的條件下,現代電子硬體設備不僅擁有高性能,還需要具備抵抗惡劣環境的能力,像是應用在工業、車用、航太、戶外級別的電子產品,例如:資料中心、工業電腦、電動車、儲能站與低軌衛星等等……。

-----廣告,請繼續往下閱讀-----

這些產品比起一般家電的使用環境更加嚴苛,尤其在面對含硫化氣體污染高的環境,特別容易造成「硫化腐蝕現象」,因此在製程中,電子元件必須做好三防膠塗佈處理、提升產品可靠度是非常重要的事。

什麼是「硫化腐蝕」跟「爬行腐蝕」?

硫化腐蝕(Sulfur Corrosion):當空氣污染物中含有豐富的硫化合物,會導致許多工業器件上各種金屬與合金材料的表面產生嚴重的腐蝕現象,若伴隨其他氣體污染物的存在,會導致氣體協同效應進而產生不同硫化腐蝕的特徵與機理。富含硫的氣體,如硫化氫(H2S)、環八硫(S8)與二氧化硫(SO2)就是一般常見造成電子設備發生硫化腐蝕的氣體。

爬行腐蝕(Creep corrosion):爬行腐蝕是屬於硫化腐蝕其中一種的失效機理,典型的案例在印刷電路板與導線架封裝元件最為常見。由於裸露的金屬銅接觸到環境中硫化物的腐蝕性氣體,會進行反應生成硫化亞銅(Cu2S)的腐蝕產物,一旦電子產品表面清潔度不佳或環境有氯氣存在時,其固體腐蝕物將會沿著電路與阻焊層/封裝材料表面遷移生長的過程,導致相鄰焊盤和電路間的電氣短路失效現象,我們稱之為爬行腐蝕的失效模式。

印刷電路的爬行腐蝕
印刷電路的爬行腐蝕。圖/Barry Hindin, Ph.D, Battelle Columbus Operations
導線架封裝元件的爬行腐蝕
導線架封裝元件的爬行腐蝕。圖/Dr. P. Zhao, University of Maryland

當電子產品發生硫化腐蝕,會導致設備發生短路或開路的故障風險,像發生在印刷電路板或導線架封裝的爬行腐蝕(下圖一、圖二、圖三),或是表面貼裝被動元件的硫化腐蝕(下圖四),都是十分常見的案例。

電路板發生爬行腐蝕及硫化腐蝕失效的照片
(1)與(2)為印刷電路板的爬行腐蝕失效,(3)為導線架封裝的爬行腐蝕失效,(4)為表面貼裝晶片電阻的硫化腐蝕特徵照片。圖/宜特科技

二、 電子產品該選擇哪種方式做防護處理?

為了有效地隔絕惡劣環境對電子設備的影響,除了前面提過三防膠(Conformal Coating)的處理手法,一般也會採用灌封(Potting)來處理。下表是灌封與三防膠的差異比較。

方法灌封三防膠
保護性中-優
加工與
重工性
劣(氣泡殘留、重工困難)
品管檢驗劣(外觀不可視)優(外觀可視)
應用性劣(侷限)優(輕薄)
環保
範例
圖/Epoxyset Inc.
圖/Charged EVs
灌封與三防膠處理方法之比較。表/宜特科技

雖然灌封比三防膠保護性更好,但並非所有電子元件都能用灌封處理,灌封在作業前必須考量電子元件,會因為加工的熱應力、固化收縮應力、氣泡殘留等等產生影響,也要評估較多的產品設計條件,包括:尺寸、外殼、重量、熱管理、加工、重工、檢驗、成本與環保等因素,才能確認該產品是否適合做灌封處理。

-----廣告,請繼續往下閱讀-----

而三防膠的加工快速、重工容易與成本較低的優點,既可以提升產品抗腐蝕的能力,又可維持印刷電路板的外形而不影響後續的組裝作業,可以說三防膠的泛用性會比灌封來得更高。

所以當電子設備需要在惡劣的環境運作,或是終端電子設備發生腐蝕失效時,三防膠通常是組裝、系統廠商針對電子產品腐蝕的問題會優先採用的方案,廠商可以直接管控三防膠塗佈製程的品質,能夠針對終端客戶退回產品時進行立即性的改善作業。

三、 原來三防膠有很多種?

目前三防膠的種類主要可分為八大類,包含:Silicone Resin(SR)、Acrylic(AR)、Polyurethane(UR)、Epoxy(ER)、Paraxylylene(XY)、Fluorine-carbon resin(FC)、Ultra-Thin Coatings(UT)與 Styrene Block Co-Polymer(SC)。一般三防膠的種類可依照材質區分種類,然而混合型的三防膠材則是以重量百分比佔高的材質為主,如果三防膠的厚度 ≤12.5um ,膠材將不受材料種類的拘限都被歸類於 UT 型。每一種三防膠都有不同的特性,常見的評估項目有厚度、黏著性、耐溫性、抗化學性、防潮性、加工與重工性、普遍性、疏孔性、耐鹽霧腐蝕性、表面絕緣電阻程度與成本高低等。

四、 為何已經採用三防膠塗佈的電子產品仍發生了硫化腐蝕失效,原因竟是國際規範不足?

一般業界針對三防膠的國際規範,大多是參照國際電子工業聯接協會(Association Connecting Electronics Industries;IPC) 所制定的試驗標準 – IPC-HDBK-830A、IPC-CC-830C 與 IPC-J-STD-001F。這幾項標準都是一般常見於三防膠相關的國際規範,它們定義了三防膠的設計、選擇與應用的準則,用於焊接電氣和電子組件要求,以及用於印製線路組件用電氣絕緣化合物的鑑定及性能。

-----廣告,請繼續往下閱讀-----
常見三防膠相關的國際規範
一般常見三防膠相關的國際規範。圖/IPC-HDBK-830A, IPC-CC830C and IPC-J-STD-001F

而針對三防膠的驗證項目,包括了:種類、厚度、均勻性、缺陷、重工、應用、耐溫溼度環境、耐鹽霧、表面絕緣電阻等。其它與三防膠有關的標準還有 IPC-A-610H、IEC-1086-2、MIL-I-46058C、MIL-STD-202H、Method 106、NASA-STD-8739.1、BS5917、UL94、UL746F 與 SJ 20671……許多的國際規範。

然而在眾多三防膠國際規範的耐腐蝕性項目評估中,卻獨缺了「腐蝕性氣體的試驗」,尤其是在含硫與其化合物相關的腐蝕性氣體。因此,一旦產品的使用環境含有硫或硫化合物相關的腐蝕性氣體,即使電子設備已採用三防膠塗佈,仍會發生硫化腐蝕失效的問題。

此外,電子設備中也不是所有組件皆可以採用三防膠的塗佈,由於膠材具備絕緣的特性,一般均無法塗佈於電性連接、電器接點處,例如:金手指、插槽與連結器等。下圖是有採用與未採用三防膠塗佈的導線架封裝晶片發生與未發生硫化腐蝕的照片。

未採用三防膠塗佈採用三防膠塗佈採用三防膠塗佈
導線架發生嚴重的硫化腐蝕膠材的抗硫化腐蝕能力不足製程的缺陷(氣泡)導致保護不足
導線架發生嚴重的硫化腐蝕膠材的抗硫化腐蝕能力不足製程的缺陷(氣泡)導致保護不足
導線架發生嚴重的硫化腐蝕膠材的抗硫化腐蝕能力優異膠材的抗硫化腐蝕能力優異
導線架發生嚴重的硫化腐蝕膠材的抗硫化腐蝕能力優異未採用三防膠塗佈
採用與未採用三防膠塗佈的導線架封裝晶片發生與未發生硫化腐蝕的照片。圖/宜特科技

五、 不是有塗或是夠厚就好,透過驗證平台選擇出正確的三防膠材才有效!

透過上述的說明可以了解,如果只是按照規範去選擇三防膠材後進行塗佈,可能會遺漏腐蝕性氣體或是其他因素的影響,無法讓產品獲得最完善的保護。為了解決窘境,宜特科技所提供的硫化腐蝕驗證平台,可以協助廠商選擇正確的三防膠材,並針對各種採用三防膠塗佈的電子產品,評估產品抗硫化腐蝕的能力並進行壽命驗證。

-----廣告,請繼續往下閱讀-----
透過宜特實驗室的硫化腐蝕驗證平台評估各種三防膠材搭配不同厚度在硫化腐蝕試驗的耐受性
透過宜特實驗室的硫化腐蝕驗證平台評估各種三防膠材搭配不同厚度在硫化腐蝕試驗的耐受性。
圖/Source: Dem Lee…Et al.,“Evaluation of the Anti-Sulfur Corrosion Capacity for Chip Resistor and Conformal Coating by Way of Flower-of-Sulfur(FoS)Methodology”, International Microsystems, Packaging Assembly and Circuits Technology Conference 2018, Section 28, 2018.

上圖為透過宜特實驗室的硫化腐蝕驗證平台,評估各種三防膠材搭配不同厚度條件在硫化腐蝕試驗的耐受性。其中未經三防膠塗佈的抗硫化晶片電阻樣本(黑色),經歷 25 天的試驗後發生失效,但塗佈膠材 C(綠色)與膠材 D(藍色)的樣本,僅僅經歷 5 到 10 天的試驗就發生了失效。

由此可證,並非所有三防膠材都有具備抗硫化腐蝕的能力,抗腐蝕能力主要取決於膠材本身的材料特性,某些特定膠材非常容易吸附含硫與其化合物相關的腐蝕性氣體,即使提高厚度,也無法有效降低硫化腐蝕的發生,即便電子零件本身有做抗硫化腐蝕的設計,一旦選擇不合適的膠材,反而會加速電子產品發生硫化腐蝕失效的風險。

下表是採用相同樣本搭配不同的三防膠材,經硫化腐蝕試驗後,進行橫切面的掃描式電子顯微鏡分析之比較。可以看到,雖然膠材 B 的塗佈厚度比膠材 A 更厚,但是膠材 B 抗硫化腐蝕的能力卻更差。

三防膠膠材 A膠材 B
厚度<30um>100um
電子顯微鏡照片三防膠材A三防膠材B
抗硫化腐蝕的能力
採用相同樣本搭配不同三防膠材料塗佈經硫化腐蝕試驗後進行橫切面的掃描式電子顯微鏡分析之比較。圖/宜特科技

藉由宜特實驗室的硫化腐蝕驗證平台,不但可以協助選擇正確的膠材,亦可針對採用各種三防膠塗佈的電子產品,依照國際規範標準,並以實際終端環境的腐蝕程度搭配模擬使用年限,透過上述客製化的實驗設計,能夠協助廠商評估產品抵抗硫化腐蝕的壽命驗證。

-----廣告,請繼續往下閱讀-----

本文出自 www.istgroup.com。

討論功能關閉中。

宜特科技_96
5 篇文章 ・ 3 位粉絲
我們了解你想要的不只是服務,而是一個更好的自己:) iST宜特自1994年起,以專業獨家技術,為電子產業的上中下游客戶, 提供故障分析、可靠度實驗、材料分析和訊號測試之第三方公正實驗室

0

2
3

文字

分享

0
2
3
第三類寬能隙半導體到底在紅什麼?
宜特科技_96
・2023/10/30 ・4510字 ・閱讀時間約 9 分鐘

-----廣告,請繼續往下閱讀-----

寬能隙半導體晶片
圖/宜特科技

半導體產業崛起,我們常聽到「能隙」這個名詞,到底能隙是什麼?能隙越寬的材料又代表什麼意義呢?
近幾年 5G、電動車、AI 蓬勃發展,新聞常說要靠第三類的「寬能隙半導體」發展,到底寬能隙半導體在紅什麼?我們一起來了解吧!

本文轉載自宜特小學堂〈第三類寬能隙半導體到底在紅什麼?〉,如果您對半導體產業新知有興趣,歡迎按下右邊的追蹤,就不會錯過宜特科技的最新文章!

宜特科技 第三類寬能隙半導體到底在閎什麼 影片連結
點擊圖片收看影片版

什麼是能隙(Band Gap)?寬能隙又是「寬」在哪裡?

身為理組學生或是工程師,甚至是關心科技產業的一般人,對於「能隙」兩字一定不陌生,但你了解什麼是能隙嗎?

半導體能帶與能隙示意圖
半導體能帶與能隙示意圖。圖/宜特科技

能隙基本上要用量子物理的理論來跟大家說明,「能帶(Band)」的劃分主要為低能帶區的「價電能帶」(Valence Band,簡稱 VB),與高能帶區「導電能帶」(Conduction Band,簡稱 CB)的兩種,在 VB 與 CB 之間即是一個所謂的能帶間隙(Band Gap,簡稱 BG),簡稱「能隙」

能帶因電子流動產生導電特性
能帶因電子流動產生導電特性。圖/宜特科技

金屬材料能夠導電,主要是因為電子都位於高能的(CB)區域內,電子可自由流動;而半導體材料在常溫下,主要電子是位於低能的(VB)區域內而無法流動,當受熱或是獲得足夠大於能隙(BG)的能量時,價電能帶內電子就可克服此能障躍遷至導電能帶,就形成了導電特性。

-----廣告,請繼續往下閱讀-----

我們都知道功率等於電流與電壓加乘的正比關係,在高功率元件(Power device)的使用上如果半導體材料的能隙越寬,元件能承受的電壓、電流和溫度都會大幅提升。大眾所熟知的第一類半導體材料——矽(Si)能隙為 1.12 eV,具有成熟的技術與低成本優勢,廣泛應用於消費性電子產品;第二類半導體材料——砷化鎵(GaAs) 能隙為 1.43eV,相比第一類擁有高頻、抗輻射的特性,因此被廣泛應於在通訊領域。

為什麼需要用到第三類寬能隙半導體(Wide Band Gap,WBG)?

由於近年地球暖化與碳排放衍生的環保問題日益嚴重,世界各國都以節能減碳、綠色經濟為共同的首要發展方向,石化能源必須逐步減少並快速導入綠能節電的應用,因此不論是日常用品、交通運輸或軍事太空都逐步以高能效、低能耗為目標。

歐洲議會在 2023 年通過新法提高減碳目標,為 2030 年減碳 55% 的目標鋪路。國際能源署(IEA)也強建議各國企業在 2050 年前達到「淨零排放」,甚至有傳聞歐盟將通過燃油車禁售令,不論是考量環保或經濟,全球企業的綠色轉型勢在必行。因此在科技發展日新月異的同時,要兼顧大幅提升與改善現有的能源,已是大勢所趨。

目前半導體原料最大宗,是以第一類的矽(Si)晶圓的生產製造為主,但是以低能隙的半導體材料為基礎的產品,物理特性已到達極限,在溫度、頻率、功率皆無法突破,所以具備耐高溫高壓、高能效、低能耗的第三類寬能隙半導體(Wide Band Gap,WBG)就在此背景之下因應而生。

-----廣告,請繼續往下閱讀-----

現在有哪些的寬能隙(WBG)材料?

那麼有哪些更佳的寬能隙材料呢?目前市場所談的第三類半導體是指碳化矽(SiC)和氮化鎵(GaN),第三類寬能隙半導體可以提升更高的操作電壓,產生更大的功率並降低能損,相較矽元件的體積也能大幅縮小。
Si 與 C 的化合物碳化矽(SiC)材料能隙可大於 3.0eV;Ga 與 N 或 O 的化合物氮化鎵(GaN)或氧化鎵(Ga2O3)能隙也分別高達 3.4eV 與 4.9eV,大家可能沒想到的是鑽石的能隙更高達 5.4eV。

特性Si 矽SiC(4H)
碳化矽
GaN
氮化鎵
Ga2O3(β)
氧化鎵
Diamond
鑽石
能隙(eV)1.13.33.44.95.4
遷移率
(cm2/Vs)
1400100012003002000
擊穿電場強度
(MV/cm)
0.32.53.3810
導熱率
(W/cmK)
1.54.91.30.1420
半導體材料的物性比較。圖/宜特科技

氮化鎵(GaN)或氧化鎵(Ga2O3),雖然分別在 LED 照明或是紫外光的濾光光源,已經應用一段時間,但受限於這類半導體材料的特性,其實生產過程充滿了挑戰。例如:要製作 SiC 的單晶晶棒,相較 Si 晶棒的生產困難且時間緩慢很多,以及 GaN 與 Si 晶圓的晶格不匹配時,容易生成差排缺陷(Dislocation Defect)等問題必須克服,導致長久以來相關的製程開發困難及花費高昂,但第三類半導體市場潛力無窮,對於各國大廠來說仍是兵家必爭之地。

寬能隙半導體運用在那些產品上?

現在知名大廠如意法半導體、英飛凌、羅姆等,對寬能隙材料的實際運用均有相當大的突破,如氮化鎵(GaN)在以 Si 或 SiC 為基板的產品已陸續發表,而我們最常接觸到的產品,就是市售的快速充電器,採用的就是 GaN on Si 材料製作的高功率產品。

除了功率提升,因為溫度與熱效應可大幅降低,元件就可以大幅縮小,充電器體積也更加玲瓏小巧,除了已商品化的快充電源領域,第三類半導體在 AI、高效能運算、電動車等等領域的應用也是未來可期。

-----廣告,請繼續往下閱讀-----

(延伸閱讀:泛科學—快充怎麼做到又小又快? 半導體材料氮化鎵,突破工作頻率極限)

現行以矽基材料為主的高功率產品,多以絕緣閘雙極電晶體(IGBT)或金氧半場效電晶體(MOSFET)為主,下圖可以看到各種功率元件、模組與相關材料應用的範圍,傳統 IGBT 高功率模組大約能應用至一百千瓦(100Kw)以上,但速度卻無法提升至一百萬赫茲(1MHz)。而 GaN 材料雖然速度跟得上,但功率卻無法達到更高的一千瓦(1kW)以上,必須改用 SiC 的材料。

功率元件與相關材料的應用範圍
功率元件與相關材料的應用範圍。圖/英飛凌

SiC 具有比 Si 更好的三倍導熱率,使得元件體積又可以更小,這些特性使它更適合應用在電動車領域。特斯拉的 model3 也從原先的 IGBT ,改成使用意法半導體生產的 SiC 功率元件,應用在其牽引逆變器(Traction inverter)、直流電交互轉換器與充電器(DC-to-DC converter & on-board charger),能夠提高電能使用效率與降低能損。

特斯拉充電樁
多家車廠加入特斯拉充電網路。圖/特斯拉

在未來更高的電力能源需求下,車載裝置除了基本要具備高功率,還需要極高速的充電能力來因應電力補充,車用充電樁、5G 通訊基地台、交通運輸工具、甚至衛星太空站等更大的電力能源需求,相關的電流傳輸轉換,電傳速度的要求以及降低能損,就必須邁向更有效率的寬能隙材料著重進行開發,超高功率的 SiC 元件模組需求亦會水漲船高。

-----廣告,請繼續往下閱讀-----

寬能隙半導體在開發生產階段,需進行那些驗證分析?

根據宜特的觀察,晶圓代工廠與功率 IDM 廠商正持續努力研究與開發。不過,新半導體材料在開發初期,會有許多需要進行研發驗證的狀況,近年我們已協助多家寬能隙半導體(WBG)產業的開發與生產驗證。

比如磊晶製程相關的結構或缺陷分析,就可以藉由雙束聚焦離子束(Dual beam FIB)製備剖面樣品並進行尺寸量測或成分分析(EDS),亦可搭配穿透式電子顯微鏡(TEM)進行奈米級的缺陷觀察;擴散區域的分析可經由樣品研磨製備剖面後,進行掃描式電子顯微鏡(SEM)觀察以及掛載在原子力顯微鏡 (AFM) 上的偵測模組-掃描式電容顯微鏡(SCM)判別摻雜區域的型態與尺寸量測。

下圖為 SiC 的元件分析擴散區摻雜的型態,我們可以先用 SEM 觀察井區(Well)的分布位置,再經由 SCM 判斷上層分別有 N 與 P 型 Well 以及磊晶層(EPI) 為 N 型。

SEM及SCM分析的量測圖
使用 SEM 剖面觀察 SiC 元件的結構,搭配 SCM 分析 N/P 型與擴散區的量測。圖/宜特科技

另外在摻雜元素及濃度的分析,則可透過二次離子質譜分析儀(SIMS)的技術,下圖 GaN on Si 的元件,先用雙束聚焦離子束(Dual beam FIB)進行剖面成份分析(EDS)判斷磊晶區域的主要成份之後,提供 SIMS 參考再進行摻雜元素 Mg 定量分析濃度的結果,作為電性調整的依據。

-----廣告,請繼續往下閱讀-----
使用 DB-FIB 觀察 GaN 元件的剖面結構與 EDS 成份分析,搭配 SIMS 分析摻雜濃度
使用 DB-FIB 觀察 GaN 元件的剖面結構與 EDS 成份分析,搭配 SIMS 分析摻雜濃度。圖/宜特科技

除了上述介紹 WBG 元件結構的解析之外,其它產品也都可以透過宜特實驗室專業材料分析及電性、物性故障分析來尋求解答,包括因應安全要求更高的產品可靠度測試與評估,藉由宜特可以提供更完整與全方位的驗證服務。

希望透過本文介紹,讓大家對第三類半導體有更進一步的了解,近期被稱為第四類半導體的氧化鎵(Ga2O3)也逐漸躍上檯面,它相較於第三類半導體碳化矽(SiC)與氮化鎵(GaN),基板製作更加容易,材料也能承受更高電壓的崩潰電壓與臨界電場,半導體材料的發展絕對是日新月異,也代表未來會有更多令人期待的新發現。

本文出自 www.istgroup.com。

宜特科技_96
5 篇文章 ・ 3 位粉絲
我們了解你想要的不只是服務,而是一個更好的自己:) iST宜特自1994年起,以專業獨家技術,為電子產業的上中下游客戶, 提供故障分析、可靠度實驗、材料分析和訊號測試之第三方公正實驗室

0

3
2

文字

分享

0
3
2
讓摩爾定律又向前邁進的新技術!3D 先進封裝是什麼?又有哪些優勢和挑戰?
PanSci_96
・2023/07/15 ・3500字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

今年蘋果 WWDC 大會上發表的 Vision Pro,在市場上引起軒然大波。除此之外,蘋果新推出的 Mac Pro、Mac Studio 也都十分吸睛,他們的共同特點,就是我都買不起。他們的共同的特點,就是裏頭都搭載了 M 系列晶片。從 M2、M2 Max 到 M2 Ultra,除了強大的效能,其輕巧的設計,也讓這些裝置保持輕量。Vision Pro 的重量也可以維持維持在500g,不影響穿戴體驗。要在如此小的晶片中發揮跟電腦一樣效能,除了我們介紹過的 DUV 與 EUV 微縮顯影,一路從 7 奈米、5 奈米、3 奈米向下追尋外。在 M 系列這種系統晶片中,「先進封裝」技術,其實扮演更重要的角色,但到底「封裝」是什麼?它如何幫助 M2 達到高效能、小體積的成果?

晶片又更小了,摩爾定律依舊存在?

M2 晶片的效能已被消費者認可,一顆小小的晶片中,就同時包含了 8 核心 CPU、10 核心 GPU、16 核心的神經網路晶片以及記憶體,麻雀雖小,五臟俱全。這可說又是摩爾定律向前邁進的一步。

在 M2 一顆小小的晶片中,就同時包含了 8 核心 CPU、10 核心 GPU、16 核心的神經網路晶片以及記憶體。圖/Apple

今年 3 月 24 日,Intel 共同創辦人戈登.摩爾,逝世於夏威夷的家中,享耆壽 94 歲。他生前提出的摩爾定律,在引領半導體產業發展近 60 年之後,也逐漸走向極限。摩爾定律預測,積體電路上的電晶體數目,在相同面積下,每隔約 18 個月數量就會增加一倍,晶片效能也會持續提升。

隨著晶片尺寸越來越小,似乎小到無法再小,「摩爾定律已死」的聲音越來越大。然而事實是,業界的領頭羊們如台積電、英特爾和三星等公司,依然認為摩爾定律可以延續下去,並且仍積極投入大量金錢、人力及資源,期盼能夠打贏這場奈米尺度的晶片戰爭。

打贏戰爭的方法,包含研發各式各樣的電晶體,例如鰭式場效電晶體(FinFET)環繞式閘極(GAAFET)電晶體互補式場效電晶體(CFET);或是大手筆引進艾司摩爾開發的極紫外光(EUV)曝光機,在微縮顯影上做突破,這部分可以回去複習我們的這一集;除此之外,從材料下手也同步進行中,新興的半導體材料,像是過渡金屬二硫族化合物奈米碳管。這些持續挑戰物理極限的方式稱為「深度摩爾定律(More Moore)」。

-----廣告,請繼續往下閱讀-----

然而這條路可不是康莊大道,而是佈滿了荊棘,或是亂丟的樂高積木,先進製程開發的複雜度和投入資金呈指數型增加,且投資與回報往往不成正比。我們都知道「不要把雞蛋都放在同一個籃子裡」,同理,半導體巨擘們也開始找尋新解方,思索如何躺平,在不用縮小電晶體的情況下,提升晶片整體效能。

先進製程開發的複雜度和投入資金呈指數型增加,且投資與回報往往不成正比。圖/freepik

答案也並不難,既然在平面空間放不下更多電晶體了,那麼就把他們疊起來吧!如此一來,相同面積上的電晶體數量也等效的增加了。這就像是在城市裡,因為人口稠密而土地面積有限,因而公寓大廈林立,房子一棟蓋得比一棟高一樣。像這樣子不是以微縮電晶體,而是透過系統整合的方式,層層堆疊半導體電路以提升晶片效能的方法,屬於「超越摩爾定律(More than Moore)」,而其技術關鍵,就在於「封裝」。

什麼是封裝?

當一片矽晶圓經過了多重製程的加工後,我們會得到這張表面佈滿了成千上萬積體電路。別小看它,光是這一片的價值,可能就高達2萬美元!

一個矽晶圓表面佈滿成千上萬的積體電路。圖/envatoelements

然而這麼大片當然無法放進你的手機裡,還必須經過「封裝(packaging)」的步驟,才會搖身一變成為大家所熟知的半導體晶片。

-----廣告,請繼續往下閱讀-----

簡單來說,封裝是一種技術,任務是把積體電路從晶圓上取下,放在載板上,讓積體電路可以與其他電路連接、交換訊號。整個封裝,大致可分為四步驟:切割、黏晶、打線、封膠

首先,矽晶圓會被磨得更薄,並且切割成小塊,此時的積體電路稱為裸晶(die);接著,將裸晶黏貼於載板(substrate)上,並以焊線連接裸晶及載版的金屬接點,積體電路便可跟外界傳遞或接收訊號了;最後,以環氧樹酯灌模成型,就完成我們熟知的晶片(chip),這個步驟主要在於保護裸晶及焊線,同時隔絕濕氣及幫助散熱。

Chiplet、傳統封裝與先進封裝

隨著晶片不斷追求高效能、低成本,還要滿足不同的需求,甚至希望在一個晶片系統中,同時包含多個不同功能的積體電路。這些積體電路規格、大小都不一樣,甚至可能在不同工廠生產、使用不同製程節點或不同半導體基材製作。例如蘋果的 M2 晶片,就是同時包含 CPU、GPU 和記憶體,另外,我們過去介紹過,google 陣營的 Tensor 晶片,也是在單一晶片系統中塞入了大大小小的晶片。這些在一個晶片系統中含有多個晶片的架構,稱為 Chiplet。

要做出 Chiplet,在傳統的封裝方式中,會將初步封裝過的數個晶片再次進行整合,形成一個功能更完整的模組,稱為系統級封裝 Sip(system in package);另一個方法則是將數個裸晶透過單一載板相互連接完成封裝,這樣的作法叫做系統單晶片system on a chip (SoC),然而以這兩種方式製作需佔用較大的面積,更會因為晶片、裸晶間的金屬連線過長,造成資料傳輸延遲,不能達到高階晶片客戶如輝達、超微、蘋果等公司的需求。

-----廣告,請繼續往下閱讀-----

為了解決問題,先進封裝就登場了,三維先進封裝以裸晶堆疊的方式,增加空間利用率並改善資料傳輸瓶頸的問題。與傳統封裝之間傳輸速度的差異,就好比是開車由台北至宜蘭,傳統封裝需行經九彎十八拐的台九線,而先進封裝則截彎取直,打通了連接兩地的雪山隧道,使得資料的來往變得更加便利且迅速。

先進封裝解決了什麼問題

先進封裝最大的優勢,就是大幅縮短了不同裸晶間的金屬連導線距離,因此傳輸速度大為提升,也減少了傳輸過程中的功率損耗。舉例來說(下圖),傳統的 2D SoC,若是 A 電路要與 C 電路傳輸資料,則必須跨越整個系統的對角線距離;然而使用三維堆疊則能夠將 C 晶片放置於 A 晶片的上方,透過矽穿孔(through silicon via, TSV)技術貫穿減薄後的矽基板,以超高密度的垂直連導線連接兩個電路,兩者的距離從此由天涯變咫尺。

圖/Pansci

另一方面,三維堆疊也減少了面積的消耗,對於體積的增加則並不明顯,因此我們能夠期待,手機、平板、或是 Vision Pro 等頭顯未來除了功能更多以外,還會變得更加輕巧。

值得一提的是,先進封裝還能夠降低生產成本喔!由於三維堆疊在單位面積上,增加了等效電晶體數量,在晶片設計上可以考慮使用較成熟、成本更低的製程技術節點,並達到與使用單層先進技術節點並駕齊驅的效能。

-----廣告,請繼續往下閱讀-----

先進封裝的技術挑戰

雖然,先進封裝提供了許多優勢。但作為新技術,當中依舊有許多仍待克服的問題與挑戰。

首先,先進封裝對於裸晶平整度以及晶片對準的要求很高,若是堆疊時不慎有接點沒有順利連接導通,就會造成良率的損失。再者,積體電路在運算時會產生能量損耗造成溫度升高,先進封裝拉近了裸晶間的距離,熱傳導會交互影響,大家互相取暖,造成散熱更加困難,輕則降低晶片效能,嚴重則能導致產品失效。

散熱問題在先進封裝中,目前還未完全解決,但可以透過熱學模擬、使用高熱導係數材料、或設計導熱結構等方式,做出最佳化的散熱設計。建立良率測試流程也非常重要,試想,如果在堆疊前沒有做好已知合格裸晶測試(known good die testing),因而誤將合格的 A 晶片與失效的 B 晶片接合,那麼不只是做出來的 3D IC 只能拿來當裝飾品,還白白損失了前面製程所花費的人力、物力及金錢!

良率與成本間的權衡,也是須探究的問題,如果想要保證最佳的良率,最好的方式是每道環節都進行測試,然而這麼做的話生產成本以及製造時間也會相應增加,因此要怎麼測試?在什麼時候測試?要做多少測試?就是一門相當深奧的學問了。

-----廣告,請繼續往下閱讀-----

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

PanSci_96
1219 篇文章 ・ 2184 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。