Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

ALMA觀測發現:垂死恆星周圍吹出旋臂結構泡泡

臺北天文館_96
・2012/10/25 ・1240字 ・閱讀時間約 2 分鐘 ・SR值 556 ・八年級

▲天文學家使用Atacama Large Millimeter/submillimeter Array「阿塔卡瑪大型毫米波及次毫米波陣列」(簡稱ALMA),在一顆位於玉夫座的紅巨星周圍意外發現了旋臂結構。Credit: ALMA (ESO/NAOJ/NRAO)

一群天文學家最近正在使用ALMA來研究年老的R Sculptoris(玉夫座R星),結果所取得的新發現可把他們嚇了一大跳,或者說:大為驚歎!因為他們在R Sculptoris周圍發現了奇怪的旋臂結構,據推測,這可能是由一顆看不見的伴星所造成的。簡稱為ALMA的「阿塔卡瑪大型毫米波及次毫米波陣列」是目前地面上最大型的電波望遠鏡陣列,在製造、興建和測試工程各階段,由中央研究院天文及天文物理研究所代表臺灣參與其中。

研究老恆星R Sculptoris的團隊,從使用ALMA所觀測到的數據中首度為旋臂的結構繪製了三維圖形。主要論文作者Matthias Maercker表示,雖然之前曾觀測到這一類恆星的周圍有氣體殼的現象,不過這次卻是史上首度觀測到有外殼的旋臂狀物質從恆星裡冒出來,並繪製出三維立體圖形。

先前,科學家曾在使用哈柏太空望遠鏡觀測LL Pegasi的時候發現到一個類似的旋臂狀結構,但它並不帶有外殼,天文學家也沒辦法幫它繪製出一幅三維的地圖。不過ALMA與哈柏太空望遠鏡不一樣,在哈柏觀測中見到是塵埃的東西,對ALMA來說,卻偵測得到分子發出的訊號。

-----廣告,請繼續往下閱讀-----

由於ALMA的特性是能偵測到一氧化碳分子在紅外線波段發出的微溫光芒,所以天文學家能藉由這個工具把恆星周圍所發出的氣體輻射繪製成高解析度的圖形。至於造成了形狀奇怪的泡泡狀物質是什麼?該團隊懷疑,可能是環繞這顆紅巨星的一顆看不見的伴星。

類似像我們的太陽的這類恆星在生命末期會變成紅巨星。經過膨脹又冷卻,一顆恆星會開始短暫的氦燃燒時期。在此期間,恆星在密集的恆星風吹拂之下,質量大量脫落,也在恆星的核心周圍形成會膨脹、發光的氣體殼。它的脈衝頻率大約是每1~5萬年一次,每次長度約僅只有幾百年。從最新的R Sculptoris觀測中已知,它最近一次的脈衝時間距離我們大約只有1,800年,持續長度只有200年。研究人員還發現,雙星系統演化模型在電腦模擬之下也呈現出和ALMA觀測一致的結果。

不過,要用理論要將ALMA所觀測到的細節全都加以解釋一番,將是個滿大的挑戰,初步根據電腦模型顯示的結果看來,研究團隊相信他們的方向是正確的:ALMA的確能為科學家提供深入的、關於這些恆星裡頭正在發生什麼事的一些細節,也預告著太陽在未來幾十億年後,將會變成何種樣貌。

一般認為R Sculptoris是一個質量介於0.8到8個太陽質量之間的漸近巨星支(asymptotic giant branch,又稱為AGB),它是冷卻後的紅巨星,有一個微小的碳氧核心,外層環繞著一個燃燒的氦和氫殼層,這個發光的外殼是由氣體和塵埃物質形成,未來,它會組成恆星、行星、衛星,甚至成為生命的基本物質。我們的太陽,在生命期接近終了時,同樣也會變成一個AGB星。

-----廣告,請繼續往下閱讀-----

藉由ALMA,我們將能觀測到更多像R Sculptoris這樣的恆星,幫助我們了解地球上的生命體如何抵達地球,也了解我們的太陽最後命運會是如何。(Lauren譯)

資料來源:Dying Star Blows Surprising Spiral Bubble. Universe Today [OCTOBER 10, 2012]

轉載自 網路天文館

-----廣告,請繼續往下閱讀-----
文章難易度
臺北天文館_96
482 篇文章 ・ 44 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!

0

0
0

文字

分享

0
0
0
從PD-L1到CD47:癌症免疫療法進入3.5代時代
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/25 ・4544字 ・閱讀時間約 9 分鐘

-----廣告,請繼續往下閱讀-----

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

如果把癌細胞比喻成身體裡的頭號通緝犯,那誰來負責逮捕?

許多人第一時間想到的,可能是化療、放療這些外來的「賞金獵人」。但其實,我們體內早就駐紮著一支最強的警察部隊「免疫系統」。

既然「免疫系統」的警力這麼堅強,為什麼癌症還是屢屢得逞?關鍵就在於:癌細胞是偽裝高手。有的會偽造「良民證」,騙過免疫系統的菁英部隊;更厲害的,甚至能直接掛上「免查通行證」,讓負責巡邏的免疫細胞直接視而不見,大搖大擺地溜過。

-----廣告,請繼續往下閱讀-----

過去,免疫檢查點抑制劑的問世,為癌症治療帶來突破性的進展,成功撕下癌細胞的偽裝,也讓不少患者重燃希望。不過,目前在某些癌症中,反應率仍只有兩到三成,顯示這條路還有優化的空間。

今天,我們要來聊的,就是科學家如何另闢蹊徑,找出那些連「通緝令」都發不出去的癌細胞。這個全新的免疫策略,會是破解癌症偽裝的新關鍵嗎?

科學家如何另闢蹊徑,找出那些連「通緝令」都發不出去的癌細胞。這個全新的免疫策略,會是破解癌症偽裝的新關鍵嗎?/ 圖片來源:shutterstock

免疫療法登場:從殺敵一千到精準出擊

在回答問題之前,我們先從人類對抗癌症的「治療演變」說起。

最早的「傳統化療」,就像威力強大的「七傷拳」,殺傷力高,但不分敵我,往往是殺敵一千、自損八百,副作用極大。接著出現的「標靶藥物」,則像能精準出招的「一陽指」,能直接點中癌細胞的「穴位」,大幅減少對健康細胞的傷害,副作用也小多了。但麻煩的是,癌細胞很會突變,用藥一段時間就容易產生抗藥性,這套點穴功夫也就漸漸失靈。

直到這個世紀,人類才終於領悟到:最強的武功,是驅動體內的「原力」,也就是「重新喚醒免疫系統」來對付癌症。這場關鍵轉折,也開啟了「癌症免疫療法」的新時代。

-----廣告,請繼續往下閱讀-----

你可能不知道,就算在健康狀態下,平均每天還是會產生數千個癌細胞。而我們之所以安然無恙,全靠體內那套日夜巡邏的「免疫監測 (immunosurveillance)」機制,看到癌細胞就立刻清除。但,癌細胞之所以難纏,就在於它會發展出各種「免疫逃脫」策略。

免疫系統中,有一批受過嚴格訓練的菁英,叫做「T細胞」,他們是執行最終擊殺任務的霹靂小組。狡猾的癌細胞為了躲過追殺,會在自己身上掛出一張「偽良民證」,這個偽裝的學名,「程序性細胞死亡蛋白配體-1 (programmed death-ligand 1, PD-L1) 」,縮寫PD-L1。

當T細胞來盤查時,T細胞身上帶有一個具備煞車功能的「讀卡機」,叫做「程序性細胞死亡蛋白受體-1 (programmed cell death protein 1, PD-1) 」,簡稱 PD-1。當癌細胞的 PD-L1 跟 T細胞的 PD-1 對上時,就等於是在說:「嘿,自己人啦!別查我」,也就是腫瘤癌細胞會表現很多可抑制免疫 T 細胞活性的分子,這些分子能通過免疫 T 細胞的檢查哨,等於是通知免疫系統無需攻擊的訊號,因此 T 細胞就真的會被唬住,轉身離開且放棄攻擊。

這種免疫系統控制的樞紐機制就稱為「免疫檢查點 (immune checkpoints)」。而我們熟知的「免疫檢查點抑制劑」,作用就像是把那張「偽良民證」直接撕掉的藥物。良民證一失效,T細胞就能識破騙局、發現這是大壞蛋,重新發動攻擊!

-----廣告,請繼續往下閱讀-----
狡猾的癌細胞為了躲過追殺,會在自己身上掛出一張「偽良民證」,也就是「程序性細胞死亡蛋白配體-1 (programmed death-ligand 1, 縮寫PD-L1) 」/ 圖片來源:shutterstock

目前免疫療法已成為晚期癌症患者心目中最後一根救命稻草,理由是他們的體能可能無法負荷化療帶來的副作用;標靶藥物雖然有效,不過在用藥一段期間後,終究會出現抗藥性;而「免疫檢查點抑制劑」卻有機會讓癌症獲得長期的控制。

由於免疫檢查點抑制劑是借著免疫系統的刀來殺死腫瘤,所以有著毒性較低並且治療耐受性較佳的優勢。對免疫檢查點抑制劑有治療反應的患者,也能獲得比起化療更長的存活期,以及較好的生活品質。

不過,儘管免疫檢查點抑制劑改寫了治癌戰局,這些年下來,卻仍有些問題。

CD47來救?揭開癌細胞的「免死金牌」機制

「免疫檢查點抑制劑」雖然帶來治療突破,但還是有不少挑戰。

-----廣告,請繼續往下閱讀-----

首先,是藥費昂貴。 雖然在台灣,健保於 2019 年後已有條件給付,但對多數人仍是沉重負擔。 第二,也是最關鍵的,單獨使用時,它的治療反應率並不高。在許多情況下,大約只有 2成到3成的患者有效。

換句話說,仍有七到八成的患者可能看不到預期的效果,而且治療反應又比較慢,必須等 2 至 3 個月才能看出端倪。對患者來說,這種「沒把握、又得等」的療程,心理壓力自然不小。

為什麼會這樣?很簡單,因為這個方法的前提是,癌細胞得用「偽良民證」這一招才有效。但如果癌細胞根本不屑玩這一套呢?

想像一下,整套免疫系統抓壞人的流程,其實是這樣運作的:當癌細胞自然死亡,或被初步攻擊後,會留下些許「屍塊渣渣」——也就是抗原。這時,體內負責巡邏兼清理的「巨噬細胞」就會出動,把這些渣渣撿起來、分析特徵。比方說,它發現犯人都戴著一頂「大草帽」。

-----廣告,請繼續往下閱讀-----

接著,巨噬細胞會把這個特徵,發布成「通緝令」,交給其他免疫細胞,並進一步訓練剛剛提到的菁英霹靂小組─T細胞。T細胞學會辨認「大草帽」,就能出發去精準獵殺所有戴著草帽的癌細胞。

當癌細胞死亡後,會留下「抗原」。體內的「巨噬細胞」會採集並分析這些特徵,並發布「通緝令」給其它免疫細胞,T細胞一旦學會辨識特徵,就能精準出擊,獵殺所有癌細胞。/ 圖片來源:shutterstock

而PD-1/PD-L1 的偽裝術,是發生在最後一步:T 細胞正準備動手時,癌細胞突然高喊:「我是好人啊!」,來騙過 T 細胞。

但問題若出在第一步呢?如果第一關,巡邏的警察「巨噬細胞」就完全沒有察覺這些屍塊有問題,根本沒發通緝令呢?

這正是更高竿的癌細胞採用的策略:它們在細胞表面大量表現一種叫做「 CD47 」的蛋白質。這個 CD47 分子,就像一張寫著「自己人,別吃我!」的免死金牌,它會跟巨噬細胞上的接收器─訊號調節蛋白α (Signal regulatory protein α,SIRPα) 結合。當巨噬細胞一看到這訊號,大腦就會自動判斷:「喔,這是正常細胞,跳過。」

結果會怎樣?巨噬細胞從頭到尾毫無動作,癌細胞就大搖大擺地走過警察面前,連罪犯「戴草帽」的通緝令都沒被發布,T 細胞自然也就毫無頭緒要出動!

這就是為什麼只阻斷 PD-L1 的藥物反應率有限。因為在許多案例中,癌細胞連進到「被追殺」的階段都沒有!

為了解決這個問題,科學家把目標轉向了這面「免死金牌」,開始開發能阻斷 CD47 的生物藥。但開發 CD47 藥物的這條路,可說是一波三折。

-----廣告,請繼續往下閱讀-----

不只精準殺敵,更不能誤傷友軍

研發抗癌新藥,就像打造一把神兵利器,太強、太弱都不行!

第一代 CD47 藥物,就是威力太強的例子。第一代藥物是強效的「單株抗體」,你可以想像是超強力膠帶,直接把癌細胞表面的「免死金牌」CD47 封死。同時,這個膠帶尾端還有一段蛋白質IgG-Fc,這段蛋白質可以和免疫細胞上的Fc受體結合。就像插上一面「快來吃我」的小旗子,吸引巨噬細胞前來吞噬。

問題來了!CD47 不只存在於癌細胞,全身上下的正常細胞,尤其是紅血球,也有 CD47 作為自我保護的訊號。結果,第一代藥物這種「見 CD47 就封」的策略,完全不分敵我,導致巨噬細胞連紅血球也一起攻擊,造成嚴重的貧血問題。

這問題影響可不小,導致一些備受矚目的藥物,例如美國製藥公司吉立亞醫藥(Gilead)的明星藥物 magrolimab,在2024年2月宣布停止開發。它原本是預期用來治療急性骨髓性白血病(AML)的單株抗體藥物。

太猛不行,那第二代藥物就改弱一點。科學家不再用強效抗體,而是改用「融合蛋白」,也就是巨噬細胞身上接收器 SIRPα 的一部分。它一樣會去佔住 CD47 的位置,但結合力比較弱,特別是跟紅血球的 CD47 結合力,只有 1% 左右,安全性明顯提升。

像是輝瑞在 2021 年就砸下 22.6 億美元,收購生技公司 Trillium Therapeutics 來開發這類藥物。Trillium 使用的是名為 TTI-621 和 TTI-622 的兩種融合蛋白,可以阻斷 CD47 的反應位置。但在輝瑞2025年4月29號公布最新的研發進度報告上,TTI-621 已經悄悄消失。已經進到二期研究的TTI-622,則是在6月29號,研究狀態被改為「已終止」。原因是「無法招募到計畫數量的受試者」。

-----廣告,請繼續往下閱讀-----

但第二代也有個弱點:為了安全,它對癌細胞 CD47 的結合力,也跟著變弱了,導致藥效不如預期。

於是,第三代藥物的目標誕生了:能不能打造一個只對癌細胞有超強結合力,但對紅血球幾乎沒反應的「完美武器」?

為了找出這種神兵利器,科學家們搬出了超炫的篩選工具:噬菌體(Phage),一種專門感染細菌的病毒。別緊張,不是要把病毒打進體內!而是把它當成一個龐大的「鑰匙資料庫」。

科學家可以透過基因改造,再加上AI的協助,就可以快速製造出數億、數十億種表面蛋白質結構都略有不同的噬菌體模型。然後,就開始配對流程:

  1. 先把這些長像各異的「鑰匙」全部拿去試開「紅血球」這把鎖,能打開的通通淘汰!
  2. 剩下的再去試開「癌細胞」的鎖,從中挑出結合最強、最精準的那一把「神鑰」!

接著,就是把這把「神鑰」的結構複製下來,大量生產。可能會從噬菌體上切下來,或是定序入選噬菌體的基因,找出最佳序列。再將這段序列,放入其他表達載體中,例如細菌或是哺乳動物細胞中來生產蛋白質。最後再接上一段能號召免疫系統來攻擊的「標籤蛋白 IgG-Fc」,就大功告成了!

目前這領域的領頭羊之一,是美國的 ALX Oncology,他們的產品 Evorpacept 已完成二期臨床試驗。但他們的標籤蛋白使用的是 IgG1,對巨噬細胞的吸引力較弱,需要搭配其他藥物聯合使用。

而另一個值得關注的,是總部在台北的漢康生技。他們利用噬菌體平台,從上億個可能性中,篩選出了理想的融合蛋白 HCB101。同時,他們選擇的標籤蛋白 IgG4,是巨噬細胞比較「感興趣」的類型,理論上能更有效地觸發吞噬作用。在臨床一期試驗中,就展現了單獨用藥也能讓腫瘤顯著縮小的效果以及高劑量對腫瘤產生腫瘤顯著部分縮小效果。因為它結合了前幾代藥物的優點,有人稱之為「第 3.5 代」藥物。

除此之外,還有漢康生技的FBDB平台技術,這項技術可以將多個融合蛋白「串」在一起。例如,把能攻擊 CD47、PD-L1、甚至能調整腫瘤微環境、活化巨噬細胞與T細胞的融合蛋白接在一起。讓這些武器達成 1+1+1 遠大於 3 的超倍攻擊效果,多管齊下攻擊腫瘤細胞。

結語

從撕掉「偽良民證」的 PD-L1 抑制劑,到破解「免死金牌」的 CD47 藥物,再到利用 AI 和噬菌體平台,設計出越來越精準的千里追魂香。 

對我們來說,最棒的好消息,莫過於這些免疫療法,從沒有停下改進的腳步。科學家們正一步步克服反應率不足、副作用等等的缺點。這些努力,都為癌症的「長期控制」甚至「治癒」,帶來了更多的希望。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
228 篇文章 ・ 316 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

2
1

文字

分享

0
2
1
【成語科學】動如參商:參宿和商宿是哪兩顆星星?帶你認識古代中國的星座系統!
張之傑_96
・2023/09/08 ・1103字 ・閱讀時間約 2 分鐘

-----廣告,請繼續往下閱讀-----

西元 759 年,大詩人杜甫經過老友衛八的家鄉,屈指數來,兩人已 20 年沒見過面。當年衛八還沒結婚,如今已子女成行。杜甫在衛八家過了一夜,翌日匆匆告別,寫下膾炙人口的〈贈衛八處士〉,頭兩句「人生不相見,動如參與商。」就是成語「動如參商」的出典。

唐代習慣以家族的排行稱呼人;處士,對隱士的尊稱。參(ㄕㄣ),指參宿;商,即商星,是心宿的主星。參、心二宿都是二十八宿之一,參宿位於西方時,心宿位於東方,不會同時在天上出現。

參宿位於西方時,心宿位於東方,不會同時在天上出現。圖/高魯《星象統箋》

動如參商,比喻見面不易。我們先談到這裡,造兩個句吧。

畢業後同學們動如參商,再也無法朝夕相處。

您遠渡重洋後咱們動如參商,已難得見上一面。

造完句,接下去要說明什麼是星宿了。無論哪個民族,都會將天上的星星分成組,每組之間作些連線,然後比附成英雄人物、動物、器物等等。這種分組,有利於天文觀測。

-----廣告,請繼續往下閱讀-----

星座,是西方所發展出的天文觀測體系,總共有 88 個,最為人們熟知的是黃道十二宮。太陽在天球上的軌道稱為黃道,黃道上有 12 個星座,在您生日那段時間,太陽在天球上所對應的星座,就是您的生日座。

中國古代將一組星星稱為一個星宿(又稱星官),魏晉時統合成 283 個,含有星星 1464 顆。在這 283 個星宿中,最為人熟知的是二十八宿,也就是月亮運行軌道(白道)所經過的星宿。

二十八宿是:角亢氐房心尾箕,斗牛女虛危室壁;奎婁胃昴畢觜參,井鬼柳星張翼軫。

二十八星宿。圖/wikimedia

在二十八宿中,角亢氐房心尾箕是東方七宿,奎婁胃昴畢觜參是西方七宿。商星是心宿的星星,和西方七宿的參宿是不會同時出現天際的。

-----廣告,請繼續往下閱讀-----

中國的星宿,每一星宿的星星數目不等,以心宿和參宿來說,心宿有 3 顆(第二顆就是商星),參宿則有 7 顆。星宿的星星以數字編號,有時另有專名。以心宿的商星來說,編號是「心宿二」,商星是它的專名。

心宿二(即天蝎座 α 星)是顆紅巨星,會發出火紅色的亮光,所以還有一個專名——大火。我們的祖先早就觀察到,每到夏末秋初,大火星就會落向夜空的西邊,表示天氣將逐漸轉涼了。

心宿二又被稱為大火。圖/wikimedia
-----廣告,請繼續往下閱讀-----

0

2
1

文字

分享

0
2
1
恆星將如何死去?——《解密黑洞與人類未來》
天下文化_96
・2022/01/01 ・2403字 ・閱讀時間約 5 分鐘

  • 作者 / 海諾.法爾克 (Heino Falcke)、約格.羅默(Jörg Römer)
  • 譯者 / 姚若潔

發生在天上的死亡事件:超新星爆炸

公元 1054 年,全世界的人都驚訝的仰望天空。有些人可能擔心巨大的災難即將發生。中國北宋的天文學家精確記下這場天空中的驚人事件,記錄到蒼穹中有顆與金星(太白)一樣明亮的「客星」。一名阿拉伯醫生甚至認為這是一顆新星而記錄下來。

左下方的亮點是位在 NGC 4526 星系的一顆「客星」,名為 SN 1994D。圖/WIKIPEDIA by NASA/ESA

在歐洲,雖然並未留下確鑿的目擊紀錄,人們或許也驚訝的看著占據午後天空的「明亮圓盤」。那麼,到底是什麼驚人事件,讓世界各地都有人記下這個現象?

其實是超新星,一種規模巨大的恆星爆炸事件。它發生在我們的銀河系內,距我們六千光年之遙。培布羅長者曾坐著之處的岩石雕刻中,顯示了半圓形的月亮,以紅色畫在黃色的峭壁表面。在半月旁,是一顆清晰可見的巨大星星,圓形四周射出光芒——就像小孩子可能畫出的表現方式。它幾乎和月亮一樣大。公園解說員告訴我們,這就是當時美洲原住民藝術家所描繪的超新星。我們這群天文學家並沒有完全被說服。專家仍在爭論這幅畫到底是不是在描繪 1054 年的超新星爆炸。但我同時也覺得,他們不太可能沒注意到如此不尋常的事件。

太陽將如何死去?

你可以把恆星想像為一個熱氣球。核心的熱讓它保持充氣狀態。一旦燃料用盡,裡面的氣體冷卻下來,壓力降低,氣球便開始扁掉。恆星以類似方式面臨自己的終結。一旦燃料燒完後,恆星便塌縮。不過恆星如何及何時「死去」,要視其質量而定。較輕的恆星(大多數恆星都屬於這類)在經過漫長的一生後消耗殆盡,最後悶燒熄滅。

-----廣告,請繼續往下閱讀-----

我們的太陽擁有一般的壽命。當它開始向內部塌陷時,仍能夠啟動自己的後燃器。在恆星的中央,核融合的灰燼(高熱的氦核)會累積起來。在恆星內爆的內部高壓之下,溫度再次上升,氦會融合為碳,釋放出最後所存的能量,「表皮」因此開始膨脹。就在壽命即將終結之時,太陽會膨脹,變成一顆紅巨星,吞噬掉水星、金星,可能甚至包括地球。

太陽成為紅巨星時會誇張的膨脹。圖為的當前太陽和將來成為紅巨星時的大小比較。圖/WIKIPEDIA by Oona Räisänen

白矮星的誕生

質量大於我們太陽的恆星,在臨終喘息時會向外噴出氣體和電漿。行星狀星雲形成,將死的恆星從內部提供光照,呈現出美妙的形狀與色彩。這個奇景對宇宙來說只是一眨眼的時間;數千年後,這些行星狀星雲便會褪色。行星狀星雲這名稱有點誤導,因為它和行星毫無關係,只是因為在十八世紀發現到時,從當時的望遠鏡中看起來很像是由氣體構成的遠方行星。

在中心位置,是核融合的壓縮灰燼,整個恆星的重量都集中在此。壓力變得如此之大,使得原子逐漸擠在一起,直到摩肩接踵而完全沒有空間留下。然後電子壓力讓這顆星無法繼續塌縮。在恆星核心處繞行原子核的電子稱為「費米子」(fermion)。費米子是物理界的獨行俠,它不會與任何其他費米子同床共枕。當周遭變得太擠時,費米子抗衡了重力帶來的壓力,因而阻止了燃燒殆盡的核心完全崩塌。

如果恆星的外層已經脫去,那麼剩下來的就是一顆體積小、緊緊壓縮、發出亮光的碳核,也就是白矮星(white dwarf),大小相當於地球,但重量相當於太陽。我們的太陽再過數十億年後會變成白矮星,白矮星的組成物只要一茶匙就重達九噸,相當於一輛貨車。白矮星的表面十分酷熱,在很長的時間中會繼續把熱能輻射到太空,直至最後,這顆死星終於變成一顆冰冷、完美球型的碳結晶,成為太空中的巨大鑽石。

-----廣告,請繼續往下閱讀-----
哈伯太空望遠鏡拍攝的天狼星 A 和 B。天狼星 B 是一顆白矮星,位在非常明亮的天狼星 A 左下方。圖/WIKIPEDIA

這個過程有不同的量子力學效應參與,印度物理學家錢卓塞卡(Subrahmanyan Chandrasekhar)曾對此進行計算。1930 年,年僅十九歲的錢卓塞卡搭船前往英格蘭,以便在劍橋繼續他在印度時即已開始的物理學研究。在航程中他的時間很多,因此決定著手計算白矮星可能的最大質量,並得到 1.44 太陽質量的結論。

不過,如果一顆恆星比我們的太陽更大又重上許多,其壓力提高到根本無法承受的程度時,又會發生什麼事?一顆重量比我們太陽大超過八倍的恆星,會點燃更多後燃器而避免塌縮。這顆巨大太陽的核心像洋蔥般,一層又一層燒掉自己。愈接近核心的內層愈熱,在燃燒各層的灰燼時,除了把每一層所儲存的能量釋放出來之外,也形成更大的原子核。氫變成氦,氦變成碳,碳和氦變成氧,氧變成矽,而矽變成鐵。每一個燃燒過程都比前一個更快。氦要燒成碳需要一百萬年,然而全部的矽融合成鐵只需要幾天時間。

然後,事情到此為止!從能量的角度而言,鐵具有自然界中最為緊實的原子核。如果壓力夠大,鐵還能融掉而形成更多新的元素,但這個過程不會再產生更多新能量,反而需要吸收能量。忽然間,增加壓力以便從原子裡擠出更多能量的單純伎倆不再管用。就這樣,原子不再升溫,而是進入降溫過程;壓力不再提高,而是降低。這顆垂垂老矣的星星終於喪失最後的勉強支撐,墮入死亡。幾分鐘之內核心內爆——這顆步入死亡的星星再也無法承受自己的重力。

——本文摘自《解密黑洞與人類未來》/ 海諾.法爾克、約格.羅默,2022 年 1 月,天下文化

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
天下文化_96
142 篇文章 ・ 624 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。