0

0
0

文字

分享

0
0
0

太空吸血鬼族現形記

臺北天文館_96
・2011/12/11 ・921字 ・閱讀時間約 1 分鐘 ・SR值 462 ・五年級

天文學家捕捉到一幅太空吸血鬼正在作案的畫面:在一個雙星系統中,其中一顆子星的質量絕大部分都被它的吸血鬼伴星掠奪。不過,讓天文學家意外的不是掠奪的現象,而是這顆伴星掠奪物質的速度比天文學家原本預期的還要溫和。

法國IPAG天文學家Nicolas Blind等人,利用歐南天文台(ESO)帕拉瑪天文臺(Paranal Observatory)的VLTI干涉陣列(Very Large Telescope Interferometer)進行聯合觀測,如此一來便如同使用口徑130米的單一望遠鏡來觀察一樣,影像解析度比哈柏太空望遠鏡還精細50倍以上。因此Blind等人所取得的影像,不僅可將這對雙星解析開來,看到兩顆個別恆星互繞的景象,而且還可以測量出兩星中比較大的那顆恆星的體積。

這個特別的雙星系統是天兔座SS星(SS Leporis),兩星互繞週期約為260天,彼此間的距離相當於地球到太陽的距離(1AU,1天文單位,相當於1億5000萬公里);其中較大但表面溫度較低的主星,其半徑就佔了1/4(0.25AU)左右,換言之,若將這顆恆星放在太陽的位置,那麼它的表面大概只比水星軌道小一點,是顆所謂的「紅巨星(red giant)」。正因這兩顆星這麼接近的緣故,所以較小但表面溫度比較高的伴星子星,已經掠取了主星約一半的質量了。

雖然天文學家早已知道這個雙星系統中有質量轉移的現象,但轉移速度遠比天文學家預期的還慢,和現行的理論模型預測的過程截然不同;這顆吸血伴星的動作雖慢,但卻非常有效率。

根據這個最新觀測結果,由於影像夠銳利,主星比先前預期的還小,天文學家們很難解釋這顆紅巨星的質量是如何傳遞給伴星的。目前,這些天文學家猜想,說不定這顆紅巨星原本只是因向外發出恆星風之故,才會使得部分物質被伴星「接收」,而非如先前所想的直接從主星傳遞物質給伴星。

天兔座SS星,又名天兔座17號星或HD 41511,視亮度在4.82~5.06等之間變化,於無光害、天空清朗之處,以肉眼便可看見這顆星。距離地球約1,069光年,原為光譜雙星,意思是,僅能經由光譜觀測中,譜線的移動而得知有伴星存在的雙星系統:但現在藉由解析力極佳的VLBI協助,天文學家才能看到個別的恆星。因此,顯見未來將會有更多的光譜雙星在VLBI的鷹眼下,一一現形。

資料來源:Vampire Star Reveals its Secrets[2011.12.07]

轉載自台北天文館之網路天文館網站

文章難易度
臺北天文館_96
482 篇文章 ・ 27 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!

0

2
1

文字

分享

0
2
1
恆星將如何死去?——《解密黑洞與人類未來》
天下文化_96
・2022/01/01 ・2403字 ・閱讀時間約 5 分鐘

  • 作者 / 海諾.法爾克 (Heino Falcke)、約格.羅默(Jörg Römer)
  • 譯者 / 姚若潔

發生在天上的死亡事件:超新星爆炸

公元 1054 年,全世界的人都驚訝的仰望天空。有些人可能擔心巨大的災難即將發生。中國北宋的天文學家精確記下這場天空中的驚人事件,記錄到蒼穹中有顆與金星(太白)一樣明亮的「客星」。一名阿拉伯醫生甚至認為這是一顆新星而記錄下來。

左下方的亮點是位在 NGC 4526 星系的一顆「客星」,名為 SN 1994D。圖/WIKIPEDIA by NASA/ESA

在歐洲,雖然並未留下確鑿的目擊紀錄,人們或許也驚訝的看著占據午後天空的「明亮圓盤」。那麼,到底是什麼驚人事件,讓世界各地都有人記下這個現象?

其實是超新星,一種規模巨大的恆星爆炸事件。它發生在我們的銀河系內,距我們六千光年之遙。培布羅長者曾坐著之處的岩石雕刻中,顯示了半圓形的月亮,以紅色畫在黃色的峭壁表面。在半月旁,是一顆清晰可見的巨大星星,圓形四周射出光芒——就像小孩子可能畫出的表現方式。它幾乎和月亮一樣大。公園解說員告訴我們,這就是當時美洲原住民藝術家所描繪的超新星。我們這群天文學家並沒有完全被說服。專家仍在爭論這幅畫到底是不是在描繪 1054 年的超新星爆炸。但我同時也覺得,他們不太可能沒注意到如此不尋常的事件。

太陽將如何死去?

你可以把恆星想像為一個熱氣球。核心的熱讓它保持充氣狀態。一旦燃料用盡,裡面的氣體冷卻下來,壓力降低,氣球便開始扁掉。恆星以類似方式面臨自己的終結。一旦燃料燒完後,恆星便塌縮。不過恆星如何及何時「死去」,要視其質量而定。較輕的恆星(大多數恆星都屬於這類)在經過漫長的一生後消耗殆盡,最後悶燒熄滅。

我們的太陽擁有一般的壽命。當它開始向內部塌陷時,仍能夠啟動自己的後燃器。在恆星的中央,核融合的灰燼(高熱的氦核)會累積起來。在恆星內爆的內部高壓之下,溫度再次上升,氦會融合為碳,釋放出最後所存的能量,「表皮」因此開始膨脹。就在壽命即將終結之時,太陽會膨脹,變成一顆紅巨星,吞噬掉水星、金星,可能甚至包括地球。

太陽成為紅巨星時會誇張的膨脹。圖為的當前太陽和將來成為紅巨星時的大小比較。圖/WIKIPEDIA by Oona Räisänen

白矮星的誕生

質量大於我們太陽的恆星,在臨終喘息時會向外噴出氣體和電漿。行星狀星雲形成,將死的恆星從內部提供光照,呈現出美妙的形狀與色彩。這個奇景對宇宙來說只是一眨眼的時間;數千年後,這些行星狀星雲便會褪色。行星狀星雲這名稱有點誤導,因為它和行星毫無關係,只是因為在十八世紀發現到時,從當時的望遠鏡中看起來很像是由氣體構成的遠方行星。

在中心位置,是核融合的壓縮灰燼,整個恆星的重量都集中在此。壓力變得如此之大,使得原子逐漸擠在一起,直到摩肩接踵而完全沒有空間留下。然後電子壓力讓這顆星無法繼續塌縮。在恆星核心處繞行原子核的電子稱為「費米子」(fermion)。費米子是物理界的獨行俠,它不會與任何其他費米子同床共枕。當周遭變得太擠時,費米子抗衡了重力帶來的壓力,因而阻止了燃燒殆盡的核心完全崩塌。

如果恆星的外層已經脫去,那麼剩下來的就是一顆體積小、緊緊壓縮、發出亮光的碳核,也就是白矮星(white dwarf),大小相當於地球,但重量相當於太陽。我們的太陽再過數十億年後會變成白矮星,白矮星的組成物只要一茶匙就重達九噸,相當於一輛貨車。白矮星的表面十分酷熱,在很長的時間中會繼續把熱能輻射到太空,直至最後,這顆死星終於變成一顆冰冷、完美球型的碳結晶,成為太空中的巨大鑽石。

哈伯太空望遠鏡拍攝的天狼星 A 和 B。天狼星 B 是一顆白矮星,位在非常明亮的天狼星 A 左下方。圖/WIKIPEDIA

這個過程有不同的量子力學效應參與,印度物理學家錢卓塞卡(Subrahmanyan Chandrasekhar)曾對此進行計算。1930 年,年僅十九歲的錢卓塞卡搭船前往英格蘭,以便在劍橋繼續他在印度時即已開始的物理學研究。在航程中他的時間很多,因此決定著手計算白矮星可能的最大質量,並得到 1.44 太陽質量的結論。

不過,如果一顆恆星比我們的太陽更大又重上許多,其壓力提高到根本無法承受的程度時,又會發生什麼事?一顆重量比我們太陽大超過八倍的恆星,會點燃更多後燃器而避免塌縮。這顆巨大太陽的核心像洋蔥般,一層又一層燒掉自己。愈接近核心的內層愈熱,在燃燒各層的灰燼時,除了把每一層所儲存的能量釋放出來之外,也形成更大的原子核。氫變成氦,氦變成碳,碳和氦變成氧,氧變成矽,而矽變成鐵。每一個燃燒過程都比前一個更快。氦要燒成碳需要一百萬年,然而全部的矽融合成鐵只需要幾天時間。

然後,事情到此為止!從能量的角度而言,鐵具有自然界中最為緊實的原子核。如果壓力夠大,鐵還能融掉而形成更多新的元素,但這個過程不會再產生更多新能量,反而需要吸收能量。忽然間,增加壓力以便從原子裡擠出更多能量的單純伎倆不再管用。就這樣,原子不再升溫,而是進入降溫過程;壓力不再提高,而是降低。這顆垂垂老矣的星星終於喪失最後的勉強支撐,墮入死亡。幾分鐘之內核心內爆——這顆步入死亡的星星再也無法承受自己的重力。

——本文摘自《解密黑洞與人類未來》/ 海諾.法爾克、約格.羅默,2022 年 1 月,天下文化

天下文化_96
110 篇文章 ・ 597 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

0

0
0

文字

分享

0
0
0
LB-1 雙星系統的神秘伴星到底是什麼?一顆失落黑洞的論戰
活躍星系核_96
・2020/05/19 ・4066字 ・閱讀時間約 8 分鐘 ・SR值 515 ・六年級

  • 文/陳明堂│中央研究院天文所及天文物理研究所研究員,兼天文所夏威夷運轉副所長。

在過去的幾個月中,關於一顆黑洞存在與否的問題,在天文學界引發一場熱烈的科學論戰。

論戰的起源來自去年 (2019) 11 月底,《自然》雜誌刊登的一篇關於發現黑洞的論文。那是由中國天文學家領導的國際科學團隊發表的研究成果。他們宣稱找到一顆非常特別的黑洞。特別的地方在於這個黑洞的質量:相當於 70 個太陽。

對專門研究「星體黑洞」(Stellar Black Hole ,或稱恆星黑洞)的科學家而言,質量大於 10 個太陽的黑洞就算是很罕見了。因此,找到一顆 70 個太陽質量的恆星黑洞,會是個空前的發現,而且可能改寫重要的黑洞和星球形成理論。因此這個成果登上了《自然》科學雜誌中,並且引起國際天文界的注意。

藝術家所繪雙星系統星球黑洞示意圖。主要根據甚大望遠鏡(Very Large Telescope)與錢卓拉X射線天文台(Chandra X-ray Observatory)針對另一雙星系統的觀察。圖\wikipedia Credit:ESO/L. Calçada/M.Kornmesser

這次成果的觀測資料主要來自於中國的「郭守敬望遠鏡」,搭配西班牙的 Gran 望遠鏡和夏威夷的凱克望遠鏡。郭守敬望遠鏡 (英文名: Large Sky Area Multi-Object Fiber Spectroscopy Telescope ,簡稱 LAMOST) 是一座由中國主導建造的光學望遠鏡。主鏡的直徑 4 公尺,望遠鏡位在北京西北邊約 115 公里,海拔九百多公尺的興隆觀測站。 這座望遠鏡是十年前完成的。這一次的空前發現,對這一座觀測環境並不是太理想的國家級望遠鏡,是一件轟動中國科學界的大事。

某些恆星的末路:恆星黑洞

以目前我們對於恆星演化的理解,當星球把所有的燃料用光的時候,那時候它們再也沒有能量維持向外的壓力,而它本身的重力將會把所有的質量往內擠壓。如果星球的質量足夠大的話,它的重力可以大到把自己一直往內塌縮,一直縮到「事件視界」的範圍內。從這個過程產生的黑洞,我們稱之為恆星黑洞,或是「星體黑洞」。

並不是所有星球的演化都會產生黑洞的;像我們的太陽,它的質量還不足夠大到能形成黑洞程度,當它燃料用盡時會變成「白矮星」。而比太陽大一些的星體,會變成「中子星」。

當一顆巨大的恆星耗盡燃料時,它會坍塌並爆炸成超新星。圖\NASA 資料庫

比太陽大 10 倍以上的星體才會變成「黑洞」!這類型的恆星會最終爆炸成為「超新星」,爆炸的過程會把一些星體的質量往外拋出,成為星際物質;同時,還會有往內的壓力,擠壓原本就非常緻密的星核,由此形成黑洞。形成的黑洞質量大約是太陽的數倍到二、三十倍。三十倍太陽質量以上的黑洞,它們成因就比較複雜了,如果環境不對(像是我們的銀河系), 就可能無法成型。

天文學家對大質量黑洞(幾百個太陽質量以上)的成因了解有限,目前沒有一致的定論。最近的一個研究,發現最靠近我們的星體黑洞,距離地球大約有 1,000 光年,質量是 4 個太陽。

一個具有 4 個太陽質量的黑洞,它的直徑比台北的大安區略大;而 70 個太陽質量的黑洞的直徑大約就像台北市那麼大。在浩瀚無垠的宇宙中,這是一個再微小不過的範圍。除非是在我們太陽系附近,不然以目前的儀器,我們無法直接觀測到如此小的星體。

找尋星體黑洞主要靠間接的量測,常見的方法有二:一是觀察黑洞周遭恆星軌道的變動,二是尋找黑洞吸積盤物質因快速摩擦而釋放出的各種電磁波(可見光、紅外光、無線電波、 X 射線等)。

中國團隊宣稱: LB-1 雙星系統有個 70 個太陽質量的黑洞!

這次中國的科學團隊觀測的目標是一個叫做 LB-1 的星體。在視覺上,它在望遠鏡中只看到單一個光點,看不出什麼特別的。但是從它發出的光譜,天文學家判斷該系統是一組雙星系統。兩顆互相環繞的星體,其中之一是顆發出可見光的普通恆星;另一顆伴星似乎沒有訊號。根據 LB-1 光譜的分析,天文學家知道發光的恆星的大致的組成成份,並根據目前的恆星演化理論,了解該星體的物理狀況:像是溫度、大小、年齡等等。至於它的神秘伴星,由於以往的觀測看不到它的訊號,過去一般認為它若不是中子星,就是黑洞。

小知識:對於雙星系統的估測

天文學家有一套估算這種雙星體的旋轉週期、相對質量、軌道形狀的技術。這個技術源自於 17 世紀的克普勒 (Kepler) 先生發現的定律,一直沿用到現在。雖然在視覺上,我們無法直接看到 LB-1 的雙星運動,現代的天文學家還是可以透過量測它的可見光光譜的變動,得知雙星的旋轉週期。
恆星的燃燒靠著是氫原子融合,而一堆火熱的氫原子聚在一起就會發出某些氫原子特有的光。我們知道一顆靜止不動的恆星,這些特定的光會出現在在光譜的固定頻率上。但是如果這顆恆星是繞著另外一顆星體打轉,那麼這些特定的光譜線,就會在原本的固定點,左右變動著。這就是所謂的都普勒光譜效應:當恆星是朝著地球過來,光譜線的頻率就會增加;反之,則是降低。

藝術家所繪天蠍座AR雙星系統示意圖,此雙星系由白矮星和紅矮星組成。By M. Garlick/University of Warwick/ESO – CC BY 4.0

中國團隊就是靠著分析 LB-1 發出的光譜變動,宣稱它的神秘伴星是一顆黑洞,而且其質量高達前所未見的 70 個太陽。

中國團隊的發表中認定,LB-1 是一個距離我們 1  萬 4 千光年的的雙星系統。 它包含一顆 8 個太陽質量的恆星,和一顆 70 個太陽質量的黑洞。 另外,靠近黑洞的周遭圍繞著一環盤狀的氣態雲,這個氣態環跟隨著黑洞,與主星以大約 80 天的週期互相圍繞著。黑洞不會發出訊號,但是靠近它的氣態雲會發光,並且發射出氫原子的特殊譜線,稱為 H-alpha 譜線。透過觀測這條光譜線的頻率變動,科學家們可以推測雙星體的旋轉週期、相對質量、軌道形狀等物理參數。

根據目前的星體演化模型,如此大質量的黑洞不可能在銀河系這般的星系中形成的。這是銀河系中星體的普遍成份,造成大質量的恆星在它們演化末期,跳過了重力崩塌的過程,而將所有物質全部向外炸開,灰飛煙滅。所以也不會有黑洞這塊墓碑留下來。

70 個太陽質量的星體黑洞出現在我們的銀河系中,這個空前的發現如果被證實的話,對已知的天文理論具有革命性的結果。因此,這顆黑洞的質量特別引起世界各地的天文學家的注意。

分析錯了嗎?各國質疑聲浪紛紛出現

該篇《自然》論文發表後,不到十日,天文界出現質疑的聲浪。三篇反駁性的論文,分別來自美國、紐西蘭-英國-澳洲、比利時三地的團隊,一致性的質疑中國團隊的詮釋光譜資料的正確性。並且提出各自的分析方法,從同樣的觀測資料,導出不同的結論。

他們的結論沒有排除 LB-1 的伴星是一顆黑洞的可能。但是如果答案是肯定的話,它應該是一顆「正常」的星體黑洞,質量小於 20 個太陽。美國團隊的文章登上今年 (2020) 一月的英國的皇家天文會月報中。

中國團隊資料處理方式遭受到反駁者的強烈質疑。他們一致的指出中國的團隊在資料分析處理中,除了專注在 H-alpha 放射譜線,應該要考慮源自於主恆星的 H-alpha 吸收譜線。從反對者的數值模擬中,說明了把主恆星的吸收譜線排除後, H-alpha 放射譜線應該是來自於一個靜止的發射源。換句話說, H-alpha 光譜發射線並不可能是從黑洞附近發出的,因此跟黑洞的軌道運動沒有直接的物理關係。它的來源更像是環繞在雙星外圍的雲氣所產生的,所以不會產生都普勒效應。

除了這點以外,反對者的分析也認為 LB-1 主星的質量不會超過 5 個太陽,而且 LB-1 距離太陽約 7 千光年,只有中國團隊認定的一半距離。

比利時團隊新觀測資料:伴星是 Be 型恆星啦!

比利時的團隊更是把這個議題提升了一個層次。就在過去的幾個月,他們利用西班牙的 Mercator 望遠鏡,觀測 LB-1。從該望遠鏡獲得的更清晰、同時也更高解析率的光譜資料。從這些新的觀測資料結果,加上中國團隊的資料,他們提出新的證據顯示 LB-1 的伴星不是一個 70 個 太陽質量的黑洞;這顆伴星甚至不是黑洞,而是一顆在天文學中被稱為 Be 型的恆星。

Be 星是會發射出氫原子光譜線的 B 型恆星,傳統天文學用恆星的光譜來分類星體。 B 星是溫度頗高的藍白色星,在銀河系中並不罕見。天文學家可以從恆星的光譜資料辨認出哪些星體是 Be 星。由於比利時的團隊獲得的新的光譜資料在解析率和訊號品質都比之前精確細微,因此研究團隊能夠從原本以為只是主星的光譜資料中,分辨出隱藏其中的伴星光譜。

赫羅圖以恆星亮度(絕對星等)與恆星顏色作軸,從左邊高溫藍白星到右邊低溫紅星。上方及標示各類恆星的分類,其中 Be 星即為圖中分類 B 的恆星。圖\wikipedia

根據研究團隊的分析,這一顆伴星自轉的速度相當的快,致使觀測到的光譜訊號變得難以辨認;它的光譜又跟主星的光譜混合,讓天文學家以為這個伴星是個不出聲響的緻密星體(黑洞,中子星之類)。

今年 (2020) 四月 29 號 的 《自然》刊登了比利時團隊的研究結果。同一期也刊登了中國團隊對新結果的評論。在評論中,他們表示對新研究的一些分析方法,還是保持著存疑的態度,然而並沒有提出論證反駁 LB-1 新的觀測結論。

在這場論戰中,中國的隊在重新檢視資料後,依舊認為 LB-1 伴星是一個介於 23 – 65 太陽質量的黑洞。這已經是比原先宣稱的質量小了許多。中國團隊倒是同意一點: LB-1 的光譜所代表的訊息,的確是比他們原先設想的更加複雜。

LB-1 的伴星到底是不是黑洞呢?如果中國團隊的結論是正確的,那麼要如何解釋反駁者提出的疑點呢?現代科學研究的過程就是如此。任何的新發現都必須攤在陽光下接受檢視,重複驗證,再三確定,才會產生接近事實的科學成果。

目前看來,比利時團隊的分析方法是相當充分的。他們分析了之前中國團隊和他們新取得的觀測資料,包含了過去 4 年 LB-1 的動力資料。從這些資料產生的結論,並沒有違背目前科學家對雙星系統的理論假設。所以看來,這一顆 70 個太陽質量的黑洞的說法,在經過一連串的小心求證後, 已經離事實越來越遠了,成為一顆失落的黑洞了。

參考資料

  1. Liu, J., Zhang, H., Howard, A.W. et al. A wide star–black-hole binary system from radial-velocity measurements. Nature 575, 618–621 (2019).
  2. Kareem El-Badry, Eliot Quataert, Not so fast: LB-1 is unlikely to contain a 70 M⊙ black hole, Monthly Notices of the Royal Astronomical Society: Letters, Volume 493, Issue 1, March 2020, Pages L22–L27.
  3. Eldridge, J. J., Stanway, E. R., Breivik, K., et al. Weighing in on black hole binaries with BPASS: LB-1 does not contain a 70M⊙ black hole. 2019, arXiv e-prints, arXiv:1912.03599
  4. Abdul-Masih, M., Banyard, G., Bodensteiner, J. et al. On the signature of a 70-solar-mass black hole in LB-1. Nature 580, E11–E15 (2020).
活躍星系核_96
752 篇文章 ・ 96 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

0
0

文字

分享

0
0
0
首次成功利用微重力透鏡效應幫星星「量」體重!
物理雙月刊_96
・2017/06/12 ・1413字 ・閱讀時間約 2 分鐘 ・SR值 550 ・八年級

星星有多重?長久以來,人類能夠直接量度其質量的恆星,只有我們的太陽。利用克卜勒行星運動第三定律,代入太陽系各行星的平均公轉軌道半徑和週期,即使是物學新手亦能輕鬆算出太陽質量。

那麼其他恆星呢?如果它們有行星系統的話,就可以靠哈勃、克卜勒太空望遠鏡等觀察其公轉軌道,用克卜勒定律算出恆星質量。然而,並非每個恆星都有行星繞其運轉。有一部分恆星是雙星系統,即兩個恆星互相環繞系統的質心轉動。除非能夠準確測量雙星系統軌道平面相對地球方向的角度,否則我們只能計算出系統的總質量,不能得知每個恆星各有多重。

並非每個恆星都有行星繞其運轉。有一部分恆星是雙星系統,即兩個恆星互相環繞系統的質心轉動。除非能夠準確測量雙星系統軌道平面相對地球方向的角度,否則我們只能計算出系統的總質量,不能得知每個恆星各有多重。圖/By User:Zhatt, Public Domain, wikimedia commons

愛因斯坦的廣義相對論說,就算是沒有質量的光線也會被重力吸引。1919 年,愛丁頓遠征非洲觀察日全食,測量了日食時太陽旁來自遙遠恆星的光線,發現恆星的位置偏移了。這是人類史上首次以實驗驗證廣義相對論,透過星光偏折的角度,就計算出時空如何被質量扭曲。

白矮星扭曲了背景恆星的光芒。source:The Verge

扭曲光線這個效應,已經被天文學家利用來觀察遙遠的星系。當光線經過非常重的星系附近,會在其旁邊形成一個環狀的扭曲影像。這個扭曲效果就好像透鏡眾焦一樣,光線來源的影像會被加強和放大。我們叫這個效應做重力透鏡。這個光環叫做「愛因斯坦環」,其大小由造成重力透鏡的質量決定,質量越大效果越明顯。天文學家已經利用重力透鏡效應測量了很多星系的質量。

愛因斯坦環,其大小由造成重力透鏡的質量決定,質量越大效果越明顯。source:The Verge

然而,天文學家從未使用重力透鏡量度恆星的質量。這是因為恆星質量太小,我們稱這個效應做微重力透鏡效應,而且必須非常接近背景星光才能使透鏡效果大到在望遠鏡的探測範圍裡。可是,恆星與背景恆星太接近的話,恆星的光芒又會遮蔽背景星光。

Sahu 和他的研究團隊在 2013 至 2015 年利用哈勃太空望遠鏡觀察了白矮星 Stein 2051B 的微重力透鏡效應。Stein 2051B 是第六位接近地球的白矮星,其移動相對於地球就比背景星空明顯。當它移動到非常接近一個背景恆星時,研究員測量了背景恆星的光線偏折現象,得出 Stein 2051B 的質量為 0.675+/-0.051 太陽質量。

Sahu 團隊對 Stein 2051B 的觀測(此為 Stein 2051B 位於 E1 時的照片)。藍色線表示 Stein 2051B 相對背景恆星(source)的位移。圖/Relativistic deflection of background starlight measures the mass of a nearby white dwarf

這是史上首次成功量度恆星質量造成的微重力透鏡效應,而且得出的質量數值與使用恆星演化模型計算出的0.67+/-0.03 太陽質量吻合,因此亦同時驗證了天體物理學家的恆星演化模型正確。

百年之前,星光偏折證實廣義相對論震驚世界,誰會想到在百年後的今天,這個效應仍能創出科研突破?

參考資料:

本文轉載自《物理雙月刊》,《如何用光線幫星星量體重?廣義相對論的實現

物理雙月刊_96
54 篇文章 ・ 6 位粉絲
《物理雙月刊》為中華民國物理學會旗下之免費物理科普電子雜誌。透過國內物理各領域專家、學者的筆,為我們的讀者帶來許多有趣、重要以及貼近生活的物理知識,並帶領讀者一探這些物理知識的來龍去脈。透過文字、圖片、影片的呈現帶領讀者走進物理的世界,探尋物理之美。《物理雙月刊》努力的首要目標為吸引台灣群眾的閱讀興趣,進而邁向國際化,成為華人世界中重要的物理科普雜誌。