0

0
0

文字

分享

0
0
0

牙膏的氟也來自星星?

臺北天文館_96
・2014/08/28 ・787字 ・閱讀時間約 1 分鐘 ・SR值 499 ・六年級

02d52bcf502d3aecb8眾人皆知:牙膏裡含有氟(fluorine)這種成分,不過您知道氟元素來自何處嗎?這個問題困惑科學家已久,關於氟元素的來源有3種主要的理論,不過根據瑞典隆德大學(Lund University)天文學家Henrik Jönsson和Nils Ryde等人的最新研究:氟很可能是與我們太陽相似、但比太陽重一點的的恆星,在其接近死亡階段的過程中形成的。我們的太陽和太陽系中的行星,是從這些已經死亡的恆星遺留的物質中形成的,所以地球上才會有氟元素的存在。

由於不同化學元素是在恆星內部高溫高壓環境下形成的,特定波長的譜線代表某特定元素在某特定溫度下的狀態,所以天文學家可以透過光譜來研究恆星含有什麼樣的化學成分,以及這些元素的豐富程度。Ryde等人研究在宇宙各年齡階段形成的恆星的中紅外光譜,查探這些恆星擁有的氟含量,看看是否與哪個理論預測相符。

氟元素是在恆星生命接近末期,即將轉變成紅巨星(red giant)階段時形成的,之後從恆星核心逐漸轉移到恆星較外側的部分。之後,恆星外層大氣逐漸向外擴張而形成行星狀星雲(planetary nebula),氟就是在這個過程中與恆星週邊環境原有的星際介質氣體混合。新恆星和行星從星際介質中誕生,當這些新恆星也死亡,再度充盈這個區域的星際介質含量。如此一來,星際介質中的氟元素比例就會隨著一代代恆星演化與死亡而增加。

Ryde等人現在也開始著眼於其他類型的恆星,並試圖找找看氟元素是否曾在第一代紅巨星形成之前的宇宙早期就已被製造過。他們也計畫利用相同方法研究和太陽周邊不同的宇宙環境,例如靠近銀河系中心超大質量黑洞的地方,因為該處的恆星死亡與誕生的循環,比太陽附近這樣比較靠銀河系外圍的區域還要快得多了。在不同環境中的恆星所含的氟豐度,將可讓這些天文學家瞭解該處的造氟過程是否有所不同。

-----廣告,請繼續往下閱讀-----

資料來源:Toothpast Fluorine Fromed in Stars. Lund University [21 August, 2014]

本文轉載自網路天文館

文章難易度
臺北天文館_96
482 篇文章 ・ 38 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!

0

8
2

文字

分享

0
8
2
快!還要更快!讓國家級地震警報更好用的「都會區強震預警精進計畫」
鳥苷三磷酸 (PanSci Promo)_96
・2024/01/21 ・2584字 ・閱讀時間約 5 分鐘

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

從地震儀感應到地震的震動,到我們的手機響起國家級警報,大約需要多少時間?

臺灣從 1991 年開始大量增建地震測站;1999 年臺灣爆發了 921 大地震,當時的地震速報系統約在震後 102 秒完成地震定位;2014 年正式對公眾推播強震即時警報;到了 2020 年 4 月,隨著技術不斷革新,當時交通部中央氣象局地震測報中心(以下簡稱為地震中心)僅需 10 秒,就可以發出地震預警訊息!

然而,地震中心並未因此而自滿,而是持續擴建地震觀測網,開發新技術。近年來,地震中心執行前瞻基礎建設 2.0「都會區強震預警精進計畫」,預計讓臺灣的地震預警系統邁入下一個新紀元!

-----廣告,請繼續往下閱讀-----

連上網路吧!用建設與技術,換取獲得地震資料的時間

「都會區強震預警精進計畫」起源於「民生公共物聯網數據應用及產業開展計畫」,該計畫致力於跨部會、跨單位合作,由 11 個執行單位共同策畫,致力於優化我國環境與防災治理,並建置資料開放平台。

看到這裡,或許你還沒反應過來地震預警系統跟物聯網(Internet of Things,IoT)有什麼關係,嘿嘿,那可大有關係啦!

當我們將各種實體物品透過網路連結起來,建立彼此與裝置的通訊後,成為了所謂的物聯網。在我國的地震預警系統中,即是透過將地震儀的資料即時傳輸到聯網系統,並進行運算,實現了對地震活動的即時監測和預警。

地震中心在臺灣架設了 700 多個強震監測站,但能夠和地震中心即時連線的,只有其中 500 個,藉由這項計畫,地震中心將致力增加可連線的強震監測站數量,並優化原有強震監測站的聯網品質。

-----廣告,請繼續往下閱讀-----

在地震中心的評估中,可以連線的強震監測站大約可在 113 年時,從原有的 500 個增加至 600 個,並且更新現有監測站的軟體與硬體設備,藉此提升地震預警系統的效能。

由此可知,倘若地震儀沒有了聯網的功能,我們也形同完全失去了地震預警系統的一切。

把地震儀放到井下後,有什麼好處?

除了加強地震儀的聯網功能外,把地震儀「放到地下」,也是提升地震預警系統效能的關鍵做法。

為什麼要把地震儀放到地底下?用日常生活來比喻的話,就像是買屋子時,要選擇鬧中取靜的社區,才不會讓吵雜的環境影響自己在房間聆聽優美的音樂;看星星時,要選擇光害比較不嚴重的山區,才能看清楚一閃又一閃的美麗星空。

-----廣告,請繼續往下閱讀-----

地表有太多、太多的環境雜訊了,因此當地震儀被安裝在地表時,想要從混亂的「噪音」之中找出關鍵的地震波,就像是在搖滾演唱會裡聽電話一樣困難,無論是電腦或研究人員,都需要花費比較多的時間,才能判讀來自地震的波形。

這些環境雜訊都是從哪裡來的?基本上,只要是你想得到的人為震動,對地震儀來說,都有可能是「噪音」!

當地震儀靠近工地或馬路時,一輛輛大卡車框啷、框啷地經過測站,是噪音;大稻埕夏日節放起絢麗的煙火,隨著煙花在天空上一個一個的炸開,也是噪音;台北捷運行經軌道的摩擦與震動,那也是噪音;有好奇的路人經過測站,推了推踢了下測站時,那也是不可忽視的噪音。

因此,井下地震儀(Borehole seismometer)的主要目的,就是盡量讓地震儀「遠離塵囂」,記錄到更清楚、雜訊更少的地震波!​無論是微震、強震,還是來自遠方的地震,井下地震儀都能提供遠比地表地震儀更高品質的訊號。

-----廣告,請繼續往下閱讀-----

地震中心於 2008 年展開建置井下地震儀觀測站的行動,根據不同測站底下的地質條件,​將井下地震儀放置在深達 30~500 公尺的乾井深處。​除了地震儀外,站房內也會備有資料收錄器、網路傳輸設備、不斷電設備與電池,讓測站可以儲存、傳送資料。

既然井下地震儀這麼強大,為什麼無法大規模建造測站呢?簡單來說,這一切可以歸咎於技術和成本問題。

安裝井下地震儀需要鑽井,然而鑽井的深度、難度均會提高時間、技術與金錢成本,因此,即使井下地震儀的訊號再好,若非有國家建設計畫的支援,也難以大量建置。

人口聚集,震災好嚴重?建立「客製化」的地震預警系統!

臺灣人口主要聚集於西半部,然而此區的震源深度較淺,再加上密集的人口與建築,容易造成相當重大的災害。

-----廣告,請繼續往下閱讀-----

許多都會區的建築老舊且密集,當屋齡超過 50 歲時,它很有可能是在沒有耐震規範的背景下建造而成的的,若是超過 25 年左右的房屋,也有可能不符合最新的耐震規範,並未具備現今標準下足夠的耐震能力。 

延伸閱讀:

在地震界有句名言「地震不會殺人,但建築物會」,因此,若建築物的結構不符合地震規範,地震發生時,在同一面積下越密集的老屋,有可能造成越多的傷亡。

因此,對於發生在都會區的直下型地震,預警時間的要求更高,需求也更迫切。

-----廣告,請繼續往下閱讀-----

地震中心著手於人口密集之都會區開發「客製化」的強震預警系統,目標針對都會區直下型淺層地震,可以在「震後 7 秒內」發布地震警報,將地震預警盲區縮小為 25 公里。

111 年起,地震中心已先後完成大臺北地區、桃園市客製化作業模組,並開始上線測試,當前正致力於臺南市的模組,未來的目標為高雄市與臺中市。

永不停歇的防災宣導行動、地震預警技術研發

地震預警系統僅能在地震來臨時警示民眾避難,無法主動保護民眾的生命安全,若人民沒有搭配正確的防震防災觀念,即使地震警報再快,也無法達到有效的防災效果。

因此除了不斷革新地震預警系統的技術,地震中心也積極投入於地震的宣導活動和教育管道,經營 Facebook 粉絲專頁「報地震 – 中央氣象署」、跨部會舉辦《地震島大冒險》特展、《震守家園 — 民生公共物聯網主題展》,讓民眾了解正確的避難行為與應變作為,充分發揮地震警報的效果。

-----廣告,請繼續往下閱讀-----

此外,雖然地震中心預計於 114 年將都會區的預警費時縮減為 7 秒,研發新技術的腳步不會停止;未來,他們將應用 AI 技術,持續強化地震預警系統的效能,降低地震對臺灣人民的威脅程度,保障你我生命財產安全。

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
196 篇文章 ・ 300 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
1

文字

分享

0
1
1
【成語科學】動如參商:參宿和商宿是哪兩顆星星?帶你認識古代中國的星座系統!
張之傑_96
・2023/09/08 ・1103字 ・閱讀時間約 2 分鐘

西元 759 年,大詩人杜甫經過老友衛八的家鄉,屈指數來,兩人已 20 年沒見過面。當年衛八還沒結婚,如今已子女成行。杜甫在衛八家過了一夜,翌日匆匆告別,寫下膾炙人口的〈贈衛八處士〉,頭兩句「人生不相見,動如參與商。」就是成語「動如參商」的出典。

唐代習慣以家族的排行稱呼人;處士,對隱士的尊稱。參(ㄕㄣ),指參宿;商,即商星,是心宿的主星。參、心二宿都是二十八宿之一,參宿位於西方時,心宿位於東方,不會同時在天上出現。

參宿位於西方時,心宿位於東方,不會同時在天上出現。圖/高魯《星象統箋》

動如參商,比喻見面不易。我們先談到這裡,造兩個句吧。

畢業後同學們動如參商,再也無法朝夕相處。

您遠渡重洋後咱們動如參商,已難得見上一面。

造完句,接下去要說明什麼是星宿了。無論哪個民族,都會將天上的星星分成組,每組之間作些連線,然後比附成英雄人物、動物、器物等等。這種分組,有利於天文觀測。

-----廣告,請繼續往下閱讀-----

星座,是西方所發展出的天文觀測體系,總共有 88 個,最為人們熟知的是黃道十二宮。太陽在天球上的軌道稱為黃道,黃道上有 12 個星座,在您生日那段時間,太陽在天球上所對應的星座,就是您的生日座。

中國古代將一組星星稱為一個星宿(又稱星官),魏晉時統合成 283 個,含有星星 1464 顆。在這 283 個星宿中,最為人熟知的是二十八宿,也就是月亮運行軌道(白道)所經過的星宿。

二十八宿是:角亢氐房心尾箕,斗牛女虛危室壁;奎婁胃昴畢觜參,井鬼柳星張翼軫。

二十八星宿。圖/wikimedia

在二十八宿中,角亢氐房心尾箕是東方七宿,奎婁胃昴畢觜參是西方七宿。商星是心宿的星星,和西方七宿的參宿是不會同時出現天際的。

-----廣告,請繼續往下閱讀-----

中國的星宿,每一星宿的星星數目不等,以心宿和參宿來說,心宿有 3 顆(第二顆就是商星),參宿則有 7 顆。星宿的星星以數字編號,有時另有專名。以心宿的商星來說,編號是「心宿二」,商星是它的專名。

心宿二(即天蝎座 α 星)是顆紅巨星,會發出火紅色的亮光,所以還有一個專名——大火。我們的祖先早就觀察到,每到夏末秋初,大火星就會落向夜空的西邊,表示天氣將逐漸轉涼了。

心宿二又被稱為大火。圖/wikimedia
張之傑_96
103 篇文章 ・ 223 位粉絲
張之傑,字百器,出入文理,著述多樣,其中以科普和科學史較為人知。

0

2
1

文字

分享

0
2
1
恆星將如何死去?——《解密黑洞與人類未來》
天下文化_96
・2022/01/01 ・2403字 ・閱讀時間約 5 分鐘

  • 作者 / 海諾.法爾克 (Heino Falcke)、約格.羅默(Jörg Römer)
  • 譯者 / 姚若潔

發生在天上的死亡事件:超新星爆炸

公元 1054 年,全世界的人都驚訝的仰望天空。有些人可能擔心巨大的災難即將發生。中國北宋的天文學家精確記下這場天空中的驚人事件,記錄到蒼穹中有顆與金星(太白)一樣明亮的「客星」。一名阿拉伯醫生甚至認為這是一顆新星而記錄下來。

左下方的亮點是位在 NGC 4526 星系的一顆「客星」,名為 SN 1994D。圖/WIKIPEDIA by NASA/ESA

在歐洲,雖然並未留下確鑿的目擊紀錄,人們或許也驚訝的看著占據午後天空的「明亮圓盤」。那麼,到底是什麼驚人事件,讓世界各地都有人記下這個現象?

其實是超新星,一種規模巨大的恆星爆炸事件。它發生在我們的銀河系內,距我們六千光年之遙。培布羅長者曾坐著之處的岩石雕刻中,顯示了半圓形的月亮,以紅色畫在黃色的峭壁表面。在半月旁,是一顆清晰可見的巨大星星,圓形四周射出光芒——就像小孩子可能畫出的表現方式。它幾乎和月亮一樣大。公園解說員告訴我們,這就是當時美洲原住民藝術家所描繪的超新星。我們這群天文學家並沒有完全被說服。專家仍在爭論這幅畫到底是不是在描繪 1054 年的超新星爆炸。但我同時也覺得,他們不太可能沒注意到如此不尋常的事件。

太陽將如何死去?

你可以把恆星想像為一個熱氣球。核心的熱讓它保持充氣狀態。一旦燃料用盡,裡面的氣體冷卻下來,壓力降低,氣球便開始扁掉。恆星以類似方式面臨自己的終結。一旦燃料燒完後,恆星便塌縮。不過恆星如何及何時「死去」,要視其質量而定。較輕的恆星(大多數恆星都屬於這類)在經過漫長的一生後消耗殆盡,最後悶燒熄滅。

-----廣告,請繼續往下閱讀-----

我們的太陽擁有一般的壽命。當它開始向內部塌陷時,仍能夠啟動自己的後燃器。在恆星的中央,核融合的灰燼(高熱的氦核)會累積起來。在恆星內爆的內部高壓之下,溫度再次上升,氦會融合為碳,釋放出最後所存的能量,「表皮」因此開始膨脹。就在壽命即將終結之時,太陽會膨脹,變成一顆紅巨星,吞噬掉水星、金星,可能甚至包括地球。

太陽成為紅巨星時會誇張的膨脹。圖為的當前太陽和將來成為紅巨星時的大小比較。圖/WIKIPEDIA by Oona Räisänen

白矮星的誕生

質量大於我們太陽的恆星,在臨終喘息時會向外噴出氣體和電漿。行星狀星雲形成,將死的恆星從內部提供光照,呈現出美妙的形狀與色彩。這個奇景對宇宙來說只是一眨眼的時間;數千年後,這些行星狀星雲便會褪色。行星狀星雲這名稱有點誤導,因為它和行星毫無關係,只是因為在十八世紀發現到時,從當時的望遠鏡中看起來很像是由氣體構成的遠方行星。

在中心位置,是核融合的壓縮灰燼,整個恆星的重量都集中在此。壓力變得如此之大,使得原子逐漸擠在一起,直到摩肩接踵而完全沒有空間留下。然後電子壓力讓這顆星無法繼續塌縮。在恆星核心處繞行原子核的電子稱為「費米子」(fermion)。費米子是物理界的獨行俠,它不會與任何其他費米子同床共枕。當周遭變得太擠時,費米子抗衡了重力帶來的壓力,因而阻止了燃燒殆盡的核心完全崩塌。

如果恆星的外層已經脫去,那麼剩下來的就是一顆體積小、緊緊壓縮、發出亮光的碳核,也就是白矮星(white dwarf),大小相當於地球,但重量相當於太陽。我們的太陽再過數十億年後會變成白矮星,白矮星的組成物只要一茶匙就重達九噸,相當於一輛貨車。白矮星的表面十分酷熱,在很長的時間中會繼續把熱能輻射到太空,直至最後,這顆死星終於變成一顆冰冷、完美球型的碳結晶,成為太空中的巨大鑽石。

-----廣告,請繼續往下閱讀-----
哈伯太空望遠鏡拍攝的天狼星 A 和 B。天狼星 B 是一顆白矮星,位在非常明亮的天狼星 A 左下方。圖/WIKIPEDIA

這個過程有不同的量子力學效應參與,印度物理學家錢卓塞卡(Subrahmanyan Chandrasekhar)曾對此進行計算。1930 年,年僅十九歲的錢卓塞卡搭船前往英格蘭,以便在劍橋繼續他在印度時即已開始的物理學研究。在航程中他的時間很多,因此決定著手計算白矮星可能的最大質量,並得到 1.44 太陽質量的結論。

不過,如果一顆恆星比我們的太陽更大又重上許多,其壓力提高到根本無法承受的程度時,又會發生什麼事?一顆重量比我們太陽大超過八倍的恆星,會點燃更多後燃器而避免塌縮。這顆巨大太陽的核心像洋蔥般,一層又一層燒掉自己。愈接近核心的內層愈熱,在燃燒各層的灰燼時,除了把每一層所儲存的能量釋放出來之外,也形成更大的原子核。氫變成氦,氦變成碳,碳和氦變成氧,氧變成矽,而矽變成鐵。每一個燃燒過程都比前一個更快。氦要燒成碳需要一百萬年,然而全部的矽融合成鐵只需要幾天時間。

然後,事情到此為止!從能量的角度而言,鐵具有自然界中最為緊實的原子核。如果壓力夠大,鐵還能融掉而形成更多新的元素,但這個過程不會再產生更多新能量,反而需要吸收能量。忽然間,增加壓力以便從原子裡擠出更多能量的單純伎倆不再管用。就這樣,原子不再升溫,而是進入降溫過程;壓力不再提高,而是降低。這顆垂垂老矣的星星終於喪失最後的勉強支撐,墮入死亡。幾分鐘之內核心內爆——這顆步入死亡的星星再也無法承受自己的重力。

——本文摘自《解密黑洞與人類未來》/ 海諾.法爾克、約格.羅默,2022 年 1 月,天下文化

-----廣告,請繼續往下閱讀-----
天下文化_96
132 篇文章 ・ 618 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。