0

0
0

文字

分享

0
0
0

澳洲發現能夠在體內進行「乾坤大挪移」的青蛙/蟾蜍

鄭國威 Portnoy_96
・2010/12/11 ・501字 ・閱讀時間約 1 分鐘 ・SR值 534 ・七年級

-----廣告,請繼續往下閱讀-----

Tracy博士跟青蛙,圖片引用自達爾文大學網站

澳洲達爾文大學環境與生命科學博士Christopher Tracy正在進行澳大利亞綠樹蛙遙測工作,他將約兩公分長的傳輸晶片用外科手術放進青蛙的腹腔,不過大約幾個星期以前,他跟研究夥伴發現傳輸晶片都掉落在野外,但並沒有青蛙被吃掉或是因為其他外力而使晶片被取出的跡象。於是她們找到還感應得到的青蛙,卻發現體內的晶片已經跑到膀胱裡頭去了。這就奇怪了,於是研究小組再把小珠子放進五隻青蛙的腹腔,23天以內,全部都排了出來。接著他們拿澳洲人最頭痛的外來物種甘蔗蟾蜍來試驗,也發現五隻蟾蜍裡頭有四隻腹腔內的小珠子被移轉到膀胱,剩下一隻則透過膀胱排了出來。科學家認為這可能是青蛙蟾蜍等皮膚薄,進食又不咀嚼的兩棲生物,為了排出身體裡頭的異物而發展出來的能力。Tracy將這個發現發表在英國皇家學會期刊生物學快報(Royal Society journal Biology Letters),告誡其他青蛙研究者:要是使用遙測技術監測青蛙,發現晶片不在體內,可不代表青蛙已經死了。

文章難易度
鄭國威 Portnoy_96
247 篇文章 ・ 1185 位粉絲
是那種小時候很喜歡看科學讀物,以為自己會成為科學家,但是長大之後因為數理太爛,所以早早放棄科學夢的無數人其中之一。怎知長大後竟然因為諸般因由而重拾科學,與夥伴共同創立泛科學。現為泛科知識公司的知識長。

0

3
2

文字

分享

0
3
2
讓摩爾定律又向前邁進的新技術!3D 先進封裝是什麼?又有哪些優勢和挑戰?
PanSci_96
・2023/07/15 ・3500字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

今年蘋果 WWDC 大會上發表的 Vision Pro,在市場上引起軒然大波。除此之外,蘋果新推出的 Mac Pro、Mac Studio 也都十分吸睛,他們的共同特點,就是我都買不起。他們的共同的特點,就是裏頭都搭載了 M 系列晶片。從 M2、M2 Max 到 M2 Ultra,除了強大的效能,其輕巧的設計,也讓這些裝置保持輕量。Vision Pro 的重量也可以維持維持在500g,不影響穿戴體驗。要在如此小的晶片中發揮跟電腦一樣效能,除了我們介紹過的 DUV 與 EUV 微縮顯影,一路從 7 奈米、5 奈米、3 奈米向下追尋外。在 M 系列這種系統晶片中,「先進封裝」技術,其實扮演更重要的角色,但到底「封裝」是什麼?它如何幫助 M2 達到高效能、小體積的成果?

晶片又更小了,摩爾定律依舊存在?

M2 晶片的效能已被消費者認可,一顆小小的晶片中,就同時包含了 8 核心 CPU、10 核心 GPU、16 核心的神經網路晶片以及記憶體,麻雀雖小,五臟俱全。這可說又是摩爾定律向前邁進的一步。

在 M2 一顆小小的晶片中,就同時包含了 8 核心 CPU、10 核心 GPU、16 核心的神經網路晶片以及記憶體。圖/Apple

今年 3 月 24 日,Intel 共同創辦人戈登.摩爾,逝世於夏威夷的家中,享耆壽 94 歲。他生前提出的摩爾定律,在引領半導體產業發展近 60 年之後,也逐漸走向極限。摩爾定律預測,積體電路上的電晶體數目,在相同面積下,每隔約 18 個月數量就會增加一倍,晶片效能也會持續提升。

隨著晶片尺寸越來越小,似乎小到無法再小,「摩爾定律已死」的聲音越來越大。然而事實是,業界的領頭羊們如台積電、英特爾和三星等公司,依然認為摩爾定律可以延續下去,並且仍積極投入大量金錢、人力及資源,期盼能夠打贏這場奈米尺度的晶片戰爭。

打贏戰爭的方法,包含研發各式各樣的電晶體,例如鰭式場效電晶體(FinFET)環繞式閘極(GAAFET)電晶體互補式場效電晶體(CFET);或是大手筆引進艾司摩爾開發的極紫外光(EUV)曝光機,在微縮顯影上做突破,這部分可以回去複習我們的這一集;除此之外,從材料下手也同步進行中,新興的半導體材料,像是過渡金屬二硫族化合物奈米碳管。這些持續挑戰物理極限的方式稱為「深度摩爾定律(More Moore)」。

-----廣告,請繼續往下閱讀-----

然而這條路可不是康莊大道,而是佈滿了荊棘,或是亂丟的樂高積木,先進製程開發的複雜度和投入資金呈指數型增加,且投資與回報往往不成正比。我們都知道「不要把雞蛋都放在同一個籃子裡」,同理,半導體巨擘們也開始找尋新解方,思索如何躺平,在不用縮小電晶體的情況下,提升晶片整體效能。

先進製程開發的複雜度和投入資金呈指數型增加,且投資與回報往往不成正比。圖/freepik

答案也並不難,既然在平面空間放不下更多電晶體了,那麼就把他們疊起來吧!如此一來,相同面積上的電晶體數量也等效的增加了。這就像是在城市裡,因為人口稠密而土地面積有限,因而公寓大廈林立,房子一棟蓋得比一棟高一樣。像這樣子不是以微縮電晶體,而是透過系統整合的方式,層層堆疊半導體電路以提升晶片效能的方法,屬於「超越摩爾定律(More than Moore)」,而其技術關鍵,就在於「封裝」。

什麼是封裝?

當一片矽晶圓經過了多重製程的加工後,我們會得到這張表面佈滿了成千上萬積體電路。別小看它,光是這一片的價值,可能就高達2萬美元!

一個矽晶圓表面佈滿成千上萬的積體電路。圖/envatoelements

然而這麼大片當然無法放進你的手機裡,還必須經過「封裝(packaging)」的步驟,才會搖身一變成為大家所熟知的半導體晶片。

-----廣告,請繼續往下閱讀-----

簡單來說,封裝是一種技術,任務是把積體電路從晶圓上取下,放在載板上,讓積體電路可以與其他電路連接、交換訊號。整個封裝,大致可分為四步驟:切割、黏晶、打線、封膠

首先,矽晶圓會被磨得更薄,並且切割成小塊,此時的積體電路稱為裸晶(die);接著,將裸晶黏貼於載板(substrate)上,並以焊線連接裸晶及載版的金屬接點,積體電路便可跟外界傳遞或接收訊號了;最後,以環氧樹酯灌模成型,就完成我們熟知的晶片(chip),這個步驟主要在於保護裸晶及焊線,同時隔絕濕氣及幫助散熱。

Chiplet、傳統封裝與先進封裝

隨著晶片不斷追求高效能、低成本,還要滿足不同的需求,甚至希望在一個晶片系統中,同時包含多個不同功能的積體電路。這些積體電路規格、大小都不一樣,甚至可能在不同工廠生產、使用不同製程節點或不同半導體基材製作。例如蘋果的 M2 晶片,就是同時包含 CPU、GPU 和記憶體,另外,我們過去介紹過,google 陣營的 Tensor 晶片,也是在單一晶片系統中塞入了大大小小的晶片。這些在一個晶片系統中含有多個晶片的架構,稱為 Chiplet。

要做出 Chiplet,在傳統的封裝方式中,會將初步封裝過的數個晶片再次進行整合,形成一個功能更完整的模組,稱為系統級封裝 Sip(system in package);另一個方法則是將數個裸晶透過單一載板相互連接完成封裝,這樣的作法叫做系統單晶片system on a chip (SoC),然而以這兩種方式製作需佔用較大的面積,更會因為晶片、裸晶間的金屬連線過長,造成資料傳輸延遲,不能達到高階晶片客戶如輝達、超微、蘋果等公司的需求。

-----廣告,請繼續往下閱讀-----

為了解決問題,先進封裝就登場了,三維先進封裝以裸晶堆疊的方式,增加空間利用率並改善資料傳輸瓶頸的問題。與傳統封裝之間傳輸速度的差異,就好比是開車由台北至宜蘭,傳統封裝需行經九彎十八拐的台九線,而先進封裝則截彎取直,打通了連接兩地的雪山隧道,使得資料的來往變得更加便利且迅速。

先進封裝解決了什麼問題

先進封裝最大的優勢,就是大幅縮短了不同裸晶間的金屬連導線距離,因此傳輸速度大為提升,也減少了傳輸過程中的功率損耗。舉例來說(下圖),傳統的 2D SoC,若是 A 電路要與 C 電路傳輸資料,則必須跨越整個系統的對角線距離;然而使用三維堆疊則能夠將 C 晶片放置於 A 晶片的上方,透過矽穿孔(through silicon via, TSV)技術貫穿減薄後的矽基板,以超高密度的垂直連導線連接兩個電路,兩者的距離從此由天涯變咫尺。

圖/Pansci

另一方面,三維堆疊也減少了面積的消耗,對於體積的增加則並不明顯,因此我們能夠期待,手機、平板、或是 Vision Pro 等頭顯未來除了功能更多以外,還會變得更加輕巧。

值得一提的是,先進封裝還能夠降低生產成本喔!由於三維堆疊在單位面積上,增加了等效電晶體數量,在晶片設計上可以考慮使用較成熟、成本更低的製程技術節點,並達到與使用單層先進技術節點並駕齊驅的效能。

-----廣告,請繼續往下閱讀-----

先進封裝的技術挑戰

雖然,先進封裝提供了許多優勢。但作為新技術,當中依舊有許多仍待克服的問題與挑戰。

首先,先進封裝對於裸晶平整度以及晶片對準的要求很高,若是堆疊時不慎有接點沒有順利連接導通,就會造成良率的損失。再者,積體電路在運算時會產生能量損耗造成溫度升高,先進封裝拉近了裸晶間的距離,熱傳導會交互影響,大家互相取暖,造成散熱更加困難,輕則降低晶片效能,嚴重則能導致產品失效。

散熱問題在先進封裝中,目前還未完全解決,但可以透過熱學模擬、使用高熱導係數材料、或設計導熱結構等方式,做出最佳化的散熱設計。建立良率測試流程也非常重要,試想,如果在堆疊前沒有做好已知合格裸晶測試(known good die testing),因而誤將合格的 A 晶片與失效的 B 晶片接合,那麼不只是做出來的 3D IC 只能拿來當裝飾品,還白白損失了前面製程所花費的人力、物力及金錢!

良率與成本間的權衡,也是須探究的問題,如果想要保證最佳的良率,最好的方式是每道環節都進行測試,然而這麼做的話生產成本以及製造時間也會相應增加,因此要怎麼測試?在什麼時候測試?要做多少測試?就是一門相當深奧的學問了。

-----廣告,請繼續往下閱讀-----

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

0

3
0

文字

分享

0
3
0
數位攝影搖身一變黑科技,CIS 成長無止盡,遇上異常該如何 DEBUG?
宜特科技_96
・2023/06/05 ・4124字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

一個女子用手機在進行自拍
圖/宜特科技

從小時候的底片相機,發展到數位相機,如今手機就能拍出許多高清又漂亮的照片,你知道都是多虧了 CIS 晶片嗎?

本文轉載自宜特小學堂〈CIS晶片遇到異常 求助無門怎麼辦〉,如果您對半導體產業新知有興趣,歡迎按下右邊的追蹤,就不會錯過宜特科技的最新文章!

CIS 晶片又稱 CMOS 影像感測器(CMOS Image Sensor),最早是在 1963 年由美國一家半導體公司發明出來的積體電路設計,隨著時代進步,廣泛應用在數位攝影的感光元件中。而人們對攝影鏡頭解析度需求不斷增加,渴望拍出更精美的畫質。

CIS 已從早期數十萬像素,一路朝億級像素邁進,有賴於摩爾定律(Moore’s Law)在半導體微縮製程地演進,使得訊號處理能力顯著提升。如今的 CIS 已經不僅適用於消費型電子產品,在醫療檢測、安防監控領域等應用廣泛,近幾年智慧電車興起,先進駕駛輔助系統(ADAS, Advanced Driver. Assistance Systems)已成為新車的安全標配,未來車用 CIS 的市場更是潛力無窮。

然而,越精密、越高階的 CIS 晶片由於結構比較薄,加上特殊的 3D 堆疊結構,使得研發難度大大提升,當遇到異常(Defect)現象時,想透過分析找出故障的真因也更為困難了。

-----廣告,請繼續往下閱讀-----

本文將帶大家認識三大晶片架構,並以案例說明當 CIS 晶片遇到異常,到底我們可以利用那些工具或手法,成功 DEBUG?

一、認識 CIS 三大晶片架構

現今 CIS 晶片架構,可概分為三大類,(一)前照式(Front Side illumination,簡稱FSI);(二)背照式 (Back Side illumination,簡稱 BSI);(三)堆疊式 CIS(Stacked CIS)

(一)前照式(FSI)CIS

為使 CIS 晶片能符合半導體製程導入量產,最初期的 CIS 晶片為前照式 (Front Side illumination,簡稱 FSI) CIS;其感光路徑係透過晶片表面進行收光,不過,前照式 CIS 在效能上的最大致命傷為感光路徑會因晶片的感光元件上方金屬層干擾,而造成光感應敏度衰減。

(二)背照式(BSI)CIS

為使 CIS 晶片能有較佳的光感應敏度,背照式(Back Side illumination ,簡稱 BSI)CIS 技術應運而生。此類型產品的感光路徑,係由薄化至數微米後晶片背面進行收光,藉此大幅提升光感應能力。

而 BSI CIS 的前段製程與 FSI CIS 類似,主要差別在於後段晶片對接與薄化製程。BSI CIS 的製程是在如同 FSI CIS 一般製程後,會將該 CIS 晶片正面與 Carrier wafer 對接。對接後的晶片再針對 CIS 晶片背面進行 Backside grinding 製程至數微米厚度以再增進收光效率,即完成 BSI CIS。

(三)堆疊式(Stacked)CIS

隨著智慧型手機等消費電子應用的蓬勃發展,人們對於拍攝影像的影像處理功能需求也大幅增加,使製作成本更親民與晶片效能更能有效提升,利用晶圓級堆疊技術,將較成熟製程製作的光感測元件(Sensor Chip)晶片,與由先進製程製作、能提供更強大計算能力的特殊應用 IC(Application Specific Integrated Circuit,簡稱 ASIC)晶片、或是再進一步與記憶體(DRAM)晶片進行晶圓級堆疊後,便可製作出兼具高效能與成本效益的堆疊式 CIS(Stacked CIS)晶片(圖一),也是目前最主流的晶片結構。

-----廣告,請繼續往下閱讀-----
堆疊式(Stacked) CIS晶片示意圖
《圖一》堆疊式(Stacked)CIS 晶片示意圖。圖/宜特科技

二、如何找堆疊式(Stacked)CIS 晶片的異常點(Defect)呢?

介紹完三大類 CIS 架構,我們就來進入本文重點:「如何找到堆疊式(Stacked)CIS 晶片的異常點(Defect)?」

由於這類型的 CIS 晶片結構相對複雜,在進行破壞性分析前,需透過電路專家電路分析或熱點(Hot Spot)故障分析,鎖定目標、縮小範圍在 Stacked CIS 晶片中的其一晶片後,針對可疑的失效點/失效層,進行該 CIS 樣品破壞性分析,方可有效地呈現失效點的失效狀態以進行進一步的預防修正措施。

接著,我們將分享宜特故障分析實驗室,是如何(一)利用電性熱點定位;(二)移除非鎖定目標之晶粒(Die),並針對鎖定目標晶粒(Die)逐層分析;(三)電性量測分析;(四)超音波顯微鏡(SAT)分析等四大分析手法交互應用,進行 Stacked CIS 晶片進行故障分析,順利找到異常點(Defect)。

(一)透過電性熱點定位找故障點(Hot Spot)

當CIS晶片具有高阻值(High Resistance)、短路(Short)、漏電(Leakage)或是功能失效(Function Failure)等電性失效時,可依據不同的電性失效模式,經由直流通電或上測試板通電,並透過選擇適合的電性故障分析(EFA, Electrical Failure Analysis)工具來進行電性定位分析。

設備OBIRCHThermal EMMIInGaAs
偵測目標電晶體/金屬層金屬層/封裝/印刷電路板電晶體/金屬層
失效模式漏電/短路/高阻值漏電/短路/高阻值漏電/短路/開路
各設備適合使用的選擇時機

包括雷射光束電阻異常偵測(Optical Beam Induced Resistance Change,簡稱 OBIRCH)熱輻射異常偵測顯微鏡(Thermal EMMI)(圖二)、砷化鎵銦微光顯微鏡(InGaAs),藉由故障點定位設備找出可能的異常熱點(Hot Spot)位置,以利後續的物性故障(PFA, Physical Failure Analysis)分析。

-----廣告,請繼續往下閱讀-----
透過Thermal EMMI找到電性失效的故障點位置
《圖二》透過 Thermal EMMI 找到電性失效的故障點位置。圖/宜特科技

(二)移除非鎖定目標之晶粒,並針對鎖定目標晶粒逐層分析

接著,依照上述電性分析縮小可能的異常範圍至光感測元件晶片、ASIC 或記憶體晶片區後,根據 Stacked CIS 晶片堆疊的結構特性,需先將其一側的矽基材移除,方可進行逐層去除(Layer by layer),或層層檢查。

再者,透過特殊分析手法,移除不需保留的晶粒結構,進而露出目標晶粒之最上層金屬層(圖三)。接著,透過逐層去除(Layer by layer),最終在金屬層第一層(Metal 1)找到燒毀現象的異常點(defect) (圖四)。

搭配特殊手法,將CIS待測樣品不需保留之晶粒部分,完整移除
《圖三》搭配特殊手法,將 CIS 待測樣品不需保留之晶粒部分,完整移除。圖/宜特科技
對照Hot Spot分析範圍,進行鎖定目標晶粒進行逐層去除,發現燒毀現象
《圖四》對照Hot Spot分析範圍,進行鎖定目標晶粒進行逐層去除,發現燒毀現象。圖/宜特科技

(三)電性量測分析:導電性原子力顯微鏡(C-AFM, Conductive Atomic Force Microscopy)與奈米探針系統(Nano-prober)的應用

當逐層去除(Layer by Layer)過程當中,除利用電子顯微鏡(SEM) 於故障點區域進行 VC(Voltage Contrast)的電性確認與金屬導線型態觀察外,亦可搭配導電原子力顯微鏡(Conductive Atomic Force Microscopy,簡稱C-AFM)快速掃描該異常區域,以獲得該區域電流分布圖(Current map)(圖五),並量測該接點對矽基板(Si Substrate)的電性表現,進而確認該區域是否有漏電 / 開路等電性異常問題。

C-AFM異常分析結果圖
《圖五 (左)》C-AFM 異常分析結果圖。圖五 (左): 外加正電壓 (+1V) 時的 Current map 異常電性發生;
《圖五 (右)》外加負電壓 (-1V) 時的 Current map 異常電性發生 (黃圈處)。圖/宜特科技

在完成C-AFM分析後,若有相關疑似異常路徑需要進一步進行電性量測與定位,可使用奈米探針電性量測(Nano-Prober)進行更精準的異常點定位分析,包括電子束感應電流(EBIC , Electron Beam Induced Current)、電子束吸收電流(EBAC, Electron Beam Absorbed Current)、與電子束感應阻抗偵測(EBIRCH , Electron Beam Induced Resistance Change)等定位法。而Nano-Prober亦可針對電晶體進行電性量測,如Vt、 IdVg、IdVd等基本參數獲取(圖六)。

-----廣告,請繼續往下閱讀-----

當透過上述分析手法精準找到異常點後,亦可再透過雙束聚焦離子束(Dual-beam FIB,簡稱DB-FIB)或是穿透式電子顯微鏡(Transmission Electron Microscopy,簡稱TEM)來對異常點進行結構確認,以釐清失效原因(圖七)。

EBIC分析結果圖
《圖六》EBIC分析結果圖。圖/宜特科技
TEM分析結果圖
《圖七》TEM分析結果圖。圖/宜特科技

(四)超音波顯微鏡(Scanning Acoustic Tomography,簡稱SAT)分析:於背照式(BSI)/堆疊式(Stacked)CIS晶圓對接製程的應用

超音波顯微鏡(SAT)

超音波顯微鏡(SAT)為藉由超音波於不同密度材料反射速率及回傳能量不同的特性來進行分析,當超音波遇到不同材料的接合介面時,訊號會部分反射及部分穿透,但當超音波遇到空氣(空隙)介面時,訊號則會 100% 反射,機台就會接收這些訊號組成影像。
超音波顯微鏡(SAT)原理圖
超音波顯微鏡(SAT)原理圖。圖/宜特科技

在背照式(BSI)與堆疊式(Stacked)CIS 製程中晶圓與晶圓對接(bonding)製程中,SAT 可作為偵測晶圓與晶圓之間接合不良造成存在空隙的重要利器(圖八)。

圖八: 透過超音波顯微鏡(SAT),找到晶圓與晶圓對接(bonding)之鍵合空隙位置
《圖八》透過超音波顯微鏡(SAT),找到晶圓與晶圓對接(bonding)之鍵合空隙位置。圖/宜特科技

半導體堆疊技術的蓬勃發展,加上人們對影像感測器在消費性電子、車用電子、安控系統等應用,功能需求大幅度增加,CIS 未來將繼續進化,無論是晶圓級對接的製程穩定度分析,或是堆疊式(Stacked)CIS 故障分析,都可以透過宜特實驗室豐富的分析手法,與一站式整合服務精準地分析、加速產品開發、改善產品品質。

宜特科技_96
5 篇文章 ・ 3 位粉絲
我們了解你想要的不只是服務,而是一個更好的自己:) iST宜特自1994年起,以專業獨家技術,為電子產業的上中下游客戶, 提供故障分析、可靠度實驗、材料分析和訊號測試之第三方公正實驗室

0

4
1

文字

分享

0
4
1
那天下了一場「動物雨」!!
胡中行_96
・2023/03/13 ・2173字 ・閱讀時間約 4 分鐘

澳大利亞北領地的 Tanami 沙漠,有一個叫做 Lajamanu 的偏遠小鎮。2023 年 2 月 19 日晚間,突然下起驟雨。[1]直至隔天早晨,累積了 61.4 毫米的雨量。[2, 3]降雨期間,魚群也跟著從天上落下。[1]

19 世紀英國畫家 George Cruikshank 描繪俚語「raining cats and dogs」的概念。圖/參考資料 5(Public Domain)

動物雨的種類

英文俚語「raining cats and dogs」,以「降下貓狗」形容大雨滂沱[4]19 世紀的英國畫家 George Cruikshank,還拿這個比喻當題材,創作虛構作品(上圖),抱怨糟糕的天氣。[5]事實上回顧歷史,其他動物比較常由空中砸下來。早在西元前 1 世紀,羅馬博物學者老普林尼(Pliny the Elder)就曾記錄,隨著暴風雨墜落。文藝復興時期開始,更不時有版畫描繪此類事件(下圖)。除了與上述雷同的情形,也有的個案。 [6]19世紀以降的文獻,則增加了蜘蛛螞蟻蝸牛淡菜(貽貝)、寄居蟹,以及各色蠕蟲等千奇百怪的案例。[7]

16 世紀版畫:天空降「魚」。圖/參考資料 6,Figure 2(Public Domain)
17 世紀版畫:天上掉下大量的蛇(左)和鼠(右)。圖/參考資料 6,Figure 3(Public Domain)

許多動物雨的紀錄,要不是歷史悠久,死無對證;就是鄉民口述,人微言輕。信者恆信;質疑者則當是鄉野奇談,嗤之以鼻。然而,若有科學家挺身背書,那就不一樣了。1947 年 10 月 23 日,美國路易斯安那州野生動物與漁業局的生物學家 A.D. Bajkov,在該州的 Marksville,親身體驗奇妙的自然現象。他事後撰文,投稿《科學》(Science)期刊,[8, 9]興奮之情躍然紙上:

「那天早上 7、8 點之間,2 到 9 英吋(約 5 到 23 公分)的魚落在樹梢和院子裡」,使這個南方小鎮的居民困惑之餘,群情激昂。當時他和妻子正在餐廳裡享用早餐,一聽服務生說魚群從天而降,便立刻跑去蒐集。Marksville 銀行的總裁 J.M. Barham 表示,起床就發現數以百計的魚落在自家院子裏,鄰居太太家也是。7 點 45 分,1 名該銀行的員工和 2 個商人的路途,則遭魚群阻斷。[8]

「離餐廳半個街區外的銀行附近,平均每平方碼(約 0.84 平方米)就有一條魚。」有的慘遭車輛輾壓;有些則落在房子的屋頂上。「牠們屬於在地的淡水魚類…」這名生物學家如數家珍地,列舉了一堆名字。然後說他將撿來的魚,全部裝成一罐,泡福馬林,要「分送數個博物館」。[8]

水龍捲

根據美國國會圖書館的介紹,動物雨的肇因或許不只一種:許多科學家將矛頭指向,形成於陸地,並行經水域的水龍捲(waterspouts)。其最高風速為每小時 100 英里(約 161 公里),中央低壓渦漩(vortex),會像吸塵器般,吸入周圍的水、空氣,以及包含生物在內的小東西。水龍捲移動的過程中,因為逐漸失去能量,沿路容易掉東掉西,造成動物雨等現象。美國普渡大學的 Ernest Agee 教授,「曾見過小池子的水,整個被路過的龍捲風淨空」,所以覺得天上要是砸下幾隻蛙,也算頗為合理。[10]不過,如果水龍捲夾帶的,不是動物,而是石頭,就可能變成危險的石頭雨。這種情形,有時會被誤認為來自外太空的隕石雨。[6]

-----廣告,請繼續往下閱讀-----

上升氣流

南伊利諾大學的 Doc Horsley 教授等科學家,認為上升氣流(updrafts),也會導致動物雨:暖空氣由地表高壓處,向上升到較冷的低壓處。在暴風雨中,能超過每小時 60 英里(約 97 公里),幾乎與中等水龍捲相當,所以擄走小動物的潛力,也不遑多讓。[10]

一起掉落的物種

水龍捲和上升氣流,都是從路經之處,任意搜刮。既然被帶走的東西包羅萬象,為何同時落於一處的,卻是相近的物種?美國華盛頓大學的 William Hayden Smith 教授解釋:當風力漸減,重的東西,會比輕的先掉下來。於是,尺寸和重量雷同的個體,便一起墜落。[10]

魚還活著…

講了半天,所以那些澳洲沙漠裡的魚,後來怎麼了?當地的議員 Andrew Johnson Japanangka,告訴 ABC 新聞臺,有些魚落地後倖存。「被孩子們撿起來,保存於瓶罐裡。」同樣的事件在 1974、2004 和 2010 年,亦曾發生過,部份居民甚至記得當年的情景。總之,這在該小鎮,雖然罕見,但算是正常。[1]

  

-----廣告,請繼續往下閱讀-----

參考資料

  1. Allison C, Trevaskis L, Barwick A. (21 FEB 2023) ‘Fish ‘rained from the sky’, outback community says, in freak weather event’. ABC News.
  2. Lajamanu, Northern Territory – February 2023 Daily Weather Observations’. Australian Bureau of Meteorology. (Accessed on 24 FEB 2023)
  3. Notes to accompany Daily Weather Observations’. Australian Bureau of Meteorology. (Accessed on 24 FEB 2023)
  4. Cambridge University Press. ‘It’s raining cats and dogs!’ Cambridge Dictionary. (Accessed on 23 FEB 2023)
  5. George Cruikshank. ‘Very Unpleasant Weather, or, the Old Saying Verified “Raining Cats, Dogs, & Pitchforks.”!!!’. Yale Center of British Art. (Accessed on 23 FEB 2023)
  6. Franza A, Morelli M, Faggi D, et al. (2021) ‘To be or not to be, that is the question: The Marsala meteorite (Italy, 1834) and the role of the doubtful meteorites in the history of meteoritics’. Meteoritics & Planetary Science, 56(5): 922-943.
  7. Berenbaum MR. (2015) ‘Who’ll Stomp the Rain?’. American Entomologist, 61(3): 133–135.
  8. Bajkov AD. (1949) ‘Do Fish Fall from the Sky?’. Science, 109(2834): 402
  9. Dennis J. (2013) ‘6. It’s Raining Frogs and Fishes’. In: It’s Raining Frogs and Fishes: Four Seasons of Natural Phenomena and Oddities of the Sky. Diversion Books.
  10. Science Reference Section. (19 NOV 2019) ‘Can it rain frogs, fish, and other objects?’. U.S. Library of Congress.
胡中行_96
169 篇文章 ・ 65 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。