1

22
2

文字

分享

1
22
2

塞車好心煩!自動駕駛能解嗎?——台大資工林忠緯專訪

科技大觀園_96
・2021/02/08 ・4675字 ・閱讀時間約 9 分鐘 ・SR值 526 ・七年級

-----廣告,請繼續往下閱讀-----

每到年節時期,不管返鄉或是出遊,用路人最討厭遇到的就是塞車,漫長的等待、讓人踩剎車踩到腳痛的行車速度,抑或是被汽車廢煙包圍的感覺,本是愉悅心情恐怕都大打折扣。你也是恨不得讓「塞車」這個詞消失在這世界上的人嗎?自動駕駛或許能幫你達成心願喔~感到好奇的話,那就繼續看下去吧!

造成塞車的幕後黑手是誰?

試想,人類與機器人在駕駛汽車時,要維持車與車之間等速前進,誰會 hold 得最好呢?答案很明顯是……機器人!為什麼呢?關鍵就在於「人類的反應速度」,反應速度因人而異:當老(手)司機在開車時,他們能夠對於哪時候該踩剎車、油門的反應速度快,因此不會因誤判與前車之間的距離,而落下一大段「空白車距」;然而菜鳥司機就不一樣了,他們反應速度沒有老(手)司機快,所以在看到前方車輛時,因無法正確判斷哪時候踩剎車最恰當,加上基於安全意識都會先減慢避免 A 到前車為第一反應,「空白車距」自然就出現了~而後方的車輛們會因為這位菜鳥司機(老鼠屎)的行車速度減慢而開始擠成一團,造成塞車。

相信駕駛人們遇到塞車的反應都跟圖片中的人一樣煩悶不堪。圖/GIPHY

相反地,當機器人在行車時,因為他們的動作程序一致,因此能穩穩地維持等速行駛。這也就是為何現今車廠想推出自動駕駛車(以下簡稱「自駕車」)的原因之一。自動駕駛真有那麼神嗎?讓我們來一一剖析它吧!

延伸閱讀:連假無法逃離宿命!為什麼會塞車呢?

自駕車大小事

自動駕駛,顧名思義就是讓車子在無人為操作的情況下,將行車速度與控制車間距離等原本需要手動操控車子行進的動作轉為自動化,以減輕駕駛人的行車負擔。

  • 自動駕駛分級:

自動駕駛可是也有分級制度的!國際汽車工程師協會 (Society of Automotive Engineers, SAE) 依據汽車的自動化程度分為以下級別:

-----廣告,請繼續往下閱讀-----
參考資料:SAE International

時至 2020 年末,汽車業的自動駕駛即將發展至第四級,第五級則是各企業競相達成的最終目標。

  • 自駕車的配備主要有哪些?
    • 感測器:相當於人類的眼睛,能辨識障礙物的種類及位置。而感測器又可分為攝影機(Camera)、光達(LiDAR)、雷達(Radar)、超音波這四種,不同種的感測器對於環境辨識及障礙物解析力也會有差異。
    • 動態定位:相當於 Google 地圖功能,當接收來自感測器的環境資訊後,自駕車能協同 GPS、IMU 與高精準地圖資訊等定位工具自動辨識車輛所在位置及設定目的地。
    • 智慧決策:相當於人腦的決斷力,透過整合電子地圖 (RNDF/OpenStreetMap)、感知融合(Perception)、靜態軌跡規劃(Mission Planning)、行為規劃(Behavior Planning)以決定自駕車整體需執行哪些動作及規劃。
    • 電控底盤:負責車子的轉向、剎車及油門。

參考資料:自駕車發展趨勢與關鍵技術

自駕車能透過感測器偵測車距以維持車與車之間最佳距離。圖/GIPHY

自動駕駛真的能解決塞車嗎?

自駕車本身雖能達到自動辨識路口標誌及安全煞停系統,但它就像一個好的食材,需要透過精湛的廚藝及調料的輔助才能發揮它最完美的風味,而輔助自駕車的便是「車聯網」。究竟什麼是「車聯網」?自駕車與車聯網的搭配真的能解決塞車嗎?就讓台大資工系的林忠緯教授來幫大家解惑吧!

林忠緯教授熟知自駕車與車聯網的研究。圖/轉自科技大觀園。

林忠緯教授小檔案:
林忠緯教授在博班時期的研究題目即是關於 Cyber-Physical System(CPS)的研究,而 CPS 簡單來說是指能夠執行物理層面上動作的電子產品,例如車子(能在路上行走)、心律調節器(能放電控制心律)都屬於 CPS。林教授在博班的研究即是關於車子的 CPS,也曾在美國通用汽車(General Motors)實習,畢業後持續拓展自己所長,進入加州矽谷的豐田汽車(Toyota InfoTechnology Center)擔任研究員。林教授熟知自駕車與車聯網的研究,自身也致力於自駕車、車聯網與資安問題的研究,並開心表示對於未來 28 年後自駕車的展望懷抱深深的期許。

  1. 車聯網是什麼?
    車聯網(Internet of Vehicles,IoV)是指車與車之間(vehicle-to-vehicle,V2V),或車與道路狀況(Vehicle-to-everything, V2X)之間利用網路互相交換、接收感測器所會彙整出的訊息,以達到更完善、迅速的交通網絡資訊交流,讓用路人能即時獲得路況的整體資訊。
車聯網就是車子版本的物聯網。圖/Pixabay
  1. 自駕車結合車聯網真能解決塞車嗎?
    若要剖析塞車問題,其實可以分成以下幾種狀況,自駕車必須面對各種塞車情況作出相對應的解決方案。
    1. 選擇路徑:假如過年走春行程是去宜蘭玩,大家通常會想到要走雪隧,然而當大家都走雪隧的話,勢必會造成大塞車。而車聯網能即時追蹤到已經開始塞車的道路,並通知自駕車可以改走較為不塞車的路段(例如北宜),這時候就達到了疏散車流量的效果。
    2. 路口與路口間的交通號誌:假如今天車子走在路上,一路都是綠燈當然令人心情愉悅,反之,則會導致後面開始塞車,因此在車聯網當中也可以整合總體交通號誌的順暢運行。
    3. 單一路口的車輛運行:通常遇到駕駛人遇到路口,都需先放慢行駛速度,觀察轉角方向是否有來車,再行通過;當一個路口車多時,塞車肯定逃不掉~而車聯網能達成上述第二點的升級版——便是不用交通號誌!車聯網就像是開上帝視角,可以同時獲得路口的各道路資訊,而這些資訊是單一自駕車無法自行偵測的,自駕車針對這些資訊做出相對應的動作,而自駕車對於這些動作的控制能比駕駛人更加精準,因此車聯網與自駕車能夠相輔相成增加路口的運行效率。
    4. 單一車輛的運行:車聯網與自駕車亦能互相搭配在安全的前提下縮短跟車距離並減少過度保守的煞車,如此道路的使用率能夠提升,也能減少塞車的機率。
自駕車結合車聯網能達成無須紅綠燈,路口間也能順暢行駛。圖/GIPHY

林教授認為自駕車結合車聯網勢必能解決部分層面的塞車問題,也能避免酒駕、恍神、視線死角等人為意外肇事的發生比率,但在現實生活要自駕車能實際放在道路上跑,現階段仍面臨重重難關。

  1. 自駕車的發展現階段會遇到哪些瓶頸?
    讓我們想像一下,當自駕車、車聯網已完全取代所有的交通系統,實際上最有可能會發生以下幾種瓶頸:
    • 瓶頸一:自駕車的整合系統尚未完善
      林教授個人認為目前自駕車的整合系統會是一大問題,即便供應商提供再好的車組配件,配件與配件之間的整合系統不佳還是會造成車子載運行時效率不佳甚至還可能會釀成車禍,或是遭駭客入侵自駕車系統。所以教授認為設計一個具縝密規畫的整合系統,不僅可以讓車子運行順暢,也能保障駕駛人的安全。
    • 瓶頸二:法規訂定的難題
      當自駕車發生車禍了,那誰該跳出來負責任呢?該怪自駕車內部的機器學習沒有收納進這些意外狀況的數據嗎?還是都是工程師的錯?其實這也是自駕車衍伸出的頭疼題,而林教授針對這個問題也提出相關建議,例如在購買自駕車時,售價的一部分可以作為保險補償,當發生意外時,便能獲得補償金。
    • 瓶頸三:消費者的接受程度
      消費者在購買商品時常會考慮價格及使用感受,而自駕車雖然目前製造成本高昂,但相信未來隨著自駕車的研發技術逐漸成熟,成本也會隨之下降,但成本要降到多低才能達到量產,以及售價普遍是消費者能接受的範圍仍是個問題。另外,感受度的部分,當我們坐進自駕車裡面,由於自駕車可以精準縮小車距,因此當對向來車很近地迎面衝過來,真的不會嚇到嗎?因為自駕車有別於以往的行車感受,所以也不見得能被所有消費者接受。
      另外,有部分消費者享受自己駕馭車子的樂趣,所以他們也不會想使用自駕車,當道路上並非統一是自駕車的情形,要達成車聯網更是難上加難哪~
    • 瓶頸四:資安問題
      自駕車結合車聯網運行時極需網路,而有網路的地方,駭客便如影隨形,當駭客像電影情節一樣駭入車聯網時,不但會構成駕駛人的性命威脅,甚至還會造成全面性的交通世紀大癱瘓!水能載舟亦能覆舟,車聯網雖能讓交通運行更順暢,也可能會釀成一場可怕的災難,因此林教授強調維護資安也是設計車聯網的重點項目。

解決塞車問題的理想藍圖

當我們檢視塞車問題的視野再拉遠一點,除了自駕車及車聯網以外,教授也慷慨地分享了以下管道解決塞車問題:

-----廣告,請繼續往下閱讀-----
  • 共享汽車:當大家都選擇搭乘共享自駕車,便能減低車流量與車子的總量(大家更傾向不買車),路上的車子少了,便能減低塞車的發生率。(傳染病盛行的時代不太適用)
  • 道路擴大:當車子的總量下降,停車需求減少,空間使用更有彈性。當道路新增了好幾條線,便能分散車流,避免全部車子堵在同一條路上。
  • 網路通訊:現在網路科技發達,人們在家也能透過網路完成視訊會議、參與活動,減少出門的必要性,也就無須駕車。

結語

雖然現階段自駕車要完全解決塞車問題仍需經時間歷練,但相信透過林忠緯教授及眾多研發單位的辛勤貢獻,大家在春節期間能夠利用自駕車與車聯網享受更加順暢、迅速的行車體驗,而不再受塞車之苦的日子指日可待!新春期間,也祝大家行車平安,旅途別塞!

塞車問題仍需大家共同努力解決,才能營造良好的交通網絡。圖/GIPHY

參考資料

  1. 「自駕車受騙上當和辨識盲點」之專家回應
  2. 為何美國交通部選用SAE的自動駕駛分級,而棄NHTSA丨汽車商業評論
  3. 自動駕駛車發展現況與未來趨勢
  4. 何謂自動駕駛?
  5. 關於自動駕駛:內行人才會懂的有話直說
  6. 對於塞車問題,智慧交通提供的四大解決方案
  7. 塞車讓駕駛踩煞車踩到抽筋,汽車新科技解決這困擾!(內有影片)
  8. 2020 最新自動駕駛技術報告出爐!以特斯拉、Volvo 為例,全面涵蓋智駕技術
  9. 網宇實體系統與製造應用- 熱門焦點- 經濟部技術處
  10. Wevolver: Knowledge for engineers
  11. 一起來用十分鐘略懂自駕車吧!GoGoGo!
  12. 無人駕駛車/自駕車技術探索
  13. SAE International
  14. 科學月刊:不需駕駛也能輕鬆上路-淺談自駕車與高精地圖
-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
科技大觀園_96
82 篇文章 ・ 1126 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。

0

1
0

文字

分享

0
1
0
停工即停薪:如何證明你的時間值多少?車禍背後的認知 x 情緒 x 金錢 x 法律大混戰
鳥苷三磷酸 (PanSci Promo)_96
・2026/01/09 ・3351字 ・閱讀時間約 6 分鐘

本文與 PAMO車禍線上律師 合作,泛科學企劃執行

走在台灣的街頭,你是否發現馬路變得越來越「急躁」?滿街穿梭的外送員、分秒必爭的多元計程車,為了拚單量與獎金,每個人都在跟時間賽跑 。與此同時,拜經濟發展所賜,路上的豪車也變多了 。

這場關於速度與金錢的博弈,讓車禍不再只是一場意外,更是一場複雜的經濟算計。PAMO 車禍線上律師施尚宏律師在接受《思想實驗室 video podcast》訪談時指出,我們正處於一個交通生態的轉折點,當「把車當生財工具」的職業駕駛,撞上了「將車視為珍貴資產」的豪車車主,傳統的理賠邏輯往往會失靈 。

在「停工即停薪」(有跑才有錢,沒跑就沒收入)的零工經濟時代,如果運氣不好遇上車禍,我們該如何證明自己的時間價值?又該如何在保險無法覆蓋的灰色地帶中全身而退?

-----廣告,請繼續往下閱讀-----
如果運氣不好遇上車禍,我們該如何證明自己的時間價值?/ 圖片來源: Nano Banana

薪資證明的難題:零工經濟者的「隱形損失」

過去處理車禍理賠,邏輯相對單純:拿出公司的薪資單或扣繳憑單,計算這幾個月的平均薪資,就能算出因傷停工的「薪資損失」。

但在零工經濟時代,這套邏輯卡關了!施尚宏律師指出,許多外送員、自由接案者或是工地打工者,他們的收入往往是領現金,或者分散在多個不同的 App 平台中 。更麻煩的是,零工經濟的特性是「高度變動」,上個月可能拚了 7 萬,這個月休息可能只有 0 元,導致「平均收入」難以定義 。

這時候,律師的角色就不只是法條的背誦者,更像是一名「翻譯」。

施律師解釋「PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言。」 這包括將不同平台(如 Uber、台灣大車隊)的流水帳整合,或是找出過往的接單紀錄來證明當事人的「勞動能力」。即使當下沒有收入(例如學生開學期間),只要能證明過往的接單能力與紀錄,在談判桌上就有籌碼要求合理的「勞動力減損賠償 」。

-----廣告,請繼續往下閱讀-----
PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言 / 圖片來源: Nano Banana

300 萬張罰單背後的僥倖:你的直覺,正在害死你

根據警政署統計,台灣交通違規的第一名常年是「違規停車」,一年可以開出約 300 萬張罰單 。這龐大的數字背後,藏著兩個台灣駕駛人最容易誤判的「直覺陷阱」。

陷阱 A:我在紅線違停,人還在車上,沒撞到也要負責? 許多人認為:「我人就在車上,車子也沒動,甚至是熄火狀態。結果一台機車為了閃避我,自己操作不當摔倒了,這關我什麼事?」

施律師警告,這是一個致命的陷阱。「人在車上」或「車子沒動」在法律上並不是免死金牌 。法律看重的是「因果關係」。只要你的違停行為阻礙了視線或壓縮了車道,導致後方車輛必須閃避而發生事故,你就可能必須背負民事賠償責任,甚至揹上「過失傷害」的刑責 。 

數據會說話: 台灣每年約有 700 件車禍是直接因違規停車導致的 。這 300 萬張罰單背後的僥倖心態,其巨大的代價可能是人命。

-----廣告,請繼續往下閱讀-----

陷阱 B:變換車道沒擦撞,對方自己嚇到摔車也算我的? 另一個常年霸榜的肇事原因是「變換車道不當」 。如果你切換車道時,後方騎士因為嚇到而摔車,但你感覺車身「沒震動、沒碰撞」,能不能直接開走?

答案是:絕對不行。

施律師強調,車禍不以「碰撞」為前提 。只要你的駕駛行為與對方的事故有因果關係,你若直接離開現場,在法律上就構成了「肇事逃逸」。這是一條公訴罪,後果遠比你想像的嚴重。正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。

正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。/ 圖片來源: Nano Banana

保險不夠賠?豪車時代的「超額算計」

另一個現代駕駛的惡夢,是撞到豪車。這不僅是因為修車費貴,更因為衍生出的「代步費用」驚人。

-----廣告,請繼續往下閱讀-----

施律師舉例,過去撞到車,只要把車修好就沒事。但現在如果撞到一台 BMW 320,車主可能會主張修車的 8 天期間,他需要租一台同等級的 BMW 320 來代步 。以一天租金 4000 元計算,光是代步費就多了 3 萬多塊 。這時候,一般人會發現「全險」竟然不夠用。為什麼?

因為保險公司承擔的是「合理的賠償責任」,他們有內部的數據庫,只願意賠償一般行情的修車費或代步費 。但對方車主可能不這麼想,為了拿到這筆額外的錢,對方可能會採取「以刑逼民」的策略:提告過失傷害,利用刑事訴訟的壓力(背上前科的恐懼),迫使你自掏腰包補足保險公司不願賠償的差額 。

這就是為什麼在全險之外,駕駛人仍需要懂得談判策略,或考慮尋求律師協助,在保險公司與對方的漫天喊價之間,找到一個停損點 。

談判桌的最佳姿態:「溫柔而堅定」最有效?

除了有單據的財損,車禍中最難談判的往往是「精神慰撫金」。施律師直言,這在法律上沒有公式,甚至有點像「開獎」,高度依賴法官的自由心證 。

-----廣告,請繼續往下閱讀-----

雖然保險公司內部有一套簡單的算法(例如醫療費用的 2 到 5 倍),但到了法院,法官會考量雙方的社會地位、傷勢嚴重程度 。在缺乏標準公式的情況下,正確的「態度」能幫您起到加分效果。

施律師建議,在談判桌上最好的姿態是「溫柔而堅定」。有些人會試圖「扮窮」或「裝兇」,這通常會有反效果。特別是面對看過無數案件的保險理賠員,裝兇只會讓對方心裡想著:「進了法院我保證你一毛都拿不到,準備看你笑話」。

相反地,如果你能客氣地溝通,但手中握有完整的接單紀錄、醫療單據,清楚知道自己的底線與權益,這種「堅定」反而能讓談判對手買單,甚至在證明不足的情況下(如外送員的開學期間收入),更願意採信你的主張 。

車禍不只是一場意外,它是認知、情緒、金錢與法律邏輯的總和 。

在這個交通環境日益複雜的時代,無論你是為了生計奔波的職業駕駛,還是天天上路的通勤族,光靠保險或許已經不夠。大部分的車禍其實都是小案子,可能只是賠償 2000 元的輕微擦撞,或是責任不明的糾紛。為了這點錢,要花幾萬塊請律師打官司絕對「不划算」。但當事人往往會因為資訊落差,恐懼於「會不會被告肇逃?」、「會不會留案底?」、「賠償多少才合理?」而整夜睡不著覺 。

-----廣告,請繼續往下閱讀-----

PAMO看準了這個「焦慮商機」, 推出了一種顛覆傳統的解決方案——「年費 1200 元的訂閱制法律服務 」。

這就像是「法律界的 Netflix」或「汽車強制險」的概念。PAMO 的核心邏輯不是「代打」,而是「賦能」。不同於傳統律師收費高昂,PAMO 提倡的是「大腦武裝」,當車禍發生時,線上律師團提供策略,教你怎麼做筆錄、怎麼蒐證、怎麼判斷對方開價合不合理等。

施律師表示,他們的目標是讓客戶在面對不確定的風險時,背後有個軍師,能安心地睡個好覺 。平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。

平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。 / 圖片來源: Nano Banana

從違停的陷阱到訂閱制的解方,我們正處於交通與法律的轉型期。未來,挑戰將更加嚴峻。

-----廣告,請繼續往下閱讀-----

當 AI 與自駕車(Level 4/5)真正上路,一旦發生事故,責任主體將從「駕駛人」轉向「車廠」或「演算法系統」 。屆時,誰該負責?怎麼舉證?

但在那天來臨之前,面對馬路上的豪車、零工騎士與法律陷阱,你選擇相信運氣,還是相信策略? 先「武裝好自己的大腦」,或許才是現代駕駛人最明智的保險。

PAMO車禍線上律師官網:https://pse.is/8juv6k 

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
特斯拉 Cybercab 登場!自駕車事故責任該由誰承擔?
PanSci_96
・2024/07/30 ・1411字 ・閱讀時間約 2 分鐘

特斯拉即將在 2024 年 10 月推出無人計程車,並且 Robotaxi 的正式名稱,將取名為 Cybercab。
等等,在無人車正式上路之前,我先問你一個重要問題。如果我開特斯拉自駕車撞死人,要負責的是我這個駕駛、乘客,還是特斯拉與馬斯克?

你敢開自駕車嗎?肇事責任是誰負責? 圖/envato

自駕車撞死人:駕駛、乘客,還是特斯拉負責?

當你駕駛特斯拉自駕車撞死人,責任歸屬是個複雜問題。無人車上路前,了解現行法律與技術界限至關重要。如果你強行介入自駕車運行,解除自駕功能後的事故責任由你全擔。如果不干預,事故責任可能由車商承擔。然而,最終誰來負責,仍取決於多方因素,包括車輛技術和法律規定。

這是個很現實的電車難題,應該說自駕車難題。如果你駕駛的自駕車正在失控向人群駛去,你是否有勇氣按下緊急剎車,承擔一切責任?

這類問題正是現在無人駕駛技術面臨的道德和法律挑戰。

-----廣告,請繼續往下閱讀-----
歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

電車難題再現:自駕車技術的進展與挑戰

自駕車並不是未來的幻想,而是已經在我們的日常生活中逐漸實現的技術。特斯拉和其他汽車製造商已經展示了他們的自動駕駛系統,這些系統能夠完成從停車到高速公路駕駛的各種操作。目前的自駕技術主要依賴於先進駕駛輔助系統(ADAS),這些系統結合了多種技術以提升駕駛的安全性和效率。

ADAS 並不是一個新概念,它可以追溯到 1950 年代的汽車巡航控制系統,隨後在 1970 年代加入了防鎖死煞車系統和車身動態穩定系統。現代的 ADAS 功能更加多樣化,包括防撞系統、車道偏離警示、盲點監控、自適應巡航和駕駛監控等,這些功能大大降低了人為失誤導致的事故風險。

自駕車三隻眼睛:相機、光達和雷達的全面解析

自駕車依賴於三種主要感知技術:相機、光達和雷達。相機負責辨識交通號誌和行人,光達則通過發射紅外雷射光脈衝繪製 3D 地圖,雷達在惡劣天氣中表現尤為出色,能夠在雨天、霧天和沙塵暴中提供穩定的數據。

自駕車的決策過程可以分為感知、決策和控制三個步驟。感知階段依賴於相機、光達和雷達提供的數據,決策階段則依靠 AI 算法來判斷最佳行動方案,最後由控制系統執行決策。這些技術的進步使得自駕車在面對複雜的交通情況時,能夠做出更準確的反應。

-----廣告,請繼續往下閱讀-----

全球無人計程車競賽:各國如何迎接自動駕駛未來

特斯拉並不是唯一的自駕車領導者,Google 的 Waymo 和通用汽車的 Cruise 已經在無人計程車領域取得了重大進展。中國的自動駕駛公司小馬智行和百度的蘿蔔快跑也已成功讓無人計程車在主要城市上路營運。根據預測,到 2025 年,全球將有約 800 萬輛 3 級或 4 級的自駕車在道路上行駛。

特斯拉的 Cybercab 無人計程車即將上路,標誌著自駕車技術進入新的階段。隨著技術的不斷進步和法律框架的完善,自駕車將在未來的交通系統中扮演越來越重要的角色。然而,自駕車事故責任的問題仍需進一步探討和解決,以確保這一新技術能夠安全、可靠地服務於社會。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1266 篇文章 ・ 2625 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

1
0

文字

分享

0
1
0
從販賣機到智慧設備:物聯網的發展歷程
數感實驗室_96
・2024/06/23 ・1135字 ・閱讀時間約 2 分鐘

本文由 國立臺灣師範大學 委託,泛科學企劃執行。 

在這個通信技術普及的年代,我們不斷介紹各式各樣的通信技術。大多數的通信技術都是為人服務的,這似乎是理所當然的。然而,有一種通信技術並非直接為人服務,而是為物體之間的交流提供支持。這種技術不僅存在,而且在現代已經成為最主要的通信形式之一,我們稱之為——物聯網(IoT)。

物聯網,Internet of Things,簡稱 IoT,顧名思義就是物品,機器、設備連上網路。

在我們生活中,如智慧手錶和藍牙耳機這些穿戴式設備,它們各自擁有特定功能,同時又能透過藍牙技術相互連結,這就是物聯網的一種應用。

-----廣告,請繼續往下閱讀-----

你可能會問,手機也算是物聯網的設備嗎?

這取決於你如何定義和使用手機。如果是人們使用 5G 或 4G 技術彼此傳訊息和溝通,那麼這不屬於物聯網的範疇。但當手機與藍牙耳機或智慧手錶連接時,它們之間的互動更符合物聯網的概念。因此,物聯網的基本定義是,不直接涉及人跟人、或是人與設備的互動。基本上都是設備跟設備之間的溝通。

通信是人類最基本的需求,同時也帶來無限商機,就像我們不想跑到別的地方買可樂,卻發現賣光了一樣,科技為能解決這些需求,促使通信技術的持續成長。

如同手機的普及帶動了市場需求,從一家一部的電視和冰箱,到人人一支的手機,並且每隔幾年就更新換代。這種商機吸引了企業的投資,也推動了強大的研發動能。

-----廣告,請繼續往下閱讀-----

而現在,我們正生活在一個設備數量遠超人類數量的時代,從藍牙耳機、智慧手錶,到遍布全球的智慧設備,物聯網的技術已經無處不在。

不妨思考一下,還有哪些需求尚未被滿足,也許它們正是下一個物聯網應用的起點。

更多、更完整的內容,歡迎上數感實驗室 Numeracy Lab 的 YouTube 頻道觀看完整影片,並開啟訂閱獲得更多有趣的資訊!

參考資料

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

數感實驗室_96
76 篇文章 ・ 55 位粉絲
數感實驗室的宗旨是讓社會大眾「看見數學」。 數感實驗室於 2016 年 4 月成立 Facebook 粉絲頁,迄今超過 44,000 位粉絲追蹤。每天發布一則數學文章,內容包括介紹數學新知、生活中的數學應用、或是數學和文學、藝術等跨領域結合的議題。 詳見網站:http://numeracy.club/ 粉絲專頁:https://www.facebook.com/pg/numeracylab/