1

17
2

文字

分享

1
17
2

發明鬼才與他異想天開的童年歲月——《被消失的科學神人‧特斯拉親筆自傳》

PanSci_96
・2020/12/03 ・2612字 ・閱讀時間約 5 分鐘 ・SR值 479 ・五年級

-----廣告,請繼續往下閱讀-----

編按:尼古拉・特斯拉(Nikola Tesla)是上個世紀的偉大科學家,諸多發明和發現,廣泛應用於後世——旋轉磁場、第一台交流電發電機、特斯拉線圈、第一台無線電發射機、X-ray攝影技術⋯⋯然而在科學作為「謀利工具」的爾虞我詐的市場,特斯拉不敵當時代的競爭對手(如騙術百出的愛迪生電力公司),而顯得沒沒無聞。

近年特斯拉的生平及貢獻重新受到重視,以下為特斯拉自傳中的童年的回憶,讓我們一起看看這位鬼才科學家童趣視野。

尼古拉・特斯拉(Nikola Tesla)照片。圖/《被消失的科學神人:特斯拉親筆自傳》,柿子文化。

搬家對我來說就像是一場災難,要跟舊家的小動物們分離,讓我傷心不已,其中有鴿子、小雞、綿羊,以及隊伍壯觀的鵝群,牠們總是在清晨時分昂首向天朝著飼養場前進,在日落時分排成戰鬥隊形從飼養場回來,那整齊劃一的隊伍,足以讓當今最精良的空軍連隊自慚形穢。

然而,到了新居,看著窗簾外的陌生人,我感覺自己就像是蹲苦牢的囚犯。我是個非常靦腆的小孩,寧願面對一頭獅子,也不願跟那些穿著入時、遊手好閒的城市紈褲子弟打交道。但是我最嚴峻的考驗發生在星期日,這一天我的服裝儀容必須保持整潔,還要參加教會禮拜的服事。

教堂禮拜闖禍,不受歡迎的兒童

有一次我不小心闖了大禍,即使事情過去了那麼多年,只要一想到當天的情景,依舊會血液像陳年優酪乳般凝固那樣地感到心驚膽跳。那是我的第二次教會驚魂記,在那之前不久,我才在一間教堂裡被困了一晚,教堂座落於人煙罕至的深山,一年只去造訪一次。那確實是一次恐怖的經歷,但是第二次的遭遇更糟。

城裡有個女富豪,她是個好人,但喜歡擺架子。她總是盛裝打扮上教堂做禮拜,臉上畫著精緻的濃妝,裙襬拖得老長,有一群僕人隨身服侍打理。某個主日,我一敲完教堂鐘樓的鐘,便急匆匆下樓梯,恰巧碰上這位貴婦大搖大擺走出來,我一個箭步正好踩到她的拖裙。

-----廣告,請繼續往下閱讀-----

接著,響起一陣撕裂聲,聽起來就像是技術生疏的新兵射擊發出的槍響,她的裙襬當場被硬生生地撕裂。我看到父親氣得臉色鐵青,他打了我一巴掌,雖然不是很用力,但這是他第一次體罰我,我到現在都還能感覺到那一巴掌在心裡的力度。我覺得很丟臉也很困惑,筆墨難以形容當時的心情。

經過這次事件後,我等於是社區裡的不受歡迎人物,直到後來發生了一件事,我的名譽才得以平反,使得大家對我另眼相看,重拾尊嚴。

敏銳直覺讓他重拾尊嚴!

一名年輕創業家組織了本地一支消防隊。他採購了全新的消防車和制服,還計畫做一次消防演練和遊行展示。所謂的消防車其實就是一具消防泵浦機組,由十六個壯漢共同操作,並漆上美麗的紅色與黑色。一天下午,官方測試正在準備中,消防機組被運送至河邊,全城的人都蜂擁到河邊想要一睹壯觀的演練場面。所有致詞和儀式都告一段落後,長官下達命令啟動泵浦,但是噴嘴卻噴不出一滴水,現場的教授和專家也束手無策,找不出問題所在,眼看演練就要失敗了。

我當時還沒有任何機械方面的知識,對於氣壓沒有一點概念,但是直覺告訴我是河中的抽水軟管出了問題。我走近看到它塌陷在河中,於是下水將它打開,大量的水突然湧出,將我身上所穿的主日服噴濕了一大片。

阿基米德沐浴時發現浮力理論,當他赤身裸體奔跑過義大利敘拉古(Syracuse)街道,聲嘶力竭高喊「我找到了!」(Eureka)時所引起的騷動,還遠遠不如我當日受到的矚目,那一天我成了英雄,被人們扛在肩膀上,接受群眾熱烈的歡呼。

-----廣告,請繼續往下閱讀-----

捕鴉冠軍手,引來鴉群動怒!

我們一家人在新居安定下來後,我進入師範學校開始了一個四年制的課程(即基礎小學教育),為進入大學或是文實中學(Real Gymnasium,一種中等教育體制,一般為五年級至十年級,高等文實中學則約為高中,但都較偏實科)做準備。這段時期,我仍然繼續我的孩子氣發明,當然也繼續製造麻煩。

此外,我還博得了「捕鴉冠軍手」的響亮名號。老實說,我的捕捉方法很簡單──進到樹林後,便躲在灌木叢後面,模仿烏鴉叫聲。通常,我會先得到幾聲回應,不久之後就會有一隻烏鴉飛到我附近的灌木叢。接下來要做的,就是把一片紙板朝牠丟過去,藉此分散牠的注意力,趁牠飛走逃脫之前,趕緊跳出來捉住牠。然而,一次意外事件讓我不得不對牠們另眼相看。

有一天,我捉到了一對漂亮的烏鴉,正當我和朋友一起往回家的路上走,準備離開樹林時,數千隻烏鴉突然群集在我們頭頂上空,發出恐怖的聒噪聲。幾分鐘後,牠們做出攻擊態勢,將我們兩個團團包圍起來,一開始我還覺得有趣好玩,直到後腦勺遭到一陣攻擊,把我撲倒在地,才覺得不對勁。接著,牠們朝我猛烈攻擊,我只得把捉到的兩隻烏鴉釋放。儘管如此,我還是開開心心地跑去跟朋友會合──他早已經躲到洞穴中藏身了!

被責罵的嗜好,成就偉大的水力發電廠

教室裡有一些讓我感興趣的機械模型,把我的注意力轉到了水渦輪機。我動手製造了許多水渦輪機,從操作中感受到巨大的快樂。若要形容我的人生際遇是何等奇妙,也許可以從這一個小插曲窺見一斑。我的叔叔不喜歡我這類消遣嗜好,所以我不只一次受到他的責罵。

-----廣告,請繼續往下閱讀-----
全球第一座交流電水力發電廠。圖/teslasociety

我曾在書中讀到關於尼加拉大瀑布的描述而為之深深著迷,並在腦海中勾勒想像利用它的澎湃水力運轉的巨大渦輪,我告訴叔叔我將來有一天會去美國實現這個計畫。三十年後,我看到我的發想在尼加拉大瀑布實現成真(一八九五年,特斯拉為美國尼加拉水力發電廠製造發電機組,至今仍是世界知名的水力發電廠之一),也讓我對心智奧祕的深不可測驚歎不已。

——本文摘自泛科學2020年12月選書《被消失的科學神人:特斯拉親筆自傳》,柿子文化,2019年01月。

文章難易度
所有討論 1
PanSci_96
1220 篇文章 ・ 2244 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

2
0

文字

分享

0
2
0
人體吸收新突破:SEDDS 的魔力
鳥苷三磷酸 (PanSci Promo)_96
・2024/05/03 ・1194字 ・閱讀時間約 2 分鐘

本文由 紐崔萊 委託,泛科學企劃執行。 

營養品的吸收率如何?

藥物和營養補充品,似乎每天都在我們的生活中扮演著越來越重要的角色。但你有沒有想過,這些關鍵分子,可能無法全部被人體吸收?那該怎麼辦呢?答案或許就在於吸收率!讓我們一起來揭開這個謎團吧!

你吃下去的營養品,可以有效地被吸收嗎?圖/envato

當我們吞下一顆膠囊時,這個小小的丸子就開始了一場奇妙的旅程。從口進入消化道,與胃液混合,然後被推送到小腸,最後透過腸道被吸收進入血液。這個過程看似簡單,但其實充滿了挑戰。

首先,我們要面對的挑戰是藥物的溶解度。有些成分很難在水中溶解,這意味著它們在進入人體後可能無法被有效吸收。特別是對於脂溶性成分,它們需要透過油脂的介入才能被吸收,而這個過程相對複雜,吸收率也較低。

-----廣告,請繼續往下閱讀-----

你有聽過「藥物遞送系統」嗎?

為了解決這個問題,科學家們開發了許多藥物遞送系統,其中最引人注目的就是自乳化藥物遞送系統(Self-Emulsifying Drug Delivery Systems,簡稱 SEDDS),也被稱作吸收提升科技。這項科技的核心概念是利用遞送系統中的油脂、界面活性劑和輔助界面活性劑,讓藥物與營養補充品一進到腸道,就形成微細的乳糜微粒,從而提高藥物的吸收率。

自乳化藥物遞送系統,也被稱作吸收提升科技。 圖/envato

還有一點,這些經過 SEDDS 科技處理過的脂溶性藥物,在腸道中形成乳糜微粒之後,會經由腸道的淋巴系統吸收,因此可以繞過肝臟的首渡效應,減少損耗,同時保留了更多的藥物活性。這使得原本難以吸收的藥物,如用於愛滋病或新冠病毒療程的抗反轉錄病毒藥利托那韋(Ritonavir),以及緩解心絞痛的硝苯地平(Nifedipine),能夠更有效地發揮作用。

除了在藥物治療中的應用,SEDDS 科技還廣泛運用於營養補充品領域。許多脂溶性營養素,如維生素 A、D、E、K 和魚油中的 EPA、DHA,都可以通過 SEDDS 科技提高其吸收效率,從而更好地滿足人體的營養需求。

隨著科技的進步,藥品能打破過往的限制,發揮更大的療效,也就相當於有更高的 CP 值。SEDDS 科技的出現,便是增加藥物和營養補充品吸收率的解決方案之一。未來,隨著科學科技的不斷進步,相信會有更多藥物遞送系統 DDS(Drug Delivery System)問世,為人類健康帶來更多的好處。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
199 篇文章 ・ 304 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
2

文字

分享

0
1
2
生活中無處不在的電:靜電的應用、交流電與導電性——《神奇物理學》
商周出版_96
・2022/10/15 ・2408字 ・閱讀時間約 5 分鐘

靜電在生活上的應用

我們的抱負是替每種造成生活困難的現象平反,要幫忙找到它們會讓人好過的例子,告訴大家在哪些情況下,它們是有用(甚至更厲害)或有趣的。但是老實說,我懷疑在靜電荷上是否能做到,它好像到哪都會造成困擾。不過有時靜電荷其實也很有用,許多雷射印表機沒有它就無法工作,感謝雷射印表機讓我們不必用鉛筆寫 14 公里。

簡單來解釋一下雷射印表機的運作原理:印表機裡面有個用來列印紙張的感光鼓(Image Drum),這個鼓是帶電,會曝露在雷射光下,而它曝露的地方就會因此被放電,最後會回頭在要充電的區域著色。然後,感光鼓會轉到碳粉那裡,碳粉也帶了電荷,只會附著在仍要充電的區域。感光鼓現在有了我們想要列印的精確圖像,它被引導至紙上將碳粉卸下。

蘋果公司的雷射印表機——LaserWriter Pro 630(1993 年)。圖/維基百科

現在我們的文件已經列印好了。為了不被弄髒,之後會再用滾筒施壓加熱固定,也因此從雷射印表機出來的紙張會有點熱。我們辦公室的雷射印表機曾經在最後一個步驟故障了,還是會列印,只是要手工加固顏色。

除了列印,靜電對打掃也非常有用,但不是清潔家裡,是打掃大型工業廠房時可以派上用場。

-----廣告,請繼續往下閱讀-----

我們會用靜電過濾器來過濾空氣中的灰塵或煙灰,現在大略解釋一下它的作業過程:帶電的電線會將電子噴到要清潔的氣體中,這些電子會在該處碰到灰塵並對其充電,帶電的塵粒就會衝向另一個正電荷的電極,並在那裡落下。然後,你就只要關掉靜電過濾器的電源,並輕輕敲一敲。

殘忍的直流電與交流電戰爭

就算靜電很煩,但至少不會對身體造成重大傷害,不像從插座裡出來的電,會變得非常危險。

你肯定從小就被警告:不要讓吹風機掉進浴缸、不要摸沒有絕緣包覆的電纜!不可以把叉子插進插座裡!不管怎麼說,這些警告都有道理。但原因到底是什麼?如果我們在乾燥空氣中走在地毯上會產生高達 2 萬伏特的電壓,而且也毫髮無傷,那從插座出來的 220 伏特電壓又算什麼呢?

有些時候電會傷人,有些時候卻毫無影響,這是為什麼呢? 圖/GIPHY

吹風機泡在浴缸中不是件好事的最重要原因,是吹風機用的是交流電。你或許知道愛迪生(Thomas Edison)在 19 世紀末發明了燈泡,他希望燈泡能靠直流電運作,所謂的直流電就是電流在電路中朝一個方向流動,就像單行道一樣。

-----廣告,請繼續往下閱讀-----

除此之外,愛迪生還希望用自己的直流電專利和只能計算交流電的電表賺愈多錢愈好。

然而,愛迪生有個最大的問題,就是直流電在長距離使用時,會損失大量的能量。他其實想利用這個問題,在不斷成長的電力市場上,從許多必要的發電站賺到額外的錢。不過隨著時間過去,他愈來愈輸給立場相對的交流電派的競爭對手。

身兼發明家和企業家雙重身分的喬治.西屋(George Westinghouse)與天才物理學家尼古拉.特斯拉(Nikola Tesla)合作,他們依賴交流電每秒會改變 50~60 次的特點。

交流電的優點:可以很容易升到高壓再降壓;可以傳輸幾百公里,損失的能量比直流電少。交流電的缺點:流經生物時,對其造成的危險比直流電大。儘管有這個缺點,威斯汀豪斯和特斯拉還是繼續更大範圍的銷售他們的專利。

-----廣告,請繼續往下閱讀-----

愛迪生在大眾示威抗議下,透過電死動物發起一場可怕的反交流電運動,在悲傷的高峰時刻,他要員工替美國政府製造一把電椅,以展示交流電的致命性。但其實沒有用,交流電已經盛行起來了,因此可以替我們國家的所有電器設備(吹風機也包含在內)提供能量,無論是經過變壓器方便地使用或是直接利用。

交流電可替所有電器設備提供能量。圖/GIPHY

到底是什麼讓交流電這麼危險?我們身體裡其實一直都有微小的電交換過程在不斷發生,例如用這種方式刺激心臟跳動。但每個心跳週期中,都有一個階段心臟對干擾會特別敏感,也就是所謂的「易損期」(Vulnerable Period)。

如果我們在這個期間受到電擊,就會發生危及性命的心室顫動(Ventricular Fibrillation)。

使用交流電時,電脈衝會以每秒 50 次的頻率雙向流動,電力突波會剛好在易損期擊中我們的風險,會比用直流電還要高很多。不過,如果突波剛好在剛好的時間以適合的強度出現,那麼心臟的這種敏感性當然就有用——這就是心律調節器每天拯救生命的方式。

-----廣告,請繼續往下閱讀-----

人體的導電性比你想的還強

我們不應該讓吹風機掉進浴缸還有另一個原因,就是水的導電性比我們想像的要低。我們都以為掉進水中的吹風機非常危險,是因為水可以導電。我們以前都聽父母這樣解釋過,這沒有錯,但也並不完全正確。掉進浴缸裡的吹風機的確很危險沒錯,但那是因為人體的導電性比水好。

就算自來水的導電性很好,但它並非最好的導體之一,例如銅的導電性就是它的 10 億倍。人體的導電性比自來水更強,因為我們不僅是由水組成,還含有許多的鹽,這就是人體比洗澡水更能導電的原因,除非我們在浴缸裡加了浴鹽或尿尿(當然沒人會這麼做),那就另當別論。

如果吹風機掉進水裡,電流在我們身體裡比在水裡更容易傳播,而這種效應還會因為我們整個身體都泡在洗澡水裡而增加,這樣電流的整個接觸面積就會非常非常大。

——本文摘自《神奇物理學:從重力到電流,日常中的科學現象原來是這麼回事!》,2022 年 9 月,商周出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
商周出版_96
119 篇文章 ・ 360 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。

1

8
0

文字

分享

1
8
0
發電量增加 25 倍卻還是不夠用!再生能源是人類未來的救星嗎?──《牛津通識課|再生能源:尋找未來新動能》
日出出版
・2022/07/18 ・1730字 ・閱讀時間約 3 分鐘

我們的能源從哪裡來、往哪裡去?

全球每年對能源的需求量相當巨大,若用「瓩時」──即一度電這樣的度量單位──來表示會出現天文數字,因此改用「太瓦時」(TWh)來表示,太瓦時等於 10 億瓩時。

在一八〇〇年,全球約有 10 億人口,當時對能源的需求約為 6000 太瓦時;而且幾乎全部來自傳統的生質能源。到了二〇一七年,全球人口達到 76 億,發電量增加了 25 倍(156000 太瓦時)。

在 2017 年的全球能源使用比例中,煤炭、石油和天然氣等化石燃料占了大約 80 %左右。圖/ Pixabay

下圖顯示在二〇一七年全球主要能源消耗總量的百分比,其中近 8 成為化石燃料。其他再生能源包括風能、太陽能和地熱能,其中成長最快的是風場和太陽光電場。生質能源則主要來自傳統生質能源。

2017 年的能源消耗總量,顯示出不同能源的百分占比。圖/BP Statistical Review of World Energy, 2018; World Energy Council, Bioenergy, 2016

大約有 1/3 的全球能源消耗在將化石燃料轉化為電力精煉燃料上。

-----廣告,請繼續往下閱讀-----

剩下的稱為最終能源需求(final energy demand),是指用戶消耗掉的能源:每年約 10 萬太瓦時。

大約有 10% 是來自開發中國家傳統生質能的熱,22% 來自電力,38% 用於供熱(主要來自化石燃料) 30% 在交通運輸。熱能和電能主要都是用於工業和建築。汽油和柴油幾乎提供了所有用於運輸的燃料。

怎麼做比較不浪費?能量轉換效率大比拚!

我們看到供熱與供電一樣重要。兩者都可以用瓩時為單位,也就是一度電來測量,雖然電可以完全轉化為熱量,例如電烤箱,但只有一小部分以熱能形式存在的能量可以轉化為電能,其他的必然會散失到周圍環境裡

在火力發電廠中,存在於化石燃料中的化學能會在燃燒後轉化為熱能。這會將水加熱,產生蒸汽,蒸汽膨脹推動渦輪的葉片,轉動發電機。只有一部分熱量被轉化成電力;其餘的熱量在蒸汽冷凝,完成循環時,就轉移到環境中,成了殘熱。

這份熱電轉化的比例可透過提升高壓蒸汽的溫度來增加,但受限於高溫下鍋爐管線的耐受度。

-----廣告,請繼續往下閱讀-----

在一座現代化的火力發電廠中,一般熱能轉化為電能的效率約為 40%。若是在較高溫的複循環燃氣發電機組(combined cycle gas turbine,CCGT)裝置中,這個比例可提高到 60%。

同樣地,在內燃機中也只有一小部分的熱量可以轉化為車子的運動能量(動能);汽油車的一般平均效率為 25%,柴油車則是 30%,而柴油卡車和公車的效率約為 40%。

另一方面,電動馬達的效率約為 90%,因此電氣化運輸將顯著減少能源消耗。這是提高效率和再生能源之間協同作用的一個範例,這將有助於提供世界所需的能源。

火力發電沒辦法 100% 轉換熱能變成電能,約有 60% 的損失。圖/envato

再生能源的過去跟未來

在十九世紀末,水力發電的再生資源幫助啟動了電網的發展,在二〇一八年時約占全世界發電量的 16%。而在再生能源──風能、太陽能、地熱能和生質能源──的投資上,相對要晚得多,是在二十世紀的最後幾十年才開始。

-----廣告,請繼續往下閱讀-----

起初的成長緩慢,因為這些再生能源沒有成本競爭力還需要補貼。但隨著產量增加,成本下降,它們的貢獻開始增加。這些其他再生能源發電的占比已從二〇一〇年的 3.5% 上升到二〇一八年的 9.7%,包括水力發電在內,再生能源的總貢獻量為 26%。

不過,就全球能源的占比,而不是僅只是考慮用戶消耗的電力來看,再生能源僅占約 18%,而傳統生質能則提供約 10% 的能量。隨著太陽能和風能的成本在許多國家變得比化石燃料更便宜,它們在總發電量中的占比有望在未來幾十年顯著增加。

這世界花了很長的時間才意識到這一事實,從現在開始,再生能源勢必將成為主要的能源來源。

——本文摘自《【牛津通識課02】再生能源:尋找未來新動能》,2022 年 6 月,日出出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
所有討論 1
日出出版
13 篇文章 ・ 7 位粉絲