5

18
1

文字

分享

5
18
1

每分鐘 15 次的駭客攻擊,5G 世代的臺灣資安挑戰——資安所王仁甫策略總監專訪

科技大觀園_96
・2021/09/23 ・3959字 ・閱讀時間約 8 分鐘

5G 科技讓萬物聯網的新紀元已經來臨,代表著機器與機器溝通,人類過上全自動化的超便捷生活不再是夢。但這同時也意味著科幻電影中,邪惡駭客組織攻占重要機關的主機系統,引發一連串資安問題,甚至攸關社會國家安危的重大事件,也可能在現實中發生!
科技帶來的便利與風險並存的這個世代,來聽聽資安專家——資策會資安科技研究所王仁甫策略總監的精彩分享,一起思考 5G 物聯網下面對的資安挑戰。

和台灣知名藝人同名同姓的王總監,説話風趣幽默,整個採訪過程充滿笑聲。圖/台灣資安大會

一起跟資安達人瞭解 5G 如何翻轉我們的生活!

「16 年前一個月黑風高的夜晚,博士班學姐的一通電話,讓我踏上資安這條不歸路……」

問起投入資安領域的契機,王總監用打趣的口吻開場。當時在學姐的建議下,他參與了設計國内第一個資安指標的工作,從此開啓與資安的不解之緣。自稱「資安界 56 哥」的王總監,雖非一般人熟悉的另一位仁甫兄,但他對科技資安研究的敏銳觀察與豐富經驗,肯定令人甘拜下風。

他談到,4G 網絡的發展令網紅經濟崛起,你我都不曾想像『點讚、訂閲、打開小鈴鐺』會變成一種常態。而接下來的 5G 物聯網,將帶來更大的轉變與衝擊。

為什麽比起 4G,5G 有「大頻寬、高速率、低延遲」的特性?這是因為目前 4G 所在電磁波區間(約 450 MHz ~ 3800 MHz)已塞滿用戶,讓網速變得越來越慢,因此人類便把腦筋動到頻率更高的毫米波頻段(約30 GHz ~ 300 GHz)。增加了 5G 的區段,就像從塞爆的車流中,移到空曠的新路上。而頻率越高,頻寬也越寬,這條道路不止空曠而且比原先的更寬闊,於是訊息的傳遞能暢行無阻,理論上可比 4G 快一百倍!

-----廣告,請繼續往下閱讀-----

「5G 最重要的,就是可以達成邊緣運算(Edge Computing)。」

王總監舉例,自動駕駛和遠距醫療還未普及,是因為傳統仰賴的雲端運算(Cloud Computing),傳輸訊息的速度不夠快,且成本高。雲端運算可以比喻作中央集權制,凡事都要經過朝廷皇上批閲議決,效率自然較低;但邊緣運算就像地方分權,讓數據可以直接在收集端附近實時處理和分析,無需先上報到雲端進行存儲、管理和分析運算,節省了上傳等待運算的時間,也減輕網絡和服務器的負擔。

邊緣運算架構與傳統雲端架構不同的地方是,資料將改放在網際網路和本地網路之間的邊緣運算層作處理,等資料變少了,再將處理後的資料回傳雲端。

在高速公路和手術檯上,微秒之差就是生死關頭。而 5G 搭配邊緣運算,大大提高的數據傳輸速率與極低的延遲,讓自動車之間可以維持安全的相對距離,遠端控制的手術刀可以精準無差地落在正確的部位。

也有賴於 5G 科技,需要大量運算資源的人工智慧(Artificial Intelligence,AI)也可以實現。這些發展促成物聯網(Internet of Things, IOT)的建立,機器和機器之間可以達成溝通,整合各方數據資訊,迅速有效率地完成各種指令。小至個人智能家居,大至工廠機械、重要基礎設備如水壩、發電廠等等,都能踏入數位自動化的新境界。

-----廣告,請繼續往下閱讀-----

越方便就越危險?機器與機器的連接也要小心

不過,5G 的特性也改變了用戶與網絡間的關係。傳統 4G 是直鏈狀的系統,由電信商自上而下提供網絡,再經由應用程式界面(Application Programming Interface,API)提供服務給用戶,存在一個封閉式的層級關係。但速率快、訊號覆蓋範圍較小的 5G(注1), 則是由邊緣端、應用裝置及用戶組成,數據傳輸相互往來的三角形體系,不再有上下權限差別的限制。為了形成物聯網提供更多應用,5G 網絡也變得更對外開放,被駭入的風險也會提高。

研究專長為駭客行爲的王總監提到,如今網絡犯罪的作案手法越來越多元。過去搶匪洗劫銀行,還要擔心實體鈔票金條太重,扛不動。現在駭客只要動一動手指,就能利用惡意程式讓銀行的上億元瞬間消失;或使用勒索病毒,鎖定廠商的資料庫,再以巨額款項要挾,否則就把重要生產機密銷毀或公諸於世。

「5G 應用得越深,危害的情境就越高。」

未來 5G 物聯網可能面對的兩大資安威脅,包括用戶 IP 可能被駭入後,可能被用作惡意中繼站或跳板繼續攻擊另一方,讓受害者同時也成了加害者。再來,當物聯網涉及的層面越來越廣,假如被不法分子入侵掌控的是自駕車、基地台,甚至是重大國家基礎建設如水壩、發電廠等等,造成的損失傷害不堪設想! 

-----廣告,請繼續往下閱讀-----

網絡戰資訊戰開打,台灣如何接招還擊?

從個人角度,平時養成謹慎小心的習慣,不隨便亂點不明連接,隨時留意最新的網絡犯罪手法,是保護自己的不二法門。但在通訊科技發達的今時,第三次世界大戰很可能就在網路上發生,資安可是攸關國家安危的重大議題。

自 2016 年起,台灣便喊出「資安即國安」的口號,而王總監也參與在草擬「資安即國安」1.0 與 2.0 戰略的工作中。在1.0 戰略中,首要步驟就是將資安鐵三角(資訊安全、通訊安全、國家安全)正規化。政府也修訂相關法規,將資訊和網際空間延伸為國家主權的一環,並把駭客攻擊與竊取智慧財產,納入情報蒐集的工作,才能為網絡戰做好準備。

「守護要自己來,就需要有人才。沒有資安人才,就沒有基礎的資安;沒有錢投入,也不會有資安人才。」

王總監强調,一個國家的資安要做好,最重要的就是資源與人力的投入。如果國内資安產業沒有妥善發展,資安人才缺乏,就必須仰賴國外的產品。若系統程式都不是由自己人開發,而是假手於他人,便難以確保檢測過程的可靠性,往往等到資安事件發生後,才驚覺漏洞的存在。因此,政府也編組了多支專業團隊,培訓資通電軍與資安產業人才,為國内資安把關。

-----廣告,請繼續往下閱讀-----

而「資安即國安 2.0」的重點,除了規劃新設數位發展部、成立專責的資通安全署,就是主動式防禦(注 2)——與其乖乖等著被人打,不如自己先請外部團隊攻擊自己,作資安測試,去找出資安漏洞和弱點!舉例來說,業界為了找出系統防禦上的漏洞盲點,常會委外進行紅隊演練(Red Teaming)。就像在進行軍事演習,紅隊扮演進攻方,以無所不用其極的方法嘗試入侵,同時驗證藍隊防守方的偵測與回應能力。這樣的演練成本可不低,一次就要三五百萬臺幣起跳。

但台灣不用付錢,就有免費的資安攻防演練!王總監如此笑言。這是因為,在全球最常受駭客攻擊的國家排行榜上,台灣可是位居前列。根據網路資安商 Fortinet 的報告,2021 年第一季台灣遭受到超過兩百萬次的駭客攻擊,平均每分鐘就會遭遇逾 15 次的攻擊!所謂危機就是轉機,這些源源不絕的攻擊,也讓台灣深具適合發展資安產業的龐大潛力。王總監認為,資安產業要像台灣未來的台積電,扮演護國神山般的角色。

台灣平均每分鐘就會遭遇逾 15 次的攻擊,源源不絕的攻擊讓台灣深具適合發展資安產業的龐大潛力。圖/pexels

想投身資安產業?不需要獻出心臟,只要有一顆熱忱的心

「投入資安產業不要限科系,但是要有一顆熱忱、學習的心。」對於有心想往資安領域發展的年青人,王總監給出這樣的建議。

雖非資訊科學出身,但大學的工程背景,讓王總監有了程式語言的基礎。後來他取得經濟學、法學雙碩士,前者使他瞭解產業界的趨勢走向,法學則令他知曉資安重合規性與合法性的重要。在科技管理與智慧財產權領域的博士論文中,他則從社會學、科技研究的方法分析駭客行為。他表示,跨領域的學習可以讓他從更廣濶的視角,釐清各方問題之後,找到痛點,來提供更好、更全面的科技與資安政策。

-----廣告,請繼續往下閱讀-----

王總監指出,這一代除了要與人溝通,還要學會與機器溝通,所以掌握好程式語言的邏輯基礎是重要的,因此王總監所在的資策會資安所,除了研發研發資安監控平臺,將研發的成果技轉給業界,同時他也擔任台灣駭客協會(HITCON)理事和社團法人臺灣校園資訊安全推廣暨駭客培育協會(TDOH)理事,推展培育資安人才的各項活動,未來希望能舉辦小朋友駭客營,讓孩子在小學階段就能接觸和體會程式語言是有趣的。他也勉勵年輕人,能力好的可以負責找漏洞和抵禦攻擊,站在資安攻防戰最前線;即使程度不夠拔尖,也可肩負資安維運的工作,在各自的崗位上適才所用,都能為守護資安和國安,盡一份心力。
 

1.根據光速等於波長乘以頻率(c = f × λ)關係式,我們知道頻率越高的波段,波長越短,穿透能力強。所以 5G 電磁波訊號遇到障礙物時,會想强行穿越而非「繞」過,繞射能力弱,造成散失的能量大。因此 5G 雖然有著高速率、低延遲的優勢,弱點就是訊號覆蓋範圍小,故需要設置夠多的基地台方可實現,而電信服務商會提供用戶建設專網——既不同於覆蓋範圍大的公網,而是擁有特定目的、獨立運作的網絡系統。
2.此外,主動式防禦也包含三要素:歸因、阻斷、減災。歸因便是找出攻擊的背後原因,釐清駭客的犯案動機,才能對症下藥。再來,對惡意程式來源進行阻斷,往後才可以減少再次被入侵的風險。

參考文獻

文章難易度
所有討論 5
科技大觀園_96
82 篇文章 ・ 1125 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。

0

1
1

文字

分享

0
1
1
揭密突破製程極限的關鍵技術——原子層沉積
鳥苷三磷酸 (PanSci Promo)_96
・2024/08/30 ・3409字 ・閱讀時間約 7 分鐘

本文由 ASM 委託,泛科學企劃執行。 

以人類現在的科技,我們能精準打造出每一面牆只有原子厚度的房子嗎?在半導體的世界,我們做到了!

如果將半導體製程比喻為蓋房子,「薄膜製程」就像是在晶片上堆砌層層疊疊的磚塊,透過「微影製程」映照出房間布局 — 也就是電路,再經過蝕刻步驟雕出一格格的房間 — 電晶體,最終形成我們熟悉的晶片。為了打造出效能更強大的晶片,我們必須在晶片這棟「房子」大小不變的情況下,塞進更多如同「房間」的電晶體。

因此,半導體產業內的各家大廠不斷拿出壓箱寶,一下發展環繞式閘極、3D封裝等新設計。一下引入極紫外曝光機,來刻出更微小的電路。但別忘記,要做出這些複雜的設計,你都要先有好的基底,也就是要先能在晶圓上沉積出一層層只有數層原子厚度的材料。

-----廣告,請繼續往下閱讀-----

現在,這道薄膜製程成了電晶體微縮的一大關鍵。原子是物質組成的基本單位,直徑約0.1奈米,等於一根頭髮一百萬分之一的寬度。我們該怎麼精準地做出最薄只有原子厚度,而且還要長得非常均勻的薄膜,例如說3奈米就必須是3奈米,不能多也不能少?

這唯一的方法就是原子層沉積技術(ALD,Atomic Layer Deposition)。

蓋房子的第一步是什麼?沒錯,就是畫設計圖。只不過,在半導體的世界裡,我們不需要大興土木,就能將複雜的電路設計圖直接印到晶圓沉積的材料上,形成錯綜複雜的電路 — 這就是晶片製造的最重要的一環「微影製程」。

首先,工程師會在晶圓上製造二氧化矽或氮化矽絕緣層,進行第一次沉積,放上我們想要的材料。接著,為了在這層材料上雕出我們想要的電路圖案,會再塗上光阻劑,並且透過「曝光」,讓光阻劑只留下我們要的圖案。一次的循環完成後,就會換個材料,重複沉積、曝光、蝕刻的流程,這就像蓋房子一樣,由下而上,蓋出每個樓層,最後建成摩天大樓。

-----廣告,請繼續往下閱讀-----

薄膜沉積是關鍵第一步,基底的品質決定晶片的穩定性。但你知道嗎?不只是堆砌磚塊有很多種方式,薄膜沉積也有多樣化的選擇!在「薄膜製程」中,材料學家開發了許多種選擇來處理這項任務。薄膜製程大致可分為物理和化學兩類,物理的薄膜製程包括蒸鍍、濺鍍、離子鍍、物理氣相沉積、脈衝雷射沉積、分子束磊晶等方式。化學的薄膜製程包括化學氣相沉積、化學液相沉積等方式。不同材料和溫度條件會選擇不同的方法。

二氧化矽、碳化矽、氮化矽這些半導體材料,特別適合使用化學氣相沉積法(CVD, Chemical Vapor Deposition)。CVD 的過程也不難,氫氣、氬氣這些用來攜帶原料的「載氣」,會帶著要參與反應的氣體或原料蒸氣進入反應室。當兩種以上的原料在此混和,便會在已被加熱的目標基材上產生化學反應,逐漸在晶圓表面上長出我們的目標材料。

如果我們想增強半導體晶片的工作效能呢?那麼你會需要 CVD 衍生的磊晶(Epitaxy)技術!磊晶的過程就像是在為房子打「地基」,只不過這個地基的每一個「磚塊」只有原子或分子大小。透過磊晶,我們能在矽晶圓上長出一層完美的矽晶體基底層,並確保這兩層矽的晶格大小一致且工整對齊,這樣我們建造出來的摩天大樓就有最穩固、扎實的基礎。磊晶技術的精度也是各公司技術的重點。

雖然 CVD 是我們最常見的薄膜沉積技術,但隨著摩爾定律的推進,發展 3D、複雜結構的電晶體構造,薄膜也開始需要順著結構彎曲,並且追求精度更高、更一致的品質。這時 CVD 就顯得力有未逮。

-----廣告,請繼續往下閱讀-----

並不是說 CVD 不能用,實際上,不管是 CVD 還是其他薄膜製程技術,在半導體製程中仍占有重要地位。但重點是,隨著更小的半導體節點競爭愈發激烈,電晶體的設計也開始如下圖演變。

圖/Shutterstock

看出來差別了嗎?沒錯,就是構造越變越複雜!這根本是對薄膜沉積技術的一大考驗。

舉例來說,如果要用 CVD 技術在如此複雜的結構上沉積材料,就會出現像是清洗杯子底部時,有些地方沾不太到洗碗精的狀況。如果一口氣加大洗碗精的用量,雖然對杯子來說沒事,但對半導體來說,那些最靠近表層的地方,就會長出明顯比其他地方厚的材料。

該怎麼解決這個問題呢?

-----廣告,請繼續往下閱讀-----
CVD 容易在複雜結構出現薄膜厚度不均的問題。圖/ASM

材料學家的思路是,要找到一種方法,讓這層薄膜長到特定厚度時就停止繼續生長,這樣就能確保各處的薄膜厚度均勻。這種方法稱為 ALD,原子層沉積,顧名思義,以原子層為單位進行沉積。其實,ALD 就是 CVD 的改良版,最大的差異在所選用的化學氣體前驅物有著顯著的「自我侷限現象」,讓我們可以精準控制每次都只鋪上一層原子的厚度,並且將一步驟的反應拆為兩步驟。

在 ALD 的第一階段,我們先注入含有 A 成分的前驅物與基板表面反應。在這一步,要確保前驅物只會與基板產生反應,而不會不斷疊加,這樣,形成的薄膜,就絕對只有一層原子的厚度。反應會隨著表面空間的飽和而逐漸停止,這就稱為自我侷限現象。此時,我們可以通入惰性氣體將多餘的前驅物和副產物去除。在第二階段,我們再注入含有 B 成分的化學氣體,與早已附著在基材上的 A 成分反應,合成為我們的目標材料。

透過交替特殊氣體分子注入與多餘氣體分子去除的化學循環反應,將材料一層一層均勻包覆在關鍵零組件表面,每次沉積一個原子層的薄膜,我們就能實現極為精準的表面控制。

你知道 ALD 領域的龍頭廠商是誰嗎?這個隱形冠軍就是 ASM!ASM 是一家擁有 50 年歷史的全球領先半導體設備製造廠商,自 1968 年,Arthur del Prado 於荷蘭創立 ASM 以來,ASM 一直都致力於推進半導體製程先進技術。2007 年,ASM 的產品 Pulsar ALD 更是成為首個運用在量產高介電常數金屬閘極邏輯裝置的沉積設備。至今 ASM 不僅在 ALD 市場佔有超過 55% 的市佔率,也在 PECVD、磊晶等領域有著舉足輕重的重要性。

-----廣告,請繼續往下閱讀-----

ASM 一直持續在快速成長,現在在北美、歐洲、及亞洲等地都設有技術研發與製造中心,營運據點廣布於全球 15 個地區。ASM 也很看重有「矽島」之稱的台灣市場,目前已在台灣深耕 18 年,於新竹、台中、林口、台南皆設有辦公室,並且在 2023 年於南科設立培訓中心,高雄辦公室也將於今年年底開幕!

當然,ALD 也不是薄膜製程的終點。

ASM 是一家擁有 50 年歷史的全球領先半導體設備製造廠商。圖/ASM

最後,ASM 即將出席由國際半導體產業協會主辦的 SEMICON Taiwan 策略材料高峰論壇和人才培育論壇,就在 9 月 5 號的南港展覽館。如果你想掌握半導體產業的最新趨勢,絕對不能錯過!

圖片來源/ASM

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
204 篇文章 ・ 311 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
美國將玉米乙醇列入 SAF 前瞻政策,它真的能拯救燃料業的高碳排處境嗎?
鳥苷三磷酸 (PanSci Promo)_96
・2024/09/06 ・2633字 ・閱讀時間約 5 分鐘

本文由 美國穀物協會 委託,泛科學企劃執行。

你加過「酒精汽油」嗎?

2007 年,從台北的八座加油站開始,民眾可以在特定加油站選加「E3 酒精汽油」。

所謂的 E3,指的是汽油中有百分之 3 改為酒精。如果你在其他國家的加油站看到 E10、E27、E100 等等的標示,則代表不同濃度,最高到百分之百的酒精。例如美國、英國、印度、菲律賓等國家已經開放到 E10,巴西則有 E27 和百分之百酒精的 E100 選項可以選擇。

圖片來源:Hanskeuken / Wikipedia

為什麼要加酒精呢?

單論玉米乙醇來說,碳排放趨近於零。為什麼呢?因為從玉米吸收二氧化碳與水進行光合作、生長、成熟,接著被採收,發酵成為玉米乙醇,最後燃燒成二氧化碳與水蒸氣回到大氣中。這一整趟碳循環與水循環,淨排放都是 0,是個零碳的好燃料來源。

-----廣告,請繼續往下閱讀-----
圖片來源:shutterstock

當然,我們無法忽略的是燃料運輸、儲藏、以及製造生產設備時產生的碳足跡。即使如此,美國農業部經過評估分析,2017 發表的報告指出,玉米乙醇生命週期的碳排放量比汽油少了 43%。

「玉米乙醇」納入 SAF(永續航空燃料)前瞻性指引的選項之一

航空業占了全球碳排的 2.5%,而根據國際民用航空組織(ICAO)的預測,這個數字還會成長,2050 年全球航空碳排放量將會來到 2015 年的兩倍。這也使得以生質原料為首的「永續航空燃料」SAF,開始成為航空業減碳的關鍵,及投資者關注的新興科技。

只要燃料的生產符合永續,都可被歸類為 SAF。目前美國材料和試驗協會規範的 SAF 包含以合成方式製造的合成石蠟煤油 FT-SPK、透過發酵與合成製造的異鏈烷烴 SIP。以及近年討論度很高,以食用油為原料進行氫化的 HEFA,以及酒精航空燃料 ATJ(alcohol-to-jet)。

圖片來源:shutterstock

每種燃料的原料都不相同,因此需要的技術突破也不同。例如 HEFA 是將食用油重新再造成可用的航空燃料,因此製造商會從百萬間餐廳蒐集廢棄食用油,再進行「氫化」。

-----廣告,請繼續往下閱讀-----

就引擎來說,我們當然也希望用到穩定的油。因此需要氫化來將植物油轉化為如同動物油般的飽和脂肪酸。氫化會打斷雙鍵,以氫原子佔據這些鍵結,讓氫在脂肪酸上「飽和」。此時因為穩定性提高,不易氧化,適合保存並減少對引擎的負擔。

至於酒精加工為酒精航空燃料 ATJ 的流程。乙醇會先進行脫水為乙烯,接著聚合成約 6~16 碳原子長度的長鏈烯烴。最後一樣進行氫化打斷雙鍵,成為長鏈烷烴,性質幾乎與傳統航空燃料一模一樣。

ATJ 和 HEFA 雖然都會經過氫化,但 ATJ 的反應中所需要的氫氣大約只有一半。另外,HEFA 取用的油品來源來自餐廳,雖然是幫助廢油循環使用的好方法,但供應多少比較不穩定。相對的,因為 ATJ 來源是玉米等穀物,通常農地會種植專門的玉米品種進行生質乙醇的生產,因此來源相對穩定。

但不論是哪一種 SAF,都有積極發展的價值。而航空業也不斷有新消息,例如阿聯酋航空在 2023 年也成功讓波音 777 以 100% 的 SAF 燃料完成飛行,締下創舉。

-----廣告,請繼續往下閱讀-----
圖片來源:shutterstock

汽車業也需要作出重要改變

根據長年推動低碳交通的國際組織 SLoCaT 分析,在所有交通工具的碳排放中,航空業佔了其中的 12%,而公路交通則占了 77%。沒錯,航空業雖然佔了全球碳排的 2.5%,但真正最大宗的碳排來源,還是我們的汽車載具。

但是這個新燃料會不會傷害我們的引擎呢?有人擔心,酒精可能會吸收空氣中的水氣,對機械設備造成影響?

其實也不用那麼擔心,畢竟酒精汽油已經不只是使用一、二十年的東西了。美國聯邦政府早在 1978 就透過免除 E10 的汽油燃料稅,來推廣添加百分之 10 酒精的低碳汽油。也就是說,酒精汽油的上路試驗已經快要 50 年。

有那麼多的研究數據在路上跑,當然不能錯過這個機會。美國國家可再生能源實驗室也持續進行調查,結果發現,由於 E10 汽油摻雜的比例非常低,和傳統汽油的化學性質差異非常小,這 50 年來的車輛,只要符合國際標準製造,都與 E10 汽油完全相容。

-----廣告,請繼續往下閱讀-----

解惑:這些生質酒精的來源原料是否符合永續的精神嗎?

在環保議題裡,這種原本以為是一片好心,最後卻是環境災難的案例還不少。玉米乙醇也一樣有相關規範,例如歐盟在再生能源指令 RED II 明確說明,生質乙醇等生物燃料確實有持續性,但必須符合「永續」的標準,並且因為使用的原料是穀物,因此需要確保不會影響糧食供應。

好消息是,隨著目標變明確,專門生產生質酒精的玉米需求增加,這也帶動品種的改良。在美國,玉米產量連年提高,種植總面積卻緩步下降,避開了與糧爭地的問題。

另外,單位面積產量增加,也進一步降低收穫與運輸的複雜度,總碳排量也觀察到下降的趨勢,讓低碳汽油真正名實相符。

隨著航空業對永續航空燃料的需求抬頭,低碳汽油等生質燃料或許值得我們再次審視。看看除了鋰電池車、氫能車以外,生質燃料車,是否也是個值得加碼投資的方向?

-----廣告,請繼續往下閱讀-----

參考資料

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
204 篇文章 ・ 311 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
從販賣機到智慧設備:物聯網的發展歷程
數感實驗室_96
・2024/06/23 ・1135字 ・閱讀時間約 2 分鐘

本文由 國立臺灣師範大學 委託,泛科學企劃執行。 

在這個通信技術普及的年代,我們不斷介紹各式各樣的通信技術。大多數的通信技術都是為人服務的,這似乎是理所當然的。然而,有一種通信技術並非直接為人服務,而是為物體之間的交流提供支持。這種技術不僅存在,而且在現代已經成為最主要的通信形式之一,我們稱之為——物聯網(IoT)。

物聯網,Internet of Things,簡稱 IoT,顧名思義就是物品,機器、設備連上網路。

在我們生活中,如智慧手錶和藍牙耳機這些穿戴式設備,它們各自擁有特定功能,同時又能透過藍牙技術相互連結,這就是物聯網的一種應用。

你可能會問,手機也算是物聯網的設備嗎?

這取決於你如何定義和使用手機。如果是人們使用 5G 或 4G 技術彼此傳訊息和溝通,那麼這不屬於物聯網的範疇。但當手機與藍牙耳機或智慧手錶連接時,它們之間的互動更符合物聯網的概念。因此,物聯網的基本定義是,不直接涉及人跟人、或是人與設備的互動。基本上都是設備跟設備之間的溝通。

通信是人類最基本的需求,同時也帶來無限商機,就像我們不想跑到別的地方買可樂,卻發現賣光了一樣,科技為能解決這些需求,促使通信技術的持續成長。

如同手機的普及帶動了市場需求,從一家一部的電視和冰箱,到人人一支的手機,並且每隔幾年就更新換代。這種商機吸引了企業的投資,也推動了強大的研發動能。

而現在,我們正生活在一個設備數量遠超人類數量的時代,從藍牙耳機、智慧手錶,到遍布全球的智慧設備,物聯網的技術已經無處不在。

不妨思考一下,還有哪些需求尚未被滿足,也許它們正是下一個物聯網應用的起點。

更多、更完整的內容,歡迎上數感實驗室 Numeracy Lab 的 YouTube 頻道觀看完整影片,並開啟訂閱獲得更多有趣的資訊!

參考資料

討論功能關閉中。

數感實驗室_96
76 篇文章 ・ 50 位粉絲
數感實驗室的宗旨是讓社會大眾「看見數學」。 數感實驗室於 2016 年 4 月成立 Facebook 粉絲頁,迄今超過 44,000 位粉絲追蹤。每天發布一則數學文章,內容包括介紹數學新知、生活中的數學應用、或是數學和文學、藝術等跨領域結合的議題。 詳見網站:http://numeracy.club/ 粉絲專頁:https://www.facebook.com/pg/numeracylab/