Loading [MathJax]/extensions/tex2jax.js

0

1
0

文字

分享

0
1
0

在電腦時代,學會當「人」更重要——《打開演算法黑箱》書評

臉譜出版_96
・2019/05/07 ・2549字 ・閱讀時間約 5 分鐘 ・SR值 527 ・七年級

-----廣告,請繼續往下閱讀-----

  • 文/張智皓

「在演算法的年代,人類從未如此刻這般的重要。」——弗萊(Hannah Fry)

圖靈(Alan Turing)在 1936 年提出圖靈機(Turing Machine)的基本構想,人類文明揭開了電腦時代的序幕,並在很短時間內為人類生活帶來了劇烈的變化。上一次有這樣的景況,大概是 17 世紀末蒸汽機的發明,帶領人類文明進入工業時代。

進入工業時代,給人帶來便利同時製造難題。圖/pixabay

這兩個時代有類似之處。蒸汽機讓人開始擔心自己被機械取代:生產模式改變,人力不再重要,生產機器和失業人口大量出現。然而,這種困境並沒有維持太久。新技術讓人失業,也拓展了人的想像力,讓各種新興行業與技術應運而生。這些行業和技術促進產業轉型,反而提高了人力需求,讓人類文明變得更加繁盛。此時,我們知道人類變得比以前更重要。

電腦,或者我們說,演算法,就像是現代的蒸氣機,同樣大幅地改變人類生活模式。在本書中,倫敦大學學院(UCL)先進空間分析中心(CASA)的數學家漢娜弗萊從權力、資料、司法、醫療、車輛、犯罪與藝術這七個面向出發,告訴我們演算法已經如何深入我們日常生活中,為我們帶來前所未見的巨大貢獻,並展現出取代人類的企圖心。

科技帶來便利,但人類始終更了解人類。圖/pixabay

更重要的是,弗萊也透過她細膩的觀察,提醒我們:就如同蒸汽機時代的人類沒有被取代一樣,在演算法時代,人類也只會比以前更重要。

人機合作,讓人類的棋藝再創高峰

讓我們從書中一個輕鬆的例子開始。弗萊告訴我們,在 1997 年,西洋棋世界冠軍卡斯帕洛夫(Gary Kasporov)被 IBM 設計的「深藍」擊敗後,他並沒有因此排斥電腦,反之,他創辦了人類與電腦合作的棋賽。卡斯帕洛夫相信,有了電腦的輔助,人類不再需要花時間在棋盤細節的計算上,而是將心思放在整體戰略上,人機合作,能讓人類的棋藝再創高峰。

-----廣告,請繼續往下閱讀-----

這樣的劇情非常類似於 DeepMind 的圍棋軟體 AlphaGo 在 2016 年的創舉。在 AlphaGo 相繼打敗世界冠軍李世乭以及柯潔後,AlphaGo 以及其繼任 AlphaGo Zero 的棋譜變成職業選手們爭相學習的目標。DeepMind 甚至推出 AlphaGo 圍棋教學工具,讓大家學習它的佈局,並進而開發出新的佈局形式。AlphaGo 沒有取代人類棋手,反之,它為圍棋世界注入了新的生命。

兩方交流為圍棋注入新的氛圍。圖/pixabay

演算法無法回答的問題:隱私與安全該如何平衡

接著讓我們談談一個較嚴肅的例子。在本書「犯罪」這一章節中,弗萊提到「臉孔辨識系統」如何對人類產生顯而易見的貢獻。在 2015 年,紐約警察局透過臉孔辨識系統「成功指認了 1700 名嫌犯,並且發動了 900 次逮捕行動。」另外,她也提到從 2010 年以來,紐約州「僅僅針對詐欺和身分盜用就發動了超過四千次逮捕行動。」有了臉孔辨識系統,各大交通運輸管道也可藉恐怖份子資料庫來預防恐怖襲擊(而事實證明這很有用)。

你想要偏向安全,還是隱私?圖/pixabay

作為預防手段,臉孔辨識系統可以有效增進人們生命與財產之安全。但這些好處有其代價。弗萊指出,就連目前全世界最先進的臉孔辨識系統(來自於中國的「騰訊優圖實驗室」),在一百萬張臉孔資料庫的測試中,也只有 83.29% 的辨識率。這在技術上已經令人佩服,但在現實中卻可能釀成大禍。

比方說,2014 年,一位住在丹佛的居民被錯誤辨識為銀行搶匪,並在警察的逮捕過程中「遭受神經損傷、血栓及陰莖折斷。」或許有人會主張,只要技術更好,辨識率更高,問題就解決了。但情況可能沒這麼簡單,辨識率提高的代價是隱私度的下降。試問,我們願意讓「老大哥」看著大家嗎?

-----廣告,請繼續往下閱讀-----

臉孔辨識系統有其好處,有其代價。我們願意讓此系統做到甚麼程度?為了安全,我們願意犧牲多大的隱私?而為了隱私,我們又願意犧牲多少安全?這些問題是演算法無法回答的,只有人類可以,因此,人類只會更重要。

演算法兩難:自駕車該拯救駕駛還是行人?

另外一個嚴肅例子,我想談談「車輛」這一章節中的自動駕駛技術。一旦自動駕駛技術普及,將可以大幅減少人為車禍的發生。而我們知道,現代大多數車禍都源於人為。然而,將駕駛工作交給演算法,也意味著將決策的任務交給演算法。當失控的自駕車面臨的選項是「拯救駕駛,還是拯救行人」時,演算法應該如何行動?

當自動駕駛遭遇電車難題,我們又希望它做出什麼選擇?圖/WIKI

弗萊提到,在 2016 年發表於《科學》期刊(Science)的一篇文章指出,多數人主張應該盡可能的拯救更多人命。然而,當詢問他們自身較願意購買哪一款自駕車時,我們可以從賓士汽車發言人胡苟(Christoph von Hugo)的回應(當被問到賓士車會如何設計時),理解他們的猶豫:「保護駕駛。」

這衝突看起來不可調和,我們一方面希望盡可能拯救人命,另一方面又希望可以保障駕駛的安全(否則我幹嘛買它呢?)。在這樣的衝突中,弗萊指出另外一個可能選項:放棄全自動駕駛,將演算法的目標放在輔佐駕駛人上(比方說,現在已有的「自動緊急煞車」或「自動與前車保持距離」等設計)。換言之,演算法不扮演「司機」,而是扮演「守護者」。我們該做的,是讓演算法配合人類,主動性依然在人類手上,因此,人類只會更重要。

-----廣告,請繼續往下閱讀-----
自動駕駛的衝突難題。圖/pixabay

在《打開演算法黑箱》中,弗萊透過大量有趣的案例,說明演算法如何深入日常的同時,也提醒我們人類的重要性,這是我認為本書最大的優點。新技術的提出值得受到肯定,然而,在肯定其貢獻的同時,背後所付出代價卻往往會被忽略。本書在闡述新技術的同時,也很平衡地展示這些技術背後的代價。

就如同作者一再強調的,她肯定技術所帶來的好處,但我們必須思考如何在新技術所帶來的進步中,保有人類的主動性,或者說,如何在機器年代中當個人。

 

《打開演算法黑箱》書封

本文為《打開演算法黑箱:反噬的AI、走鐘的運算,當演算法出了錯,人類還能控制它嗎?》書評

-----廣告,請繼續往下閱讀-----
文章難易度
臉譜出版_96
88 篇文章 ・ 255 位粉絲
臉譜出版有著多種樣貌—商業。文學。人文。科普。藝術。生活。希望每個人都能找到他要的書,每本書都能找到讀它的人,讀書可以僅是一種樂趣,甚或一個最尋常的生活習慣。

0

0
0

文字

分享

0
0
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

3
1

文字

分享

0
3
1
群眾監控科技:以 2023 雪梨世界驕傲節為例
胡中行_96
・2023/03/16 ・3422字 ・閱讀時間約 7 分鐘

COVID-19 疫情趨緩後,各國都敞開大門,迎接國際觀光客。今年雪梨同志狂歡節(Sydney Gay and Lesbian Mardi Gras)的主辦單位,與 InterPride 合作,將活動升級為 2023 雪梨世界驕傲節(Sydney World Pride)。[1]其中最受矚目的年度大遊行,也於 2 月 25 日晚間,重磅回歸 Oxford 和 Flinders 兩街。[2, 3]

今年遊行中,率先登場的女同志團體「Dykes on Bikes」。圖/胡中行攝(CC BY-SA 4.0)
今年遊行的第二個隊伍,是男同志團體「Boys on Bikes」。圖/胡中行攝(CC BY-SA 4.0)

警察的角色

澳洲雪梨一年到頭,觀光活動難以計數。從知名的跨年煙火、國慶典禮、體育賽事、聖誕市集、繽紛雪梨燈光音樂節(Vivid Sydney)到同志狂歡節等,[4]負責維安的警察早已身經百戰,什麼場面都見過了。如果當天鬧事被逮的人數不多,他們有時還會在事後,透過新聞稿嘉勉群眾幾句。[5]雖然新南威爾斯州警察,在1978年拘捕同志運動抗爭者;但誰也沒想到他們後來化敵為友,自 1998 年起,竟每屆都組隊參加遊行。[6, 7]

2023 年面對前所未有的人潮挑戰,他們派出 900 多名員警,並與主辦單位、雪梨市政府、科技保全公司,以及州政府的觀光、交通、消防和急救等部門攜手合作。[2, 7]

曾參與 1978 年抗爭的同志乘車遊行,受到群眾熱烈歡迎。圖/胡中行攝(CC BY-SA 4.0)
新南威爾斯州警察今年的遊行花車。(不含背景右上的彩虹旗。)圖/胡中行攝(CC BY-SA 4.0)

RAMP分析

根據英國曼徹斯特都會大學(Manchester Metropolitan University)G. Keith Still 教授 30 多年的經驗,規劃大型活動時,要從 RAMP 分析(RAMP Analysis)的 4 個面向,評估群眾安全。[8]

-----廣告,請繼續往下閱讀-----
  1. 路線(routes):進入與離開的方向。[8]雪梨同志遊行的隊伍,一般不超出 Oxford 和 Flinders 這兩條街。[2]遊客則必定是從四面八方,逐漸湧入。
  2. 區域(areas):人群聚集的範圍。[8]當天的交通管制,擴及市中心與市郊的幾條主要幹道。[9]
  3. 動向(movement):進場及散場的時間。[8]官網號稱遊行從晚上 6 開始,預計 11 點結束。[10]實際上,觀眾提早幾個小時佔位,正式開幕的時間為晚上 7 點左右,而結束後不少人仍於附近逗留。各街道的交通管制不同,最早從下午 2 點開始,最晚至隔天凌晨 4 點結束。[9]
  4. 群眾(people):對參與群眾的了解。[8]官方預計有 1 萬 2 千 500 人和 200 多輛花車參與遊行。[10]此外,疫情解封以及世界驕傲節的國際觀光效應,勢必帶來人數龐大,而且類型多元的遊客。

此活動行之有年,遊行的路線、群眾聚集的區域,以及周邊交通管制的規劃等,多少都有參考依據。唯一可能比較難以預測的,是今年會增加的遊客。

遊行開始前,Oxford 和 Flinders 街口的人海。圖/胡中行攝(CC BY-SA 4.0)
散場時,尚未撤離的維安、急救、轉播和封街用車輛。圖/胡中行攝(CC BY-SA 4.0)

群眾與手機

為了精準掌握群眾的情形,這次遊行首度依循跨年和燈光音樂節的模式,請動態群眾測量(Dynamic Crowd Measurement)公司在遊行地點周邊,架設了臨時性的監視攝影機與手機偵測器材。[2]

  1. 監視攝影機:配合相應的軟體,從蒐集到的個體表情,例如:開心、中性、難過、生氣等,分析群眾情緒的平均值。同時,測量他們步行移動的速度[2]
  2. 手機訊號:現在幾乎人手一機,由手機通訊用的電磁波,便可推估現場人數。接受《雪梨晨鋒報》(Sydney Morning Herald)訪問的專家認為,不仰賴基地臺的技術,可以避免人數過多時,電信網絡的數據失準。動態群眾測量公司在附近店面,安裝臨時性的偵測器材。[2]
澳洲原住民團體帶了一條蛇來助興。圖/胡中行攝(CC BY-SA 4.0)
技職學校(TAFE)隊伍的大型人偶。圖/胡中行攝(CC BY-SA 4.0)

監控軟體的功能

監視攝影機蒐集到的數據,會被上傳雲端,並呈現於動態群眾測量公司設計的軟體。[11]遊行當天,由主辦單位的工作人員監控,再將必要的資訊報告給警方,以疏導聚眾。[2]下面是該公司官網,所介紹的軟體特色功能:[12]

  1. 地理空間熱區圖(geospatial heatmap):地圖以不同顏色,顯示人群的密集程度,並附帶群眾情緒和人流速度等資訊。[12]
  2. 警報程度指標(alert level indicator):將各區域的危險程度,分級且視覺化,方便監控者一目了然。[12]
  3. 區域監視(zone monitor):群眾密度、情緒和移動速率的警示程度,各區域可以分開設定。[12]
  4. 數據回放(data playback):除了即時監控,已經上傳雲端的數據,也能重新調出來檢視。[12]
  5. 通知管理(notifications manager):客製化群眾密度、情緒平均值,或移動速率等警示,以接收特定的更新資訊通知。[12]
  6. 視覺驗證(visual validator):將即時影像或地理空間熱區圖,與數據並列比較。[12]
https://youtu.be/rTv5ETjEUYk?t=72
動態群眾測量公司的軟體介紹影片,範例地圖是臨近雪梨歌劇院的環形碼頭。影/參考資料11

隱私疑慮

美國喬治城大學法律中心(Georgetown University Law Center)的 Paul Ohm 教授曾說,手機的位置,不該被視為匿名數據。試想一個人幾乎每天在住家與公司之間往返,從手機蒐集到的地理資訊,還真能推測出其身份。[13]所以,參與雪梨同志遊行的群眾,是否有個人隱私外洩的疑慮?主辦單位的發言人表示,他們單純偵測範圍內的手機數量,不包含任何個人化特徵。另外,監視攝影機不具人臉辨識功能,影像也不留紀錄,只儲存數據,因此大家不用擔心。[2]

-----廣告,請繼續往下閱讀-----
雪梨舞蹈團的遊行花車。圖/胡中行攝(CC BY-SA 4.0)
工人團體的遊行花車。圖/胡中行攝(CC BY-SA 4.0)

通宵達旦

遊行吸引 30 萬人聚集,[14]連總理 Anthony Albanese 也親臨現場,成為第一位參加此活動的澳洲現任元首。[3]整晚狂歡不夠,據報相關的官方派對,還續攤到翌日早晨 8 點。[14]遊行當天有 4 人遭到逮捕;而衝突過程中,1 名員警似乎斷了鼻子,另個眼睛瘀青。[7, 15]除此之外,賴在地上阻擋花車的國會議員 Lidia Thorpe,被和平勸離,並登上各大媒體。[16]新南威爾斯州警察在新聞稿中,表示滿意群眾表現,請大家在 2023 雪梨世界驕傲節剩餘的活動裡,繼續關照彼此的安全。[7]

總理 Anthony Albanese 是第一位參加同志遊行的澳洲現任元首。圖/Anthony Albanese on Twitter

  

  1. InterPride. ‘Proud to be here – Who we are’. Sydney World Pride 2023. (Accessed on 27 FEB 2023)
  2. Grubb B. (24 FEB 2023) ‘How your phone and mood will be tracked at Mardi Gras’. Sydney Morning Herald.
  3. Anthony Albanese makes history as first sitting PM to march in Sydney’s Mardi Gras parade’. (26 FEB 2023) SBS News.
  4. Destination NSW. ‘Sydney, Australia’. Sydney.com. (Accessed on 26 FEB 2023)
  5. Police pleased with behaviour of revellers during 2022 New Year’s Eve celebrations’. (01 JAN 2023) NSW Police Force.
  6. The Age & Sydney Morning Herald. (24 FEB 2023) ‘Sydney Mardi Gras – from ’78 to World Pride’. YouTube.
  7. 45th Mardi Gras celebrated in high spirits and perfect weather’. (26 FEB 2023) NSW Police Force.
  8. Still GK. (2019) ‘Crowd Science and Crowd Counting’. Impact, 2019(1): 19-23.
  9. InterPride. ‘Sydney Worldpride 2023 Road Closures’. Sydney World Pride 2023.  (Accessed on 01 MAR 2023)
  10. InterPride. ‘Mardi Gras Parade’. Sydney World Pride 2023. (Accessed on 26 FEB 2023)
  11. Shortstories Media. (28 JUL 2022) ‘DCM/Dynamic Crowd Measurement Explainer Video’. YouTube.
  12. DCM Features’. Dynamic Crowd Measurement. (Accessed on 28 FEB 2023)
  13. Thompson SA, Warzel C. (19 DEC 2019) ‘Twelve Million Phones, One Dataset, Zero Privacy’. The New York Times.
  14. Hyland J, Pearson-Jones B. (26 FEB 2023) ‘The morning after! Mardi Gras revellers finally start heading home as the last official party ends at 8am – and there’ll be some sore heads today’. Daily Mail Australia.
  15. Sarkari K, Sciberras A. (26 FEB 2023) ‘Police praise behaviour of Mardi Gras attendees as Anthony Albanese makes history’. 9News.
  16. Hildebrandt C. (27 FEB 2023) ‘Federal senator Lidia Thorpe halts Sydney’s Mardi Gras parade with police protest’. ABC News.
-----廣告,請繼續往下閱讀-----
胡中行_96
169 篇文章 ・ 67 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。

1

3
1

文字

分享

1
3
1
AI 也會出差錯?使用人工智慧可能帶來的倫理與風險——《科學月刊》
科學月刊_96
・2023/02/19 ・3976字 ・閱讀時間約 8 分鐘

  • 甘偵蓉|清華大學人文社會 AI 應用與發展研究中心博士後研究學者。

Take Home Message

  • Facebook 或 Instagram 的訊息推薦、YouTube 或 Netflix 推薦觀賞影片、掃瞄臉部以解鎖手機,AI 應用早已在我們日常生活中隨處可見。
  • AI 應用中四種常見的倫理和風險:演算法偏誤、相關技術或產品偏離原先使用目的、擁有善惡兩種用途,以及演算法設計不良或現有技術限制。
  • 近年來各國家皆制訂有關 AI 發展的規範,臺灣則在 2019 年制訂「AI 科研發展指引」,期望能改善 AI 發展帶來的問題與風險。

當談到人工智慧(artificial intelligence, AI)、也就是 AI 時,讀者會想到什麼?是多年前由史匹柏(Steven Spielberg)導演的那部《A.I. 人工智慧》(A.I. Artificial Intelligence)中那個一直盼不到人類母愛而令人心碎的機器人小男孩?還是由史密斯(Will Smith)主演的《機械公敵》(I, Robot)裡那些沒遵守機器人三大法則的機器人或中央系統?

《A.I. 人工智慧》(A.I. Artificial Intelligence)電影海報,上映於 2001 年。圖/IMDb

或許未來有一天,人類真的可以設計出如電影中那些像人一樣的 AI 系統或機器人。但目前為止,你常聽到的 AI 其實既很厲害又很不厲害,為什麼呢?厲害的是它下圍棋可贏過世界冠軍,還能夠比放射科技師更快、更準確地辨識 X 光片中疑似病變的細胞;但它不厲害的是,很會下圍棋的 AI 就只能下圍棋,別說不會打牌,連撲克牌是什麼都不知道!而且每次學新事物幾乎都是打掉重練,得不斷做好多考古題才有可能學得會,不像人類通常教幾次就會舉一反三。

不過,即使目前世界上的 AI 都是這種只具備特定功能的「弱 AI」(artificial narrow intelligence, ANI),但已經為這個世界帶來相當大的進步與便利。所以,以下要談的就是 ANI 的倫理與風險。

談到這種只具特定功能的 ANI,讀者知道目前生活周遭有哪些事物有利用 AI 技術嗎?其實 Google 上的搜尋資訊、Facebook 或 Instagram 的訊息推薦、對智慧型手機喊「Siri 現在外面有下雨嗎?」等功能,或是以掃瞄臉部解鎖手機與進入大樓、YouTube 或 Netflix 推薦觀賞影片,甚至是投履歷求職、銀行審核貸款申請等都常用到 AI 技術,它早在我們日常生活中隨處可見。

-----廣告,請繼續往下閱讀-----
AI 技術在日常生活中隨處可見,如 YouTube 推薦觀看影片。圖/Pexels

但也正是如此,讓人們這幾年在使用 AI 時,逐漸發現它可能造成的問題或傷害,以下簡單介紹常見的四種AI應用可能造成的倫理問題或風險。

演算法偏誤

第一種是演算法偏誤(algorithmic bias)。什麼是演算法偏誤?簡單來說就是 AI 在某些群體的判斷準確率或預測結果上總是很差,導致結果可能對於此群體造成系統性的不利。但為何會造成演算法偏誤?常見原因有三項。

第一項原因是,建立 AI 模型的研究資料集有偏誤,在性別、種族、社經地位等特徵上,沒有真實世界的人口分布代表性。例如數位裝置採用 AI 臉部辨識技術解鎖,原本是希望保護個人使用數位裝置的安全性,結果皮膚深的人卻常常遇到辨識失敗而無法解鎖。這通常是因為目前許多 AI 模型都是以機器學習技術設計,而機器學習的主要特性就是從過去人類留下的大量資料中學習;當初提供電腦學習臉部辨識的圖片時,如果多數都是白皮膚而非黑皮膚、多數都是男性的臉而非女性的臉,那麼電腦在學習辨識人臉的準確率上,整體而言辨識男性白人就會比辨識女性黑人要高出許多。

第二項產生演算法偏誤的原因是建立 AI 模型的研究資料集不只有偏誤,還反映現實社會中的性別、種族、社經地位等歧視;例如美國警政單位以過往犯罪資料訓練出獄後犯人再犯風險評估的 AI 模型,那些資料不意外地有色人種的犯罪紀錄遠多於白人犯罪紀錄。然而,那些紀錄也反映美國社會長久以來對於有色人種的歧視,其中包含警察對於有色人種的盤查比例遠高於白人、法院對於有色人種的定罪比例及判刑嚴重程度也遠高於白人、警力通常被派往多黑人與拉丁裔人種居住的窮困社區盤查等。所以根據過往犯罪資料所訓練出來的 AI 模型,不意外地也就會預測有色人種的再犯機率普遍來說比白人高。

-----廣告,請繼續往下閱讀-----

第三項產生演算法偏誤的原因則是 AI 學會了連系統開發者都沒有察覺到,潛藏在資料裡的偏誤。例如科技公司人資部門本來想借助 AI 更有效率地篩選出適合來面試的履歷,所以挑選在該公司任職一定年資且曾升遷二次的員工履歷來訓練 AI 模型。問題是,高科技公司向來男多女少,所提供給 AI 學習的資料自然就男女比例相當不均。AI 也就學會了凡是出現偏向女性名字、嗜好、畢業學校系所等文字的履歷,平均所給的評分都比出現偏向男性等相關文字的履歷還低。

潛藏在資料裡的偏誤造成 AI 預測結果彷彿帶有性別歧視。圖/Envato Elements

但目前科技公司陽盛陰衰,是受到以往鼓勵男性就讀理工、女性就讀人文科系,或男性在外工作女性在家帶小孩等性別刻板偏見所影響。所以 20~30 年來許多人做出各種努力以消除這種性別刻板偏見所帶來的不良影響,政府也努力制定各種政策來消除這種不當的性別偏見,像是求才廣告基本上不能限定性別、公司聘雇員工應該達到一定的性別比例等。因此,訓練 AI 的研究資料一旦隱藏類似前述性別比例不均的現象,訓練出來的 AI 預測結果就彷彿帶有性別歧視,讓人們過往致力消除性別不平等的各種努力都白費了!

其他 AI 應用帶來的倫理與風險

除了演算法偏誤的問題外,第二種可能帶來的倫理問題或風險是 AI 技術已經偏離原先使用目的,例如深偽技術(deepfake)原本用來解決圖片資料量不夠的問題,後來卻被利用在偽造名人性愛影片等。

第三種則是有些 AI 技術或產品本身就可能有善惡兩種用途(dual-use)。例如 AI 人臉辨識技術可用在保護數位裝置的使用者或大樓保全,但也可用來窺探或監控特定個人;無人機可以在農業上幫助農夫播種,但也可作為自動殺人武器;可用來搜尋如何產生毒性最少的藥物合成演算法,也能反過來成為搜尋如何產生毒性最強的藥物合成演算法。

-----廣告,請繼續往下閱讀-----

最後,第四種是演算法設計不良或現有技術限制所導致的問題。在演算法設計不良方面,例如下棋機器人手臂可能因為沒有設計施力回饋或移動受阻暫停等防呆裝置,而造成誤抓人類棋手的手指且弄斷的意外。在現有技術限制方面,道路駕駛的交通標誌在現實中可能時常有老舊或髒汙的情況,儘管對於人類駕駛來說可能不影響判讀,但對於自駕車來說很可能就因此會嚴重誤判,例如無法正確辨識禁止通行標誌而繼續行駛,或是將速限 35 公里誤判成 85 公里等。但前述情況也有可能是自駕車網路、控制權限或物件辨識模型受到惡意攻擊所致。

以上介紹了 AI 常見的四種倫理問題或風險:演算法偏誤、相關技術或產品偏離原先使用目的、擁有善惡兩種用途,以及演算法設計不良或現有技術限制。但人們該如何減少這些倫理問題與風險呢?

培養AI使用倫理與風險的敏銳度

近五、六年來國際組織如聯合國教育科學及文化組織(United Nations Educational, Scientific and Cultural Organization, UNESCO)、歐盟(European Union, EU)、電機電子工程師學會(Institute of Electrical and Electronics Engineers, IEEE)或是國家、國際非營利組織皆紛紛制訂有關 AI 發展的白皮書或倫理指引(ethical guidelines),甚至逐漸朝向法律治理的方向,如歐盟的人工智慧規則草案等。儘管這些文件所提出的倫理價值、原則或行為規範,看似各有不同,但經過這些年的討論與摸索,也逐漸匯聚出一些共識。

「人工智慧科研發展指引」提出三項倫理價值,包含以人為本、永續發展、多元包容。圖/Pexels

臺灣相較於前述國際文件來說,在制訂的時間上比較晚。2019 年由當時的科技部(現改為國科會)制訂「人工智慧科研發展指引」,裡面提出的三項倫理價值以及八項行為指引,基本上涵蓋了前述各種國際 AI 發展指引文件最常提及的內容。所謂三項倫理價值包含以人為本、永續發展、多元包容,行為指引則有共榮共利、安全性、問責與溝通、自主權與控制權、透明性與可追溯性、可解釋性、個人隱私與數據治理、公平性與非歧視性共八項。

-----廣告,請繼續往下閱讀-----

未來當讀者看到又出現哪些 AI 新技術或產品時,不妨試著評估看看是否有符合這三項價值及八項行為指引。若沒有,究竟是哪項不符合?不符合的原因是上述所介紹常見的四種倫理問題或風險的哪一種?若都不是,還有哪些倫理問題或風險過去被忽略了但值得重視?

AI 技術發展日新月進,在日常生活中的應用也愈來愈廣。但考量法律條文有強制性,在制訂時必須相當謹慎,免得動輒得咎,也很可能在不清楚狀況下反而制訂了不當阻礙創新發展的條文;再加上法律制定也必須有一定的穩定性,不能朝令夕改,否則會讓遵守法規者無所適從。因此可以想見,法令規範趕不上新興科技所帶來的問題與風險本來就是常態,而非遇到 AI 科技才有這種情況。

人們若能培養自身對於 AI 倫理問題或風險的敏銳度,便可發揮公民監督或協助政府監督的力量,評估 AI 開發或使用者有無善盡避免傷害特定個人或群體之嫌,逐漸改善 AI 開發者與大眾媒體常過度誇大 AI 功能,但對於可能帶來的倫理問題或風險卻常閃爍其詞或避而不談的不好現象。

本文感謝工業技術研究院產業科技國際策略發展所支持。

  • 〈本文選自《科學月刊》2023 年 2 月號〉
  • 科學月刊/在一個資訊不值錢的時代中,試圖緊握那知識餘溫外,也不忘科學事實和自由價值至上的科普雜誌。
-----廣告,請繼續往下閱讀-----
所有討論 1
科學月刊_96
249 篇文章 ・ 3742 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。