「難道,真的回不去了嗎?」「沒錯,真的回不去了…….」
塞車是春節返鄉的遊子們不得不面對的嚴峻考驗,尤其當高速公路徹底化身為一個大停車場時,更是令人絕望到想砸車窗。
究竟塞車是怎麼發生的?
______________________________
想了解更多塞車的科學?你需要看這三篇:
「難道,真的回不去了嗎?」「沒錯,真的回不去了…….」
塞車是春節返鄉的遊子們不得不面對的嚴峻考驗,尤其當高速公路徹底化身為一個大停車場時,更是令人絕望到想砸車窗。
究竟塞車是怎麼發生的?
______________________________
想了解更多塞車的科學?你需要看這三篇:
本文與 研華科技 合作,泛科學企劃執行。
每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?
想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。
這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。
邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。
當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。
那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。
第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。
第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?
第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。
所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!
知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!
所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。
以研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。
此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。
當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。
你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。
但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。
當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。
模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思!
然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。
建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。
這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。
模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。
想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。
舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。
但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。
像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?
一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!
你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!
二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。
三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。
研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。
無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。
台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。
如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!
👉 更多研華Edge AI解決方案
👉 立即申請Server租借
討論功能關閉中。
每到年節時期,不管返鄉或是出遊,用路人最討厭遇到的就是塞車,漫長的等待、讓人踩剎車踩到腳痛的行車速度,抑或是被汽車廢煙包圍的感覺,本是愉悅心情恐怕都大打折扣。你也是恨不得讓「塞車」這個詞消失在這世界上的人嗎?自動駕駛或許能幫你達成心願喔~感到好奇的話,那就繼續看下去吧!
試想,人類與機器人在駕駛汽車時,要維持車與車之間等速前進,誰會 hold 得最好呢?答案很明顯是……機器人!為什麼呢?關鍵就在於「人類的反應速度」,反應速度因人而異:當老(手)司機在開車時,他們能夠對於哪時候該踩剎車、油門的反應速度快,因此不會因誤判與前車之間的距離,而落下一大段「空白車距」;然而菜鳥司機就不一樣了,他們反應速度沒有老(手)司機快,所以在看到前方車輛時,因無法正確判斷哪時候踩剎車最恰當,加上基於安全意識都會先減慢避免 A 到前車為第一反應,「空白車距」自然就出現了~而後方的車輛們會因為這位菜鳥司機(老鼠屎)的行車速度減慢而開始擠成一團,造成塞車。
相反地,當機器人在行車時,因為他們的動作程序一致,因此能穩穩地維持等速行駛。這也就是為何現今車廠想推出自動駕駛車(以下簡稱「自駕車」)的原因之一。自動駕駛真有那麼神嗎?讓我們來一一剖析它吧!
延伸閱讀:連假無法逃離宿命!為什麼會塞車呢?
自動駕駛,顧名思義就是讓車子在無人為操作的情況下,將行車速度與控制車間距離等原本需要手動操控車子行進的動作轉為自動化,以減輕駕駛人的行車負擔。
自動駕駛可是也有分級制度的!國際汽車工程師協會 (Society of Automotive Engineers, SAE) 依據汽車的自動化程度分為以下級別:
時至 2020 年末,汽車業的自動駕駛即將發展至第四級,第五級則是各企業競相達成的最終目標。
參考資料:自駕車發展趨勢與關鍵技術
自駕車本身雖能達到自動辨識路口標誌及安全煞停系統,但它就像一個好的食材,需要透過精湛的廚藝及調料的輔助才能發揮它最完美的風味,而輔助自駕車的便是「車聯網」。究竟什麼是「車聯網」?自駕車與車聯網的搭配真的能解決塞車嗎?就讓台大資工系的林忠緯教授來幫大家解惑吧!
林忠緯教授小檔案:
林忠緯教授在博班時期的研究題目即是關於 Cyber-Physical System(CPS)的研究,而 CPS 簡單來說是指能夠執行物理層面上動作的電子產品,例如車子(能在路上行走)、心律調節器(能放電控制心律)都屬於 CPS。林教授在博班的研究即是關於車子的 CPS,也曾在美國通用汽車(General Motors)實習,畢業後持續拓展自己所長,進入加州矽谷的豐田汽車(Toyota InfoTechnology Center)擔任研究員。林教授熟知自駕車與車聯網的研究,自身也致力於自駕車、車聯網與資安問題的研究,並開心表示對於未來 28 年後自駕車的展望懷抱深深的期許。
林教授認為自駕車結合車聯網勢必能解決部分層面的塞車問題,也能避免酒駕、恍神、視線死角等人為意外肇事的發生比率,但在現實生活要自駕車能實際放在道路上跑,現階段仍面臨重重難關。
當我們檢視塞車問題的視野再拉遠一點,除了自駕車及車聯網以外,教授也慷慨地分享了以下管道解決塞車問題:
雖然現階段自駕車要完全解決塞車問題仍需經時間歷練,但相信透過林忠緯教授及眾多研發單位的辛勤貢獻,大家在春節期間能夠利用自駕車與車聯網享受更加順暢、迅速的行車體驗,而不再受塞車之苦的日子指日可待!新春期間,也祝大家行車平安,旅途別塞!
「難道,真的回不去了嗎?」「沒錯,真的回不去了…….」
塞車是春節返鄉的遊子們不得不面對的嚴峻考驗,尤其當高速公路徹底化身為一個大停車場時,更是令人絕望到想砸車窗。
究竟塞車是怎麼發生的?
______________________________
想了解更多塞車的科學?你需要看這三篇:
「 2000 年受臺大財金系合聘之邀,我開了一門『財務統計』課程。當時股市正值科技泡沫,我很好奇為什麼會有這個現象,加上受到財金系同事和學生的耳濡目染,漸漸覺得財務的『實證研究』蠻有趣,就一直研究到現在……」
研究室位於中研院統計所的迴廊深處,何淮中像個隱士般。置身股市戰線之外,以嚴謹的統計模型、歷史的股市資料,驗證股票市場的理性與不理性。
但 2017 年獲得諾貝爾經濟學獎的 Richard H. Thaler ,曾經做一個有趣的實驗,闡述另一位諾貝爾經濟學獎得主 Herbert Simon 所提的「有限理性」(bounded rationality),證明人沒有辦法完全理性。
Richard H. Thaler 在 1997 年 5 月於《金融時報》(Financial Times)刊登一則活動廣告,希望大家來報名參加 “pick a number game” ,大獎是英國航空往返倫敦與紐約/芝加哥的機票。玩法很簡單,只要玩家在 1~100 中選一個整數寫在信中、寄回主辦單位,截止後將所有收到的數字蒐集起來「取平均數、再乘以三分之二 」 ,最靠近這個數字的玩家,就是贏家。
假設 5 個人參加比賽,他們選擇 10,20, 30, 40 和 50 ,在此情況下,平均數是 30,而 30 的三分之二是 20 ,因此最初選擇 20 的玩家是勝利者。
這遊戲的隱含意義是──人們的預期心理、有限的理性。
若按照「市場是理性」假說,所有玩家應該會預期別人選擇什麼數字、並取平均數再乘以三分之二;然後又預期別人應該也會這麼做,又再取平均數再乘以三分之二……;經過這樣的循環,直到最後每個人都會選擇 1。
但無論是 1997 年《金融時報》這次、或我在各場合玩這個遊戲,都發現理性是有限的,人們一開始只會猜測別人的答案兩到三次循環,然後就選一個直覺大概沒錯的數字。
不同市場群體,會理性到什麼程度,我們可能不知道,就需要蒐集資料、根據統計來估計,這就是統計的重要性。
但其實台股的「菜籃族」常常搞不清楚股票上漲或下跌的原因,聽聞小道消息就跟風「追高殺低」,導致損失慘重。其實這背後有「動能效應」可以解釋,1993 年由 Jegadeesh and Titman 提出,指的是股票報酬率有持續性的現象,強者恆強、弱者恆弱。
投資人會有預期心理,預期心理又受到小道消息影響。由於小道消息的資訊傳遞像漣漪一層層擴散出去,因此股價在一定期間內呈現漲繼續漲、跌繼續跌,好像有個「動能」在持續推高或拉低股價。
動能投資策略,就是運用這種現象來規劃投資組合:買進贏家股票(漲繼續漲)、搭配賣出輸家股票(跌繼續跌)。
然而,2000 年之後的股票市場,這種動能效應似乎消失了。有些人認為是因為大家都知道這種賺錢方法,有些人認為是時機不對。但我們認為動能效應應該還存在,只是被一些「雜訊」給掩蓋,所以就撈出 1930 年 1 月到 2010 年 12 月的美國股市資料,和學生一起設計我們的「WL-LH 動能投資策略」做實證研究。
其實這與過往的動能投資策略差不多,差別在於,我們透過美股歷史資料分析,於投資策略中刪掉一些「雜訊」:「漲幅被高估」的贏家股票,也就是動能燃料已經燒完、會開始下跌;還有「跌幅被高估」的輸家股票,因為超跌、未來會再漲回來。這兩者分別代表投資人對於市場中好與壞的資訊,呈「過度反應」的現象。
困難的是,如何判定漲幅或跌幅是否被高估?我們從「資訊擴散」的角度出發,提出一個資產價格模型。然後藉由價格模型,設計一個價格風險指標,有效地篩選掉超漲或超跌的股票,從而驗證了市場的預期心理和動能效應,也同時說明市場的不效率性。
其中相關的統計模型算式,通常大家看了就頭痛,這裡先不贅述,有興趣的朋友請直接看看我們的論文。
從 1930 年 1 月的資料開始,我們先看過去一年的累計複利報酬、排序,買表現好的股票、賣表現壞的股票,一個月後檢視這樣的投資組合的報酬率。因為資料時序已經移動一個月,所以我們再從新的一個月回頭看過去一年的累積複利報酬、排序,再進行一次剛剛說的投資。
最後把累計複利報酬取平均值,例如下圖的 2000 – 2010 年資料所示。其中可看到, 2000 年以後的動能效應,原本大家認為已經消失了,但經由我們的 WL-LH 投資策略挖掘,失而復得,動能投資策略的獲利空間仍然存在。
我們對這個詮釋抱持懷疑,所以我們試著將 WL-LH 投資策略,套用至不同國家股市的歷史資料(1990-2014 年)驗證,發現只要去掉「雜訊」──上漲動能燃料已燒完的股票、以及超跌的股票,無論是美國、歐洲、日本、印度等 21 個國家,都能看見動能效應,比率接近九成。
換言之,因為人們投資行為的偏誤,例如貪婪追高股價、恐懼在低點持股,而導致市場的不效率性,是超越地域、族群而存在的共通現象。
但是台股比較特別,在 WL-LH 策略下,仍看不到動能效應。
在台股歷史資料(1990-2014 年)中,刪掉漲幅「被高估」的贏家股票、跌幅「被高估」的輸家股票後,並未找到動能效應。我們的推斷認為,台股投資人普遍容易過度預期,以及股票交易周轉率較高,可能是主要的原因。兩者都影響了模型預測「資訊擴散程度」的準確性。
由機率跨入統計,是很自然的。兩者都是處理「不確定性」的方法體系,密不可分。
我的研究,包括前面提到市場效率性的課題,「機率」與「統計」兼而有之。透過資料分析,可以證實股市有一定程度的不效率性,也有獲利的空間。但投資仍有風險,不會因為這些研究發現就產生過度自信,所以我老婆和我還是存定存、買共同基金。再說,她的錢我也管不了呀。
本著作由研之有物製作,原文為《行情總是在希望中毀滅? 專訪何淮中》以創用CC 姓名標示–非商業性–禁止改作 4.0 國際 授權條款釋出。
本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位