0

0
0

文字

分享

0
0
0

瑞典新研究:牛奶巧克力也對你的健康有幫助

營養共筆
・2012/09/04 ・1020字 ・閱讀時間約 2 分鐘 ・SR值 487 ・五年級

credit: CC by ginnerobot@flickr

截至目前為止大部分的研究支持黑巧克力對健康是好的,但卻鮮少有研究說牛奶巧克力也有類似的效果。這是一個在瑞典進行的研究,而這個國家裡頭大概有百分之九十的巧克力是牛奶巧克力。

巧克力含有益心臟健康的抗氧化物 — 黃酮類化合物(flavonoids)。我們的研究結果已經證實吃適量的黑巧克力能保護我們的心臟與記憶。

這項新發現發表在 Neurology 期刊上。

研究內容

研究涵蓋 37,000 名 45 – 79 歲的瑞典人,他們會填寫包含巧克力食用情形的飲食頻率問卷。在十年間,當中有 1,995 中風病例發生。

-----廣告,請繼續往下閱讀-----

相較於巧克力吃最少的人,吃最多巧克力或每週吃三分之一杯巧克力的男性中風風險少了 17%。

此外,研究者們分析包含他們自己的研究共五個研究的結果後發現,總共有 4,260 個中風病例。巧克力吃最多的人中風風險比吃最少的人要少 19%。

在這邊要提醒一件事:跟大多數的巧克力研究一樣,這個發現只是說巧克力與幫助健康有關連,而不是因果關係。

黑巧克力 VS. 牛奶巧克力

紐約勒諾克斯山醫院(Lenox Hill Hospital)心臟科醫師 Suzanne Steinbaum 表示瑞典的牛奶巧克力在某些地方可能跟美國的不一樣。「我們的巧克力是否過度加工了呢?綜觀所有的研究,在美國我還是會建議大家吃黑巧克力。」

-----廣告,請繼續往下閱讀-----

紐約大學朗格尼醫學中心(NYU Langone Medical Center)外科副教授 Caron Rockman 說對於減少中風的風險其實還是有很多事情我們能做的,如以下所列:

  • 不抽煙
  • 維持健康的體重
  • 維持血壓與膽固醇於標準範圍內
  • 吃得健康
  • 規律運動

她還說:「我覺得這個訊息不應該傳遞成吃巧克力就能預防中風。比起吃巧克力,你控制其他已知中風的危險因子是比較好的作法。」

克里夫蘭醫療中心(The Cleveland Clinic)神經學研究所的中風神經學家 Irene Katzan 醫師同意這項看法。「我不知道我會不會建議病患吃巧克力,不過我應該會跟他們說巧克力是無害的,尤其是黑巧克力。這對那些喜歡吃巧克力的人可是很棒的新聞吧。」

關於本文

原刊載於 營養共筆

-----廣告,請繼續往下閱讀-----
文章難易度
營養共筆
86 篇文章 ・ 3 位粉絲
應該是有幾個營養師一起寫的共筆,內容與健康議題有關。可能是新知分享、經驗分享或是有的沒的同學們~如果對寫這個共筆有興趣的話,歡迎一起豐富它的內容喔。

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

2
2

文字

分享

0
2
2
澳洲乳牛吃巧克力?!
胡中行_96
・2023/06/08 ・1939字 ・閱讀時間約 4 分鐘

成立於 1824 年的英國品牌吉百利(Cadbury),以製造糖果和巧克力聞名全球。1881 年他們首次接到來自澳大利亞的訂單,從此當地人也能嚐到其產品甜美的滋味。多年後,吉百利先是看上那裏優質豐沛的牛乳,而在塔斯馬尼亞設廠;後來又併購位於墨爾本的公司,擴大營運。[1]2023 年某些南澳的乳牛,也開始吃吉百利的零食。[2]

2022 年吉百利慶祝於澳洲建廠一世紀的特別報導。影/Sky News Australia on YouTube

乳牛的飲食

畜養乳牛是一門講究營養調配的科學,需要充足的碳水化合物、胺基酸、脂肪酸、礦物質、維生素和水份等,來確保牛乳的品質與產量。碳水化合物是乳牛能量的主要來源,佔泌乳期 70% 的飲食,可以從草、糖、飼料與穀物等食物中攝取。[3]以天然食材來說,碳水化合物大致分為纖維素半纖維素等,組成植物細胞壁的結構性碳水化合物;以及澱粉等,存在植物細胞質裡的非結構性碳水化合物。牛瘤胃(rumen)內的微生物,會將碳水化合物發酵。其中非結構性的比較容易進行,而且以糖最為快速。[4]

牛的消化系統,③ 是瘤胃(rumen)。圖/‘Ruminant digestive system’ by Australian Good Meat(CC BY-SA 4.0)

乳牛吃糖

具 30 多年畜牧經驗,擔任全國性產業公會澳洲乳品(Dairy Australia)理事長的 James Mann,在南澳有超過 4,000 頭乳牛。[2, 5]以往除了放牛吃草,Mann 理事長就像許多同業,也會給牛嚐點甜頭。[2]基於發酵難易度的差別,多種碳水化合物混著吃,能讓瘤胃裡的微生物,隨時都有得忙,一直幫乳牛補充能量。拿適量的糖,取代乳牛飲食中的澱粉,既可以促進泌乳;又不太會影響瘤胃內的 pH 值,而害牛乳的脂肪比例下降。[4]

唯一的問題是,2023 年全球糖價上漲。[2, 6]

全球糖價飆升

2 年前全球糖價疲軟時,每噸曾經連澳幣 400 元都不到。然而北半球糖業出口國,例如:印度、泰國和中國等,2023 年的產量都不如預期。地處南半球的巴西,則遭逢大量降雨,擾亂物流。於是就在澳洲的甘蔗進入採收季前,4 月的全球糖價竟衝破每噸 800 元。當地蔗農遇上幾十年未見的榮景,喜孜孜地打算大賺一波;[6][註]同時卻也苦了需要用糖的產業。

-----廣告,請繼續往下閱讀-----

眼見成本飆升,腦筋動得快的 Mann 理事長,決定調整自家乳牛的菜單。他跨州從墨爾本運來一般巧克力、櫻桃巧克力、蜂巢巧克力、蛇軟糖和牛軋糖等。反正吉百利不要的,他家的牛全包。巧克力含有糖和油。[1]脂肪類食物提供的能量,是碳水化合物或蛋白質的 2.25 倍,而且跟糖一樣,也能增加牛乳的產量。[2, 3]總之,一箭雙鵰。Mann 理事長在 6 月初,因為這個大膽嘗試,接受媒體專訪,分享創意飼育的心得。[2]

食品加工與環保

他家乳牛所吃的糖果和巧克力,不如市售的吉百利產品,裹著包裝,還印上原料與營養成份。儘管部份造型跟人類吃的還算接近,更多是輾得粉碎或不可名狀。有時甚至整塊沒剁,以半成品的形式出現。幸好乳牛並不挑嘴,來者不拒,又似乎沒有偏好特定口味。[2]

理事長表示,若不是乳牛幫忙消耗,這些廢料原本大概會被工廠丟掉,所以他的作法對畜牧和環保都好。的確,避免食物浪費雖然最好從源頭做起,但是當製造商無法減少廢料時,再利用也是不錯的補救辦法。[2]

至於生產出來的鮮乳如何?Mann 理事長開玩笑道:「既然巧克力牛奶由我們生產了;我希望草莓牛奶有別人負責。」不過,他家鮮乳的味道其實沒有特別不同,最終還是得與其他牧場的混和,經過工廠加工才能製成調味乳。[2]

-----廣告,請繼續往下閱讀-----
圖/The Simpsons on Giphy

  

備註

多數澳洲蔗農早在 2022 年談好 2023 年 4 月的大盤售價,所以不會馬上受惠於全球糖價飆漲。然而,他們還是可以喊價 2023 年後續每噸澳幣 756 元,以及 2024 年 651 元。[6]

參考資料

  1. Cadbury and Mondelez Australia Pty Ltd. ‘Our History’. Cadbury. (Accessed on 01 JUN 2023)
  2. Boisvert E, Adamo E. (01 JUN 2023) ‘Dairy cows munch on reject chocolate and lollies that would have gone to landfill’. ABC News, Australia.
  3. Erickson PS, Kalscheur KF. (2020) ‘Nutrition and feeding of dairy cattle’. Animal Agriculture, 157–180.
  4. Ravelo AD, Vyas D, Ferraretto LF. (2022) ‘Effects of sucrose and lactose as partial replacement to corn in lactating dairy cow diets: a review’. Translational Animal Science, 6(2):txac044.
  5. James Mann appointed Chair of Dairy Australia’. (31 JUL 2020) Dairy Australia.
  6. Brann M, Cooper L. (20 APR 2023) ‘Sugar prices skyrocket after lower-than-expected output overseas in good news for Australian growers’. ABC News, Australia.

1

9
4

文字

分享

1
9
4
為什麽大家都愛吃巧克力的邊邊角角?晶體科學告訴你,怎麼讓巧克力口感變得更好!
Rock Sun
・2021/06/18 ・3040字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

你喜歡吃巧克力嗎?是黑巧克力、白巧克力還是牛奶巧克力呢?其實各派都有不同的擁護者,但是我換個問題……你喜歡吃巧克力的哪一個部分或是什麼型態的巧克力呢?

我想絕大部分的人的答案都是扎實、脆脆的口感吧?而要嘗到這種口感的巧克力,最快的方法就是瞄準巧克力磚的邊邊角角下手。

但你知道為什麼邊邊角角的巧克力特別脆嘛?科學家或許有答案了!

很多人似乎非常喜歡吃巧克力的邊邊角角,因為比較脆 ~ 圖/Pexels

關於巧克力,你需要知道的是……

首先,讓我們先來認識一下巧克力裡面有什麼成分。巧克力是由可可粉、可可脂、糖和其他成分彼此混合,其中一些有趣的化學成分,在這裡跟大家介紹一下:

  1. 可可鹼:生物鹼的一種,和咖啡因結構類似,算是同一個系列的化學物質,但是就毒性(其實就是讓你 high 的性質)而言比咖啡因還要弱,巧克力是含有可可鹼最多的食物,而一塊巧克力因為兩個成分都有,所以吃的人才會如此很開心。
  2. 抗氧化劑:可可豆含有綠茶酚和沒食子酸等抗氧化劑,但是在把可可豆製作成巧克力的過程中,很多的這類物質會被移除,剩下少量殘留。許多巧克力愛好者表示巧克力內的抗氧化劑可延緩細胞老化,但是我們很難證實如此的微量成分是否有效。
  3. 苯乙胺:有人說為什麼巧克力在情人節如此受歡迎,那是因為它含有很多的苯乙胺……一種讓腦內釋出多巴胺的神經傳導物質,也是興奮劑、春藥、抗憂鬱藥的主要成分,但是很遺憾巧克力內的苯乙胺在進入腦袋前就被我們的身體吸收掉了。

不過,以上都不是有關巧克力口感研究的聚焦對象。讓巧克力口感好吃最大的關鍵物質,其實是三酸甘油酯,也就是可可脂(脂肪)的結晶結構。

可可脂- 维基百科,自由的百科全书
整塊、獨立出來的可可脂。圖/wikimedia

讓巧克力變得迷人的可可脂

巧克力會因為可可脂的溶化和凝結過程有所不同,而產生不同的口感,因為在不同的溶點下,脂肪可能呈現出各種不同的結構,但巧克力的可可脂卻跟一般脂肪不太一樣。

-----廣告,請繼續往下閱讀-----

可可脂是少數僅有數種不同三酸甘油酯構成的脂肪,其中成分高達 60% 是飽和脂肪酸,而 30 ~ 40 % 是單不飽和脂肪酸。我們知道,由於飽和脂肪酸的碳鏈沒有雙鍵,因此可以緊密而有秩序地排列在一起,形成穩定的結構和較高的熔點。所以飽和脂肪酸比例較高的動物性脂肪如牛油、豬油,就會在室溫下呈現固態。相反的,不飽和脂肪酸的碳與碳的連接中有一個或多個雙鍵,易發生彎折而無法整齊地排列,因此結構不如飽和脂肪酸穩定,熔點也比較低。在室溫下為液態的植物油,就是不飽和脂肪酸的例子。

可可脂中飽和脂肪酸及單不飽和脂肪酸的比例,使其熔點相對比較固定,導致巧克力在嘴裡熔化時沒有顆粒的感覺。即使如此,可可脂仍有幾種形態的結晶,熔點分布從 17 ~ 37 °C,而製作巧克力的理想目標,則是熔點在 33.8 °C 的第 5 型 β 結晶

CHOCOLATE TEMPERING - Gastronomski Istraživački centar Gastro_IC
非常詳細的不同巧克力結晶的熔點和口感,其中第 5 型就是最佳狀況。圖/compoundchem

入口即化的口感,源自晶體的排列

多數人在吃巧克力的時候不太在意分子怎麼排列的,但是就是有喜歡吃的分子科學家會把巧克力拆解,拿到儀器底下想要一探究竟。在最近在美國化學學會出版的科學期刊《Crystal Growth & Design》中,一群喜歡巧克力的研究人員發現,當你在模具中定型巧克力的時候,靠近模具那一面的巧克力晶體相較於與空氣接觸的那面排列更加整齊,通常也更受人喜歡。

巧克力晶體的排列大大影響了口感,所以製作巧克力時有一個絕對不能忽略的重要步驟——調溫。

當甜品工廠製作巧克磚的時候,他們會將在理想溫度融化(也就是上述 33.8°C,相當接近人類體溫 36°C)的巧克力液體倒入模具內冷卻,這時候有一個很重要的步驟叫做「調溫」(temper),簡單來說,調溫是一種重複將巧克力融化、凝結的過程,藉以穩定巧克力的技巧,由於可可脂會產生結晶的特性,經過適當調溫的巧克力塊才會形成完整、整齊的晶體結構,表面光滑、口感硬脆、入口即化且受人喜歡。

-----廣告,請繼續往下閱讀-----

經過巧克力工匠去蕪存菁的調溫,一塊原始的巧克力中亂七八糟結構會被熔掉,但是又想要留下這些巧克力結晶中的模範生,也就是 β 結晶,當剩下的巧克力凝固時,會以第 5 型 β 結晶為模板,結果就是整塊巧克力都是好吃的理想晶體結構,又硬又亮,有時候甚至還會加入已經完工的巧克力塊,讓整塊巧克力更快完美的成形、油脂更井然有序地排列。

巧克力調溫過程。圖/giphy.com

用紅外線光譜儀來測量可可脂的晶體結構吧!

以上都是製作巧克力時已經知道的部分,但現在要來點不一樣的了!一群研究人員想知道在冷卻的過程中,接觸空氣那面的巧克力和接觸模具的巧克力相比,口感會不會有差?又是哪一個部分比較好吃呢?

為了瞭解這件事,研究人員分析了三個不同位置的巧克力脂肪分子構成,靠著傅立葉紅外光譜儀和衰減式全反射取樣,他們發現接觸模具那側的巧克力分子排列得相當整齊,脂肪酸鍊很有規律地分配在這個區域相反地,靠近空氣的那側排列混亂,脂肪酸鍊有一個沒一個的;而正中央的巧克力剛好介於兩者之間

巧克力的不同部位因有無接觸模具、晶體排列不同,因而也產生不一樣的口感。圖/Pexels

市售巧克力的口感並不均匀

這樣的結果很可能是模具和空氣的導熱差異有關,導致與靠近模具的巧克力冷卻得更快,有更多的時間去排列晶體,模具也某種程度上控制晶體的排列方向更加統一、整齊,而這是讓巧克力好吃的關鍵。也因為如此,其實一整塊巧克力比大家想像的更不平均,各個部位有不同的口感是很正常的事,研究人員也希望藉由這個研究,巧克力製造商或許可以想出不同的工法,更準確、更快地做出符合大家口感的巧克力……如果有辦法一整塊巧克力都香脆滑順、入口即化那有多好?

-----廣告,請繼續往下閱讀-----

所以如果你覺得靠近邊邊角角的巧克力是最好吃的部分,那就代表你的舌頭和嘴巴跟化學晶體排列有共鳴,也知道了下次和身邊的人搶巧克力吃要瞄準那個部分了,而且或許可以是個用在追化學人的招式吧。

下一次吃巧克力時,多了這些化學小知識可以分享了,可能是追化學系的可用招數吧?圖/chemistryworld.com

參考文獻

所有討論 1
Rock Sun
64 篇文章 ・ 939 位粉絲
前泛科學的實習編輯,曾經就讀環境工程系,勉強說專長是啥大概是水汙染領域,但我現在會說沒有專長(笑)。也對太空科學和科普教育有很大的興趣,陰陽錯差下在泛科學越寫越多空想科學類的文章。多次在思考自己到底喜歡什麼,最後回到了原點:我喜歡科學,喜歡科學帶給人們的驚喜和歡樂。 "我們只想盡我們所能找出答案,勤奮、細心、且有條理,那就是科學精神。 不只有穿實驗室外袍的人能玩科學,只要是想用心了解這個世界的人,都能玩科學" - 流言終結者