0

0
0

文字

分享

0
0
0

光捕捉技術助太陽電池成功瘦身

NanoScience
・2012/09/01 ・899字 ・閱讀時間約 1 分鐘 ・SR值 527 ・七年級

國民法官生存指南:用足夠的智識面對法庭裡的一切。

美國科學家最近利用光學天線(optical antenna)的構想,研發出一種新的光捕捉(light-trapping)技術,可以大幅提升光伏材料的吸光效率,讓太陽電池變得更薄、更便宜。

圖片來源:nanotechweb.org

領導北卡羅萊那大學(North Carolina State University)研究團隊的 Linyou Cao 表示,該技術讓他們的太陽電池吸光層僅需厚度 70 nm 的非晶矽結構,就能吸收高達 90% 的入射光,相形之下,傳統作法需使用厚度超過 300 nm 的非晶矽才能達成同樣效果。

陽光是取之不盡的環保再生能源,雖然近年來太陽電池技術已經取得大幅進步,但造價低廉又具高轉換效率的太陽能轉換元件仍未現曙光。一般而言,光吸收材料層較厚有助於將更多光子轉換產生電子與電洞,但如果吸光層過厚,這些光激發載子會在形成有效電流前復合。使用高純度材料(如單晶矽)作為光吸收層可有效解決這個問題,但其昂貴的價格往往讓製造商卻步。最近,利用光捕捉技術搭配較薄的一般光伏材料來提高光吸收效率,成為另一種選項。

研究人員以非晶矽作為光吸收層,兩側以氧化鋅(ZnO)和氮化矽(Si3N4)等不吸光的介電層包夾。這種三明治奈米結構的功能如同光學天線,可聚集矽層中的光子,並透過電漿子模態來提升周圍分子發出的光與天線之間的耦合。

Cao 等人表示三明治結構之所以能吸收更多的光,主要歸功於半導體的漏模共振(leaky mode resonance, LMR)及介電層的抗反射特性。反射光量減少代表能有更多光子可供使用,整體的光吸收效率因而提高。研究人員優化介電層的厚度以提升至最佳抗反射性質,此外,為了維持半導體固有的漏模共振,研究人員使非晶矽在此半導體與介電層組成的殼-核結構中,尺寸比率大於 0.5。

Cao 表示,雖然此實驗以非晶矽為研究對象,但該技術也可應用於其他光吸收材料,如碲化鎘(CdTe)、銅銦硒化物(CIGS)等半導體和有機材料上。此外,這項技術還相容於現行的太陽電池製程,如沉積薄膜與微影製程等。該團隊包含柏克萊大學以及勞倫斯柏克萊國家實驗室的研究夥伴,他們目前持續致力於此太陽電池的最佳化。詳見 Nano Lett.|DOI: 10.1021/nl301435r。

譯者:謝德霖(逢甲大學光電學系)
責任編輯:蔡雅芝
原文網址:Light-trapping technique helps solar cells thin down—nanotechweb.org [2012-07-06]

本文來自 NanoScience 奈米科學網 [2012-08-23]

文章難易度
NanoScience
68 篇文章 ・ 2 位粉絲
主要任務是將歐美日等國的尖端奈米科學研究成果以中文轉譯即時傳遞給國人,以協助國內研發界掌握最新的奈米科技脈動,同時也有系統地收錄奈米科技相關活動、參考文獻及研究單位、相關網站的連結,提供產學界一個方便的知識交流窗口。網站主持人為蔡雅芝教授。

0

4
1

文字

分享

0
4
1
快充怎麼做到又小又快? 半導體材料氮化鎵,突破工作頻率極限
PanSci_96
・2023/03/11 ・2700字 ・閱讀時間約 5 分鐘

國民法官生存指南:用足夠的智識面對法庭裡的一切。

除了線材,市場上也到處可看到標榜使用氮化鎵、可支援大電流快充的充電頭。但為什麼之前充電速度一直快不起來呢?為什麼現在要改用氮化鎵呢?快充能變得更快更快更快嗎?

快充加速了充電速度

在快充出來以前,我們的智慧型手機充電器,功率大約是 5 瓦特(W)或是 2.5 瓦特,現在最夯的的氮化鎵快充頭功率則高達 65 瓦特,相差了 13 倍,理想上充電時間也會縮短為十三分之一。

實際上,這幾年快充的發展速度可能比想像的還要快上許多。

還記得在 21 世紀的 Nokia 3310 嗎?其功率僅 4.56 瓦特,而蘋果一直到 2014 年的 iPhone6 才支援更快的 10 瓦特快充。然而,現在不僅已經出現不少支援 50 瓦特以上快充的手機,今年二月中國手機品牌 realme 推出的 GT Neo5,甚至出現 240 瓦特的超快充技術,是目前充電最快的智慧型手機。

提升充電器功率的關鍵

從過去到現在,充電器不僅功率大幅提升,充電器的大小同時也縮小了許多。過去的線性充電器,除了有條細細長長的尾巴外,最大的特徵就是不僅大、充電時還會發熱的變壓器;為了將市電的 110V 交流電轉為手機可以使用的 5V 直流電,就需要變壓器協助降壓。

變壓器的發熱來源來自內部占了絕大部分體積的線圈,在電路學中被稱為「電感器」。輸入與輸出的線路會以線圈的形式綑在一組鐵芯上,兩端的線圈數量十分關鍵,線圈數量的比值就是兩側電壓的放大大小;若想從 110V 變成 5V,則為輸入的線圈圈數是輸出的 22 倍,那麼輸出的電壓就會減少 22 倍。

在變壓的過程中,輸入端的線圈與鐵芯就像一顆大電磁鐵,讓磁通量通過鐵芯,將能量傳到輸出線圈,輸出線圈則會因為電磁感應,產生相同頻率但電壓不同的交流電,完成降壓。只要再把 5V 交流電轉成 5V 的直流電,就可以幫手機充電啦。

過去的線性充電器最大的特徵就是體積大、充電時還會發熱。圖/Envato Elements

聰明的你應該已經想到,提升充電功率的關鍵就在於——線圈數量

如果希望變壓器的輸出提升,必須在維持線圈比值的情況下,等比例增加輸入與輸出端的線圈數量;更多的線圈就意味更多的磁通量能透過鐵芯傳到另一端,更多的能量也隨之傳遞。但如此一來,早已被塞滿的變壓器,為了塞進更多的線圈就只能繼續增加充電器的體積,還會因能量耗損放出大量的熱。

若想提升功率,又能減少電感器大小,最好的方法就是——增加工作頻率

透過「高頻變壓器」的幫忙,將原先市電 60 赫茲的頻率提升到 50K 赫茲,被轉為高頻的交流電再進行變壓,如此一來就能降低能量損耗,所需的電感器大小也會大幅降低。

然而,要注意的是,要想改變交流電的頻率,是無法直接轉換的。要先將交流電轉為直流電,再經由特殊的「開關」電路將直流電轉為特定頻率的交流電;這類型的充電器就被稱為「開關充電器」,現在的智慧型手機就是使用開關充電器。

救世主材料

但隨著手機電池容量不斷增加,手機充電效率的需求永無止盡,充電器又開始一個比一個大。

智慧型手機所使用得充電器為開關充電器。圖/Envato Elements

不是繼續提升工作頻率就好了嗎?那是因為,我們遇到了「矽的極限」。

開關電路中將直流轉為交流的關鍵,就是我們熟知的半導體元件電晶體。裡頭的原料過去都以我們熟知的矽為主,然而以矽為材料的半導體工作頻率極限僅在 100k 以下,如果超過 100k,轉換效率會大幅下降,更有嚴重的能量浪費問題。

解決的方法就是:尋找下一個材料。沒錯,就是最近最夯半導體的——氮化鎵(GaN);其能隙是矽的 3 倍,電子遷移率為 1.1 倍,崩潰電壓極限則有 10 倍。

顯然,氮化鎵擁有更良好的電特性,還能在高頻、高電壓的環境下工作,使用氮化鎵為材料的快充頭因此誕生!氮化鎵最高的工作頻率是 1000K,是矽的 10 倍,除了讓變壓器的電感線圈能再次縮小,連帶縮小充電頭的體積;亦能降低能耗並減少電容與散熱器的大小,成為好攜帶的快充豆腐頭。

到這裡,或許你會想問,提高充電效率應該不只有換材料一條路吧?還會有更快的充電技術出現嗎?

當然會的;和矽相比,氮化鎵仍有很大的研究性。

而且不僅手機,就以現在市面上正夯的電動車來說,也需要快充技術支援,來減少充電時所需要的時間;為應對龐大的充電市場需求,綜觀整個半導體材料的發展歷史,已經有許多材料問世。除了氮化鎵,還包括矽、鍺、三五族半導體「砷化鎵」(GaAs)、「磷化銦」(InP),以及化合物半導體「碳化矽」(SiC);在能源產業中,又以氮化鎵和碳化矽的發展最令人期待。

電動車也需快充技術的支援,來縮短充電所需時間。圖/Envato Elements

氮化鎵與碳化矽的未來與挑戰

不論以技術發展還是成本考量,這兩位成員還不會那麼快取代矽的地位。

兩者應用的範圍也不完全相同。氮化鎵擁有極高的工作頻率,在高頻的表現佳,並且耐輻射、耐高溫,除了運用在充電技術內外,在高功率 5G 基地台、航空通訊、衛星通訊也都將大展身手。碳化矽則在高溫及高電壓下擁有良好的穩定性,尤其在未來電動車快充的需求增加,1000 伏特以上的充電需求,將使得僅能承受 600 伏特的矽半導體無法負荷,預期將接手電動車中的關鍵元件。

兩者看來潛力無窮,但目前在製程上仍需克服許多問題;如:材料介面的晶格缺陷及成本考量;在它們能像矽材料應用在各方領域之前,還需要投入更多研發能量。

但令人興奮的是,駛向下個半導體世代的鳴笛聲已經響起,不論是台積電、晶圓大廠環球晶,國內外各家半導體大廠,都早以搭上這班列車。不同的材料也意味著,從磊晶、製程、元件設計、晶圓製造都將迎來改變,陸續也有廠商開始使用 AI 輔助設計氮化鎵半導體元件。

未來半導體與科技產業將迎來何種轉變,就讓我們拭目以待吧!

半導體未來的發展令人興奮!圖/GIPHY

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

PanSci_96
1035 篇文章 ・ 1348 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

2
1

文字

分享

0
2
1
將陽光轉變成電能的太陽能電池:太陽能電池不是電池——《圖解半導體》
台灣東販
・2022/11/23 ・2778字 ・閱讀時間約 5 分鐘

國民法官生存指南:用足夠的智識面對法庭裡的一切。

備受關注的再生能源

近年來,以太陽能發電的再生能源備受關注。

近年來,以太陽能發電的再生能源備受關注。圖/pexels

太陽能電池是太陽能發電的關鍵裝置,這是用半導體將陽光的能量直接轉變成電能的裝置。雖然有「電池」這個名稱,但不像乾電池那樣可以儲存電能。所以「太陽能電池」這個稱呼其實並不洽當,應該稱其為「太陽光發電元件」才對。

太陽能電池會利用到第 1 章 1-2 節提到的半導體光電效應(將光轉變成電能的現象)。不過,僅僅只透過照光,並不能從半導體中抽取出電能。要將光能轉變成電能,必須使用 pn 接面二極體(參考第 1 章 1-8 節)才行。

pn 接面二極體。圖/東販

圖 5-1(a) 為 pn 接面二極體,p 型半導體有許多電洞做為載子,n 型半導體內則有許多電子做為載子。這個 p 型與 n 型半導體接合後,接合面附近的電洞會往 n 型移動擴散,電子則會往 p 型移動擴散,如圖 5-1(b) 所示。

移動擴散之後,接面附近的電子與電洞會彼此結合,使載子消滅,這個過程稱為複合。結果會得到圖 5-1(c) 般,沒有任何載子存在的區域,這個區域就稱為空乏層。

接面附近的空乏層中,n 型半導體的帶負電電子不足,故會帶正電;另一方面,p 型半導體的帶正電電洞不足,故會帶負電(圖 5-1(d))。

因此,n 型與 p 型半導體之間的空乏層會產生名為內建電位的電位差,在接面部分形成電場。這個電場可以阻擋從 n 型半導體流出的電子,與電子從 n 型流向 p 型的力達到平衡,故可保持穩定狀態。

這種狀態為熱平衡狀態,放著不管也不會發生任何事。也就是說,接面上有內建電位差之壁,不管是電子還是電洞,都無法穿過這道牆壁。

用光發電的機制。圖/東販

在這種狀態下,如果陽光照入空乏層,半導體就會在光能下產生新的電子與電洞,如圖 5-2 所示。此時,新的電子會因為內建電場所產生的力而往 n 型半導體移動,新的電洞則往 p 型半導體移動(圖 5-2(a))。於是,電子便會在外部電路產生推動電流的力,稱為電動勢。

在光照射半導體的同時,電動勢會一直持續發生,愈來愈多電子被擠入外部電路,於外部電路供應電力。被擠出至外部電路的電子會再回到 p 型半導體,與電洞結合(圖 5-2(b))。我們可以觀察到這個過程所產生的電流。

太陽能電池的結構。圖/東販

目前太陽能電池的大部分都是由 Si 半導體製成。以 Si 結晶製成的太陽能電池結構如圖 5-3 所示。

為方便理解,前面的示意圖中,都是以細長型的 pn 接面半導體為例。但實際上,太陽能電池所產生的電流大小,與 pn 接面二極體的接面面積成正比。所以 pn 接面的面積做得愈廣愈好,就像圖 5-3 那樣呈薄型平板狀。

前面的說明提到,陽光可產生新的載子,這裡讓我們再進一步說明其原理。

pn 接面二極體的電子狀態。圖/東販

圖 5-4 為 Si 原子之電子組態的示意圖(亦可參考第 38 頁圖 1-11)。Si 原子最外層的軌道與相鄰 Si 原子以共價鍵結合,故 Si 結晶的軌道填滿了電子,沒有空位(圖 5-4(a))。

若摻雜雜質磷(P)或砷(As)等 15 族(Ⅴ族)元素,形成 n 型半導體,便會多出 1 個電子。這個電子會填入最外層電子殼層的最外側軌道(圖 5-4(b)),與共價鍵無關,故能以自由電子的狀態在結晶內自由移動。

由於電子軌道離原子核愈遠,電子的能量愈高,所以位於最外側軌道的電子擁有最高的能量(參考第 57 頁,第 1 章的專欄)。最外側軌道與最外層電子殼層的能量差,稱為能隙。

另一方面,如果是摻雜鎵(Ga)或銦(In)等 13 族(Ⅲ族)元素的 p 型半導體,會少 1 個電子,形成電洞。這個電洞位於最外層電子殼層,能量比自由電子還要低(圖 5-4(c))。

空乏層不存在自由電子或電洞等載子,此處原子的電子組態皆如圖 5-4(a) 所示。

陽光照進這個狀態下的空乏層區域時,原子的電子會獲得光能飛出,轉移到能量較高的外側軌道(圖 5-4(d))。此時的重點在於,電子從光那裡獲得的能量必須大於能隙。如果光能比能隙小的話,電子就無法移動到外側軌道。

光的能量由波長決定,波長愈短,光的能量愈高(參考第 217 頁,第 5 章專欄)。光能 E(單位為電子伏特eV)與波長 λ(單位為 nm)有以下關係。

E[eV]=1240/λ[nm]

抵達地表的陽光光譜。圖/東販

另一方面,抵達地表的陽光由許多種波長的光組成,各個波長的光強度如圖 5-5 所示。

由圖可以看出,可見光範圍內的陽光強度很強。陽光中約有52%的能量由可見光貢獻,紅外線約佔 42%,剩下的 5~6% 則是紫外線。

若能吸收所有波長的光,將它們全部轉換成電能的話,轉換效率可達到最高。不過半導體可吸收的光波長是固定的,無法吸收所有波長的光。

Si結晶的能隙為 1.12eV,對應光波長約為 1100nm,位於紅外線區域。也就是說,用 Si 結晶製造的太陽能電池,只能吸收波長小於 1100nm 的光,並將其轉換成電能。

不過,就像我們在圖 5-5 中看到的,就算只吸收波長比 1100nm 還短的光,也能吸收到幾乎所有的陽光能量。

光是看以上說明,可能會讓人覺得,如果半導體的能隙較小,應該有利於吸收波長較長的光才對。不過,並不只有能隙會影響到發電效率,圖 5-6 提到的光的吸收係數也會大幅影響發電效率。光的吸收係數代表半導體能吸收多少光,可以產生多少載子。

有幾種材料的光吸收係數特別高,譬如 Ⅲ—Ⅴ 族的砷化鎵(GaAs)。GaAs 的能隙為 1.42eV,轉換成光波長後為 870nm,可吸收的光波長範圍比 Si 還要狹窄。但因為吸收係數較高,所以用砷化鎵製作的太陽能電池的效率也比較高。

總之,GaAs 是效率相當高的太陽能電池材料。然而成本較高是它的缺點,只能用於人造衛星等特殊用途上。即使如此,研究人員們仍在努力開發出成本更低、效率更好,以化合物半導體製成的太陽能電池。

——本文摘自《圖解半導體:從設計、製程、應用一窺產業現況與展望》,2022 年 11 月,台灣東販出版,未經同意請勿轉載。

台灣東販
5 篇文章 ・ 1 位粉絲
台灣東販股份有限公司是在台灣第1家獲許投資的國外出版公司。 本公司翻譯各類日本書籍,並且發行。 近年來致力於雜誌、流行文化作品與本土原創作品的出版開發,積極拓展商品的類別,期朝全面化,多元化,專業化之目標邁進。

0

4
2

文字

分享

0
4
2
快閃記憶體的原理:我們常用的 USB 記憶體與記憶卡——《圖解半導體》
台灣東販
・2022/11/22 ・3591字 ・閱讀時間約 7 分鐘

快閃記憶體常被用在個人電腦的 USB 記憶體、數位相機或智慧型手機的記憶卡等地方。即使切斷電源,記憶內容也不會消失,屬於非揮發性記憶體,且與 DRAM 的隨機存取類似,可讀取、擦除、寫入內容。不過,快閃記憶體的動作較慢,無法取代 DRAM。

快閃記憶體由東芝的舛岡富士雄於 1984 年發明。

DRAM 會透過記憶體電容器累積的電荷來記憶資訊。而快閃記憶體則會透過 MOSFET 內的懸浮閘極累積電荷。

快閃記憶體的結構。圖/東販

圖 4-11 為快閃記憶體的結構。MOSFET 的閘極與 Si 基板之間,有個不與任一方相連的懸浮閘極。

這個懸浮閘極就是快閃記憶體的特徵。電荷儲存在這裡時,因為周圍是由氧化膜(SiO2)構成的絕緣體,所以電荷(電子)不會跑到其他地方。即使切斷電源,記憶體內的資訊也不會消失,為非揮發性記憶體。

快閃記憶體的懸浮閘極帶有電荷時,儲存的是「0」;無電荷時,儲存的是「1」。懸浮閘極可透過累積或釋放電子,來記錄或保存資訊。

資訊的寫入與消除。圖/東販

圖 4-12(a) 為寫入「0」的情況。此時源極、汲極、基板皆為 0V,並對控制閘極施加正電壓。

於是,Si 基板內的電子就會穿過氧化膜,於懸浮閘極內蓄積。「電子可穿過絕緣體氧化膜」聽起來有些不可思議,不過氧化膜相當薄,厚度只有約數 nm,所以電子可以透過穿隧效應穿過氧化膜。

因此,Si 基板與懸浮閘極之間的氧化膜也叫做穿隧氧化膜。寫入資訊「1」時,懸浮閘極不會蓄積電子,所以什麼事都不會發生。

當我們想要消除資訊,也就是消除懸浮電極蓄積的電子時,需讓控制電極電壓為 0V,並對源極、汲極、基板施加正電壓,如圖 4-12(b) 所示。這麼一來,懸浮電極內蓄積的電子就會透過穿隧效應穿過氧化膜,移動到電壓較高的基板一側。於是,原本蓄積於懸浮電極的電荷就會消失。

讀取已記錄的資訊。圖/東販

另一方面,當我們想要讀取資訊時,只要在控制電極施加一定的正電壓,便可透過從源極流向汲極的電流,讀取儲存單元內的資訊(圖 4-13)。

若懸浮閘極內有蓄積電子(「0」的狀態),這些電子的負電會抵消掉控制閘極施加的正電壓,使電流難以通過底下的通道。

利用懸浮電荷量不同來控制記憶體

若懸浮閘極內沒有累積電子(「1」的狀態),閘極電壓就會直接影響到基板,與 MOSFET 的情況一樣,故下方會有電流通過。所以由電流的差異,就可以判斷儲存單元的資訊是「0」或「1」。

即使懸浮閘極內有蓄積電荷(圖 4-13 的「0」狀態),要是對控制閘極施加的電壓過高,源極與汲極之間還是會有電流通過。

也就是說,懸浮電荷量不同時,使電晶體開始產生電流的閾值電壓(Vth,參考第 89 頁)也不一樣。故我們可藉由懸浮電荷量的控制來記憶資訊。

快閃記憶體的 SLC 與 MLC。圖/東販

由前面的說明可以知道,像圖 4-14(a) 這樣的單一儲存單元,只能記錄 1 個位元,可能是「0」或「1」。

用閾值電壓判斷單元狀態

不過,如果閾值電壓可任意控制,就可以將懸浮閘極依儲存的電荷量,從滿電荷到無電荷分成 4 個等級,如圖 (b) 所示。4 個等級可分別對應「01」、「00」、「10」、「11」。這麼一來,1 個儲存單元就可以記錄 2 位元的資訊。

因為每種狀態所對應的閾值電壓都不一樣,Vth01>Vth00>Vth10>Vth11,所以讀取資訊時,可以由閾值電壓判斷該儲存單元處於何種狀態。

可分成 4 種狀態的單元稱為 MLC(Multi Level Cell)。另一方面,只有 2 種狀態的單元稱為 SLC(Single Level Cell)。

MLC 的 1 個儲存單元可以記錄 2 位元的資訊。如果將 Vth 分成更多區間,還可以記錄 3 位元、4 位元的資訊,進而提升容量。不過,MLC 懸浮閘極寫入電壓的控制技術相當困難,MOSFET 對干擾現象又特別敏感,所以要做成增加更多層相對困難。

快閃記憶體的缺點

另外,快閃記憶體在記錄、消除資訊時,需使用 10V 之類相對較高的電壓,電子才能突破穿隧氧化膜。因此,反覆讀寫會造成氧化膜劣化,最後使儲存單元無法保留電子。也就是說,快閃記憶體的壽命比其他記憶體還要短。寫入速度較慢也是一項缺點。

另一方面,快閃記憶體與 DRAM 不同,不使用電容器,所以1個晶片可搭載的儲存單元較多,較容易提升容量。

快閃記憶體的組成——NAND 型與 NOR 型

NAND 型與 NOR 型。圖/東販

快閃記憶體與 DRAM 一樣,都是由許多儲存單元排列成矩陣的樣子。快閃記憶體可依組成分成 NOR 型與 NAND 型 2 種(圖 4-15)。

NOR 型的快閃記憶體結構。圖/東販

圖 4-16 為 NOR 型的快閃記憶體結構。除了字元線與位元線之外,還有「源極線」存在,且源極線需通以電流。

NOR 型的快閃記憶體運作方式與 DRAM 相近,較好理解。以圖中圈出來的儲存單元為例,讀取單元內的數值時,會在對應的字元線施加讀取用電壓,然後透過位元線讀取資訊。另一方面,消除或寫入資訊時,會對位元線施加寫入用電壓,字元線也會施加寫入用電壓。

實際上的運作相當複雜,所以不像 DRAM 那樣只有 0 與 1 的 2 種數值,不過和 DRAM一樣是一個個單元讀取、寫入。換言之,可以隨機存取儲存單元。

NAND 型快閃記憶體的結構。圖/東販

另一方面,NAND 型快閃記憶體的結構則如圖 4-17 所示。

NAND 型的結構中,同一條字元線串聯起許多儲存單元,稱為 1「頁」(page),多條字元線有許多頁,稱為 1 個「區塊」(block)。

NAND 型的頗面圖。圖/東販

圖 4-18 中,1 條位元線可串聯起許多儲存單元。這種結構有個特徵,那就是同一條位元線上,各個 MOSFET 的源極與汲極皆串聯在同一列上。這一列MOSFET製作在半導體基板上時,剖面圖如下。

基板上,1 個電晶體的源極,與相鄰電晶體的汲極共用同一個n區域,所以表面不需設置電極。少了電極而多出來的空間,就可以用來提升電晶體的聚積密度。

不過這種結構下,1 條位元線的電流比 NOR 型的電流還要小,所以讀取速度比較慢。另外,因為 1 個儲存單元比較小,所以懸浮閘極保留的電荷也會比較少,使資料保存的可靠度較差。

NAND 型的擦除與寫入步驟

NAND 型快閃記憶體需以 1 個區塊(含有許多頁)為單位進行擦除,以 1 頁為單位進行寫入。

因此,要更改 1 頁的內容時,必須將含有這 1 頁之整個區塊的資訊暫時複製存放到外部的其他地方,然後刪去整個區塊的資料,然後再把區塊資料複製回來,同時把要更改的內容寫進去。

也就是說,即使只是要改寫 1 位元的內容,也必須將整個區塊的資料都刪除掉才行。因為必須一次刪除廣大範圍的資料,所以被取了「快閃」這個名字。

快閃記憶體的主要用途是 USB 記憶體或 SSD 等資料儲存裝置。圖/pexels

不過,寫入資料時是一次寫入一整頁資料,所以寫入速度比 NOR 型還要快。

若比較 NOR 型與 NAND 型,會發現 NOR 型的優點是讀取較快,資料的可靠度較高。所以像是家電的微處理器、含有簡單程式的記憶體等裝置,對讀取的需求大於寫入,便會採用 NOR 型快閃記憶體。雖然容量不大,寫入較慢,但這些裝置幾乎不會進行寫入動作,所以高可靠度、較快的讀取速度對它們來說比較重要。

然而,快閃記憶體的主要用途是 USB 記憶體或 SSD 等資料儲存裝置,常需改寫儲存單元內的資料。此時,NAND 型的高聚積化就會是很大的優點。因此 NAND 型目前才是快閃記憶體的主流。

——本文摘自《圖解半導體:從設計、製程、應用一窺產業現況與展望》,2022 年 11 月,台灣東販出版,未經同意請勿轉載。

台灣東販
5 篇文章 ・ 1 位粉絲
台灣東販股份有限公司是在台灣第1家獲許投資的國外出版公司。 本公司翻譯各類日本書籍,並且發行。 近年來致力於雜誌、流行文化作品與本土原創作品的出版開發,積極拓展商品的類別,期朝全面化,多元化,專業化之目標邁進。