0

0
0

文字

分享

0
0
0

懸日:夕陽的浪漫突進,現代的天文街景

活躍星系核_96
・2020/08/12 ・1414字 ・閱讀時間約 2 分鐘
  • 文/王均豪

“I figured let the traffic stop, because the people want to drink in the cosmos.” ─Neil deGrasse Tyson(影片

每隔一段時間,你可能會看到有人聚集在西門的峨嵋街或是忠孝東西路上,架起一台台相機對著大樓之間的那片天空拍照。直到日暮時分,太陽進入大樓之間,宛如懸掛在街道的盡頭,浪漫美景誘導人們按下相機的快門。這就是現代美景「懸日」。

攝影/王均豪

懸日就是夕陽?

「我拍的懸日都不朝大樓之間的方向拍攝,我都是去海邊拍,少了一股車水馬龍的味道,改用海景提味。橙紅色的太陽照印整片天空,真的美。」
『那就是夕陽了吧。』
「不是夕陽,這懸日,拍起來跟夕陽有90%像。」
『這就是夕陽啊幹!』

懸日其實就是夕陽,當太陽與地表間的夾角愈來愈小,陽光必須透過較厚的大氣才能被我們看到。因為「瑞利散射」的原故,短波長的藍光已在途中散射開來,沒有辦法達到遠方觀察者的眼睛,剩下長波長的橙紅色陽光抵達我們的眼底,因此黃昏時分的夕陽渲染整片天空會顯出橙紅色的光芒,這就是一般常見的夕陽。

圖/visualhunt

曼哈頓懸日:曼哈頓加巨石陣

明明就是夕陽,那為何我們要給這個夕陽特別的稱呼?這就要從曼哈頓懸日的命名說起。曼哈頓懸日(Manhattanhenge)是由天文物理學家 Neil deGrasse Tyson 在 2002 年所命名,他將曼哈頓(Manhattan)與巨石陣(Stonehenge)兩個單字結合,來稱呼這種夕陽恰好懸掛於樓與樓間的美景,而在中文裡,我們則稱之為懸日。

怎麼會想用巨石陣來替懸日命名?其實這個靈感是來自於 Neil deGrasse Tyson 小時候,他參觀了巨石陣,當時是由天文物理學家 Gerald Hawkins 負責導覽。Gerald Hawkins 推測巨石陣有可能是古代的天文觀測台,並且也將這個想法寫於他的書《Stonehenge Decoded》(暫譯:巨石陣解碼)之中,這令 Neil deGrasse Tyson 在 2002 年拍下第一張懸日照片時獲得了聯想。

如果巨石陣是古人的天文觀測台,那麼現代才有的高樓大廈就成為了我們的觀測台。

台北哪裡看得到懸日?

依中央氣象局所公布的懸日預報,2020 年的懸日將出現在西門的峨嵋街以及台北新生高架橋以西的忠孝東西路段,時間分別會在 8 月 7 到 9 日與 10 到 12 日兩個時段。

在欣賞或拍攝懸日的時候要注意不能用肉眼直視太陽過久,與任何觀測有關太陽的活動一樣,直視太久會造成眼睛損害,建議可以透過鏡頭或其他觀測工具觀看。

拍攝時也必須注意安全,為了讓夕陽恰好出現在照片的中間,拍攝者必須站在馬路中央才能拍得到,不過同時得避開來來去去的車子。建議可以在天橋或是西門徒步區這種不會有車子經過的地方拍攝。

 

「讓它落下/讓我放下/我沒放下/我想放下。」
欸不是,等等,我還沒拍完,先不要落下。

自古以來太陽東升西落,夕陽已經不是什麼稀奇的事,但懸日是現代社會才能見到的美景。在都市高樓林立之間出現的太陽、被抹上橙紅色的街景,懸日是自然與人文的結合,它讓忙碌的街景停滯,享受現代的天文觀測。

參考資料

  1. WIKI – 曼哈頓懸日
  2. 報天文 – 中央氣象局 (FB粉絲專頁)
  3.  Neil deGrasse Tyson 採訪影片
  4. Neil deGrasse Tyson 影片

編按:原描述 Neil deGrasse Tyson 獲得曼哈頓懸日靈感之文字有所誤植,已修改。(2020/8/21)

文章難易度
活躍星系核_96
759 篇文章 ・ 70 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

1
0

文字

分享

0
1
0

災難片成真!?小行星「貝努」行蹤飄忽,撞地球的機率有多大?

EASY天文地科小站_96
・2021/09/19 ・2765字 ・閱讀時間約 5 分鐘
  • 文/陳子翔(現就讀師大地球科學系, EASY 天文地科團隊創辦者)

知名物理學家史蒂芬.霍金(Stephen Hawking)認為,小行星撞擊是宇宙中高等智慧生命最大的威脅之一。而回首地球的過去,六千五百萬年前的白堊紀末期,造成恐龍消失的生物大滅絕,也肇因於一顆直徑約十公里的小行星撞擊。那麼,我們應該擔心小行星帶來如同災難片場景的巨大浩劫嗎,人類又能為這件事做什麼準備呢?

我們該擔心哪些小行星,小行星撞擊能被預測嗎?

太陽系中的小行星不可勝數,但並非所有小行星都對於地球有潛在的危害。那麼,哪些小行星是應該注意的呢?

我們可以簡單從兩個條件,篩選出對地球有潛在威脅的小行星:第一是小行星的軌道,第二則是小行星的大小。如果一個天體的運行軌道與地球的運行軌道沒有交會,那也就不需要擔心它會部會撞到地球了。而直徑越大的小行星,撞擊地球產生的災害就會越大,例如一顆直徑 10 公尺的小行星墜落能造成小範圍的建築物受損,而直徑 50 公尺的小行星撞擊,其威力則足以摧毀整座大型城市。

https://upload.wikimedia.org/wikipedia/commons/thumb/5/59/Chelyabinsk_meteor_event_consequences_in_Drama_Theatre.jpg/1024px-Chelyabinsk_meteor_event_consequences_in_Drama_Theatre.jpg
2013 年俄羅斯車里亞賓斯克小行星墜落事件,隕石在空中爆炸的震波震碎大片玻璃。圖/Nikita Plekhanov

過去天文學家透過遍布世界的天文台,不斷在夜空中尋找近地小天體,並持續監測它們的動向。而透過觀測資料推算其軌道,就可以算出這些危險的小鄰居未來與地球發生「車禍」的機率有多大,而這篇文章的主角「貝努」,就是一顆被認為有較大機會撞擊地球,因此被重點關注的對象。

貝努撞地球會是未來的災難嗎?

貝努在 1999 年被發現,是一顆直徑約 500 公尺的小行星,它以橢圓軌道繞行太陽,公轉週期大約 437 天。由於貝努的軌道與地球相當接近,它每隔幾年就會接近地球一次,而本世紀貝努最接近我們的時刻將會發生在西元 2060 年,不過別擔心,該年貝努與地球最接近時,距離預計也還有七十萬公里,大約是地球至月球距離的兩倍,撞擊風險微乎其微。

綠色為地球軌道,藍色為貝努軌道。圖/University of Arizona

然而天文學家真正關注,撞擊風險較大的接近事件則會發生在下一個世紀。根據目前的軌道計算,貝努在西元 2135 年和 2182 年的兩次接近,會有較大的撞擊風險。說到這裡可能許多讀者會覺得,既然我們都活不到那個時候,何必去操心那些根本遇不到的事情呢?

那麼,讓我們想像一個情境:

如果今天天文學家突然發現了一顆與貝努一樣大的小行星,並算出它將在一年後撞上地球,那身為這個星球上「最有智慧的物種」,我們能怎麼應對呢?

很遺憾的:我們很可能對於撞擊束手無策。當前人類並沒有任何成熟的技術,能夠在這麼短的時間內改變小行星的軌道。這時候人們可能就會希望前人早點望向星空,調查小行星,好讓人們能夠有多一百年的時間準備應對的方法了!

小行星軌道計算不就是簡單的牛頓力學,為什麼算不準?

那麼貝努在未來 100〜200 年到底會不會撞擊地球呢?其實天文學家也說不太準,只能給出大概的機率而已,而且時間越久,預測的不確定性就越大。

你也許會想,天體的運行軌道不就只是簡單的牛頓力學,三百年前的人就已經掌握得很好了,在電腦科技發達的現代怎們會算不準呢?確實,如果要算地球與火星在 100 年後的相對位置,那電腦還能輕鬆算出相當精確的答案,但如果是計算小行星 100 年後的位置,事情就變得棘手多了……

由於小行星的質量很小,就算是相對微小的引力干擾還是足以改變其運行方向,而混沌理論(Chaos theory)告訴我們,任何微小的初始條件差異,都能造成結果極大的不同。因此要對小行星軌道做長期預測,就不能只考慮太陽的引力,而是必須把行星等其他天體的引力也納入計算,才能獲得比較準確的結果。尤其是當這些小行星與地球擦肩而過時,即使只有幾百公尺的位置偏差,受到的引力也會有相當的不同,使得小行星的未來軌跡出現巨大的差異。

而更令天文學家們頭痛的是,有些問題甚至不是萬有引力能夠解決的,其中一個因子就是「亞爾科夫斯基效應」(Yarkovsky Effect)。這個效應是這樣的:當陽光照在自轉中的小行星上,陽光會加熱小行星的受光面,而被加熱的這一面轉向背光面時,釋放的熱能會像是小小的火箭引擎一樣推動小行星。這個作用的推力非常小,但長期下來還是足以對質量很小的天體造成軌跡變化,也讓軌道預測多了很大的不確定性。

亞爾科夫斯基效應的動畫。影片/NASA

OSIRIS-REx 任務揭露貝努的神秘面紗,也讓軌道推估更精確

為了更深入了解貝努,NASA 在 2016 年發射 OSIRIS-REx 探測器探查這顆小行星。OSIRIS-REx 主要的任務包括從貝努表面採取樣本並送回地球分析、對整顆小行星做完整的調查,以及評估各種影響貝努運行軌道的因子,改善貝努軌道的預測模型,評估將來的撞擊風險。

在軌道分析方面,OSIRIS-REx 一方面能在環繞貝努的過程中緊盯貝努的「一舉一動」,讓天文學家透過精確的觀測結果反推貝努的軌道特性。另一方面,要評估亞爾科夫斯基效應對小行星軌道的影響,也需要考量小行星的地形地貌、反照率等等因素,因此 OSIRIS-REx 的各項觀測資料,也有助於建立更精確的軌道預測模型。

OSIRIS-REx 探測器。圖/University of Arizona/NASA Goddard Space Flight Center

目前 OSIRIS-REx 的任務還沒有結束,但是在取得更準確的軌道預測模型與撞擊風險評估上,已經有了初步的成果。根據這次任務提供的觀測資料,天文學家將預測貝努未來軌道的時間極限,從原本的西元 2200 年延長至 2300 年。而西元2300年之前,貝努撞上地球的機率大約是 0.057% (1/1750),最危險的一次接近則會發生在西元 2182 年

「知己知彼,百戰不殆」。面對像貝努這樣的危險鄰居,唯有盡可能認識它的一切,才越能夠掌握其未來的動向,進而在將來思考要如何面對小行星的撞擊的風險。另外,目前 OSIRIS-REx 也正在返航地球的旅途上,期待 2023 年 OSIRIS-REx 能順利的帶著貝努的樣本回到地球,帶給我們更多有關小行星的重要資訊!

參考資料

EASY天文地科小站_96
4 篇文章 ・ 7 位粉絲
EASY 是由一群熱愛地科的學生於2017年創立的團隊,目前主要由研究生與大學生組成。我們透過創作圖文專欄、文章以及舉辦實體活動,分享天文、太空與地球科學的大小事
網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策