0

6
4

文字

分享

0
6
4

海和天為什麼是藍的?——水的散射│環球科學札記(25)

張之傑_96
・2021/05/05 ・1590字 ・閱讀時間約 3 分鐘 ・SR值 440 ・四年級

  • 作者 / 張之傑

我們這趟環球之旅,很少遇到陰雨天氣,特別是在紅海和地中海期間,晴空無雲,天藍得透亮,沒有一點兒雜質;海藍得像面鏡子,閃耀著藍寶石似的光影。

若干年長或行動不便的乘客,喜歡鎮日坐在八樓長廊的沙發上,望著舷窗外的碧海藍天打發時光。我常帶著筆電在八樓長廊寫作,累了就眺望著海天一色的海平線。由於地球是圓的,海平線以一個很大的弧度中消失在視線中。

海和天為什麼是藍色的?這和散射有關。陽光射到地球,會碰到空氣和懸浮在空中的小水珠(雲),使得天空的顏色經常展現變化。晴天的時候,射到地球上的光線碰到空氣中的氮分子或氧分子,就會引起散射作用,藍光的波長較紅光短,散射得較厲害,看在我們眼裡,天空就成為藍色的。

這個道理看起來好像很簡單,但是人類明白這個道理是十九世紀末葉的事。一八七三年,英國物理學家瑞利(Lord Rayleigh)是第一位看天看出名堂的人。他的散射理論——瑞利散射,使我們了解了天色的秘密。

-----廣告,請繼續往下閱讀-----
瑞利像。圖/wikipedia

在陽光的七種色光中,紅、橙、黃光的波長較長,藍、靛、紫光的波長較短。所謂波長,就是兩個波峯間的距離;而波峯,是指物質振動最大的地方。舉個例子,當我們扔一塊石頭到水裡,會激起一圈圈漣漪。兩圈漣漪間的距離就是波長。當然啦,光波的波長比漣漪的波長小得多了,波長最長的紅光,不過十萬分之七、八公分,藍光不過十萬分之四、五公分而已。

瑞利發現,散射不會改變射入光的波長,只會改變射入光的方向。那麼散射又怎麼會造成天空的各種顏色呢?原來散射的作用截面,既與散射粒子的大小有關,也與被散射光的波長有關。空氣中的氧分子、氮分子,大小恰好可以散射波長較短的藍光,藍光散了一天,天空當然呈藍色的。

到了傍晚,夕陽西下,陽光打斜裡射過來,較接近地面,而地面的空氣含有較多的水氣和灰塵,粒子比氧分子、氮分子大得多,較容易散射波長較長的紅光、橙光或黃光,艷麗的晚霞就是這樣散射出來的。

如果天上水浮著小水滴,也就是雲,那又是另一種景象。小水滴比灰塵大得多,各種波長的色光都能被它散射,結果,雲就成了白色的。如果雲層較厚較密,陽光穿不過去,就變成了灰色或黑色。白雲蒼狗,不過是陽光玩的把戲而已!

-----廣告,請繼續往下閱讀-----

當雲聚成雨滴的時候,顆粒就更大了,大得具有稜鏡的作用。倘若一邊已經出太陽,一邊還在下雨,陽光穿過雨滴,就會形成我們看到的虹。噴泉和瀑布上也可以出現虹,原理是一樣的。此次環球之旅,我們看到過幾次彩虹,印象最深刻的一次是在復活節島。公路靠海的一側,忽然出現拱門似的彩虹,距離我們目測不到五十公尺。站在彩虹下照相,宛如置身彩虹之下呢!

陽光照到水裡,又是一番景況。較深的水都是藍色的。水原本透明無色,水分子的大小可讓波長較長的紅色繞過去,而波長較短的藍光被散射,所以較深的水莫不是藍色的。水愈深,散射、反射的藍光就愈多,看起來就愈藍了。

同樣是水,為什麼海是藍的,而浪花卻是白的?為什麼驚濤拍岸,會捲起千堆雪?道理很簡單,所謂浪花,其實就是小水滴,可以散射各種波長的光,所以浪花就和白雲一樣,變成白色的了。

就像看天一樣,人類真正懂得看海也是晚近的事。印度物理學家拉曼(Sir Chandrasekhara Raman),從印度搭船去英國。天連海、海連天的景況,使他悟出海水和天空的顏色,都是光線散射所造成的。一九二一年,拉曼在英國《自然》上發表了一篇論文,提出他的散射理論,題目是〈海的顏色〉。古今中外,多少人有過「看海的日子」,卻只有拉曼獨具智眼,看出別人看不出的道理。

-----廣告,請繼續往下閱讀-----
拉曼像。圖/wikipedia
-----廣告,請繼續往下閱讀-----
文章難易度
張之傑_96
115 篇文章 ・ 227 位粉絲
張之傑,字百器,出入文理,著述多樣,其中以科普和科學史較為人知。

0

0
0

文字

分享

0
0
0
停工即停薪:如何證明你的時間值多少?車禍背後的認知 x 情緒 x 金錢 x 法律大混戰
鳥苷三磷酸 (PanSci Promo)_96
・2026/01/09 ・3286字 ・閱讀時間約 6 分鐘

本文與 PAMO車禍線上律師 合作,泛科學企劃執行

走在台灣的街頭,你是否發現馬路變得越來越「急躁」?滿街穿梭的外送員、分秒必爭的多元計程車,為了拚單量與獎金,每個人都在跟時間賽跑 。與此同時,拜經濟發展所賜,路上的豪車也變多了 。

這場關於速度與金錢的博弈,讓車禍不再只是一場意外,更是一場複雜的經濟算計。PAMO 車禍線上律師施尚宏律師在接受《思想實驗室 video podcast》訪談時指出,我們正處於一個交通生態的轉折點,當「把車當生財工具」的職業駕駛,撞上了「將車視為珍貴資產」的豪車車主,傳統的理賠邏輯往往會失靈 。

在「停工即停薪」(有跑才有錢,沒跑就沒收入)的零工經濟時代,如果運氣不好遇上車禍,我們該如何證明自己的時間價值?又該如何在保險無法覆蓋的灰色地帶中全身而退?

-----廣告,請繼續往下閱讀-----
如果運氣不好遇上車禍,我們該如何證明自己的時間價值?/ 圖片來源: Nano Banana

薪資證明的難題:零工經濟者的「隱形損失」

過去處理車禍理賠,邏輯相對單純:拿出公司的薪資單或扣繳憑單,計算這幾個月的平均薪資,就能算出因傷停工的「薪資損失」。

但在零工經濟時代,這套邏輯卡關了!施尚宏律師指出,許多外送員、自由接案者或是工地打工者,他們的收入往往是領現金,或者分散在多個不同的 App 平台中 。更麻煩的是,零工經濟的特性是「高度變動」,上個月可能拚了 7 萬,這個月休息可能只有 0 元,導致「平均收入」難以定義 。

這時候,律師的角色就不只是法條的背誦者,更像是一名「翻譯」。

施律師解釋「PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言。」 這包括將不同平台(如 Uber、台灣大車隊)的流水帳整合,或是找出過往的接單紀錄來證明當事人的「勞動能力」。即使當下沒有收入(例如學生開學期間),只要能證明過往的接單能力與紀錄,在談判桌上就有籌碼要求合理的「勞動力減損賠償 」。

-----廣告,請繼續往下閱讀-----
PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言 / 圖片來源: Nano Banana

300 萬張罰單背後的僥倖:你的直覺,正在害死你

根據警政署統計,台灣交通違規的第一名常年是「違規停車」,一年可以開出約 300 萬張罰單 。這龐大的數字背後,藏著兩個台灣駕駛人最容易誤判的「直覺陷阱」。

陷阱 A:我在紅線違停,人還在車上,沒撞到也要負責? 許多人認為:「我人就在車上,車子也沒動,甚至是熄火狀態。結果一台機車為了閃避我,自己操作不當摔倒了,這關我什麼事?」

施律師警告,這是一個致命的陷阱。「人在車上」或「車子沒動」在法律上並不是免死金牌 。法律看重的是「因果關係」。只要你的違停行為阻礙了視線或壓縮了車道,導致後方車輛必須閃避而發生事故,你就可能必須背負民事賠償責任,甚至揹上「過失傷害」的刑責 。 

數據會說話: 台灣每年約有 700 件車禍是直接因違規停車導致的 。這 300 萬張罰單背後的僥倖心態,其巨大的代價可能是人命。

-----廣告,請繼續往下閱讀-----

陷阱 B:變換車道沒擦撞,對方自己嚇到摔車也算我的? 另一個常年霸榜的肇事原因是「變換車道不當」 。如果你切換車道時,後方騎士因為嚇到而摔車,但你感覺車身「沒震動、沒碰撞」,能不能直接開走?

答案是:絕對不行。

施律師強調,車禍不以「碰撞」為前提 。只要你的駕駛行為與對方的事故有因果關係,你若直接離開現場,在法律上就構成了「肇事逃逸」。這是一條公訴罪,後果遠比你想像的嚴重。正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。

正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。/ 圖片來源: Nano Banana

保險不夠賠?豪車時代的「超額算計」

另一個現代駕駛的惡夢,是撞到豪車。這不僅是因為修車費貴,更因為衍生出的「代步費用」驚人。

-----廣告,請繼續往下閱讀-----

施律師舉例,過去撞到車,只要把車修好就沒事。但現在如果撞到一台 BMW 320,車主可能會主張修車的 8 天期間,他需要租一台同等級的 BMW 320 來代步 。以一天租金 4000 元計算,光是代步費就多了 3 萬多塊 。這時候,一般人會發現「全險」竟然不夠用。為什麼?

因為保險公司承擔的是「合理的賠償責任」,他們有內部的數據庫,只願意賠償一般行情的修車費或代步費 。但對方車主可能不這麼想,為了拿到這筆額外的錢,對方可能會採取「以刑逼民」的策略:提告過失傷害,利用刑事訴訟的壓力(背上前科的恐懼),迫使你自掏腰包補足保險公司不願賠償的差額 。

這就是為什麼在全險之外,駕駛人仍需要懂得談判策略,或考慮尋求律師協助,在保險公司與對方的漫天喊價之間,找到一個停損點 。

談判桌的最佳姿態:「溫柔而堅定」最有效?

除了有單據的財損,車禍中最難談判的往往是「精神慰撫金」。施律師直言,這在法律上沒有公式,甚至有點像「開獎」,高度依賴法官的自由心證 。

-----廣告,請繼續往下閱讀-----

雖然保險公司內部有一套簡單的算法(例如醫療費用的 2 到 5 倍),但到了法院,法官會考量雙方的社會地位、傷勢嚴重程度 。在缺乏標準公式的情況下,正確的「態度」能幫您起到加分效果。

施律師建議,在談判桌上最好的姿態是「溫柔而堅定」。有些人會試圖「扮窮」或「裝兇」,這通常會有反效果。特別是面對看過無數案件的保險理賠員,裝兇只會讓對方心裡想著:「進了法院我保證你一毛都拿不到,準備看你笑話」。

相反地,如果你能客氣地溝通,但手中握有完整的接單紀錄、醫療單據,清楚知道自己的底線與權益,這種「堅定」反而能讓談判對手買單,甚至在證明不足的情況下(如外送員的開學期間收入),更願意採信你的主張 。

車禍不只是一場意外,它是認知、情緒、金錢與法律邏輯的總和 。

在這個交通環境日益複雜的時代,無論你是為了生計奔波的職業駕駛,還是天天上路的通勤族,光靠保險或許已經不夠。大部分的車禍其實都是小案子,可能只是賠償 2000 元的輕微擦撞,或是責任不明的糾紛。為了這點錢,要花幾萬塊請律師打官司絕對「不划算」。但當事人往往會因為資訊落差,恐懼於「會不會被告肇逃?」、「會不會留案底?」、「賠償多少才合理?」而整夜睡不著覺 。

-----廣告,請繼續往下閱讀-----

PAMO看準了這個「焦慮商機」, 推出了一種顛覆傳統的解決方案——「年費 1200 元的訂閱制法律服務 」。

這就像是「法律界的 Netflix」或「汽車強制險」的概念。PAMO 的核心邏輯不是「代打」,而是「賦能」。不同於傳統律師收費高昂,PAMO 提倡的是「大腦武裝」,當車禍發生時,線上律師團提供策略,教你怎麼做筆錄、怎麼蒐證、怎麼判斷對方開價合不合理等。

施律師表示,他們的目標是讓客戶在面對不確定的風險時,背後有個軍師,能安心地睡個好覺 。平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。

平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。 / 圖片來源: Nano Banana

從違停的陷阱到訂閱制的解方,我們正處於交通與法律的轉型期。未來,挑戰將更加嚴峻。

-----廣告,請繼續往下閱讀-----

當 AI 與自駕車(Level 4/5)真正上路,一旦發生事故,責任主體將從「駕駛人」轉向「車廠」或「演算法系統」 。屆時,誰該負責?怎麼舉證?

但在那天來臨之前,面對馬路上的豪車、零工騎士與法律陷阱,你選擇相信運氣,還是相信策略? 先「武裝好自己的大腦」,或許才是現代駕駛人最明智的保險。

PAMO車禍線上律師官網:https://pse.is/8juv6k 

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
1

文字

分享

0
1
1
米式散射:野火警訊與光子計算機
顯微觀點_96
・2024/06/10 ・4597字 ・閱讀時間約 9 分鐘

本文轉載自顯微觀點

野火懸浮粒子導致大量米氏散射現象

野火燭天的兩種散射

2020 年 9 月 8 日早晨,美國加州舊金山居民準備開始新的一天,他們拉開窗簾、打量天色,無不屏息失措。理應湛藍乾爽的天空,被染成濃厚的橘紅色,四下黯淡如黃昏,彷彿啟示錄降臨。

詭譎光景來自數百公里外的野火。猛烈擴散的山間火勢搭配風向,將懸浮微粒吹送到舊金山所在的灣區空中,進而散射陽光,改變天色。這片昏黃天空蘊藏的散射不只一種,其光學原理還能應用於精密的超解析顯微術和光子電腦。

Smoky Fires At Golden Gate Bridge
圖/Unsplash

平常人眼所見的藍天,並非陽光或空氣粒子本身的顏色,而是來自「散射(scattering)」:光子與粒子碰撞,改變行進方向。我們生活中接觸的散射大多為下列兩種:「瑞利散射(Rayleigh scattering)」與「米氏散射(Mie scattering)」。

-----廣告,請繼續往下閱讀-----

「瑞利散射」來自光照射直徑遠小於光波長的粒子(通常小於光波長的 1/10)。當光照射到這種小粒子,會向四面八方散射。光波長越短,向周遭散射強度越大。

如短波長的藍光,散射強度大於紅光。紫光的波長雖短於藍光,但人眼對紫光較為遲鈍,因此會看到蔚藍的天空。

陽光中的藍、紫光向四周散射消耗的程度較高,紅、黃光散射量較低,較能保留在原入射方向上。因此晨昏直視日頭時,會看見燦爛的橘黃色(實際上太陽發出的是白光)。

「米氏散射」則發生於光照射直徑接近或略大於光波長的粒子,主要散射方向會維持原本入射方向。不同於瑞利散射的是,米氏散射的強度與光波長沒有固定關係。

-----廣告,請繼續往下閱讀-----

但在粒子大小接近入射光波長時,會發生名為米氏共振(Mie resonance)的共振增強現象,沿著原方向散射的光線比入射光更強,而且是非線性的增強關係。

討論散射時,(顆粒)大小很重要

大氣層中的空氣分子大小約 1 奈米,遠小於可見光波長(360~760 奈米)。含有各種波長光線的陽光,進入大氣層、照射空氣分子,將發生瑞利散射:將光向四周散射。

單憑日常可見的瑞利散射,不足以造成籠罩加州天空的末世光景,還需要機緣巧合之下的米氏散射。

米氏散射的發生條件,是受照射粒子的直徑與入射光波長相近。

-----廣告,請繼續往下閱讀-----

野火懸浮微粒遠大於空氣分子,直徑可從 100 奈米分布至超過 2500 奈米。而直徑 300~1000 奈米的微粒能在大氣中懸浮最久,不易沉降或擴散離開大氣,具有從山野間長途飄盪至都會區的能力。

而可見光波長 360~760 奈米,恰好與都會上空的野火懸浮微粒直徑(300~1000 奈米)相近,達成米氏散射的恰當條件。

當懸浮微粒直徑與光波長相當時,米氏共振現象加強橘紅光向前散射,同時空氣分子的瑞利散射持續將藍綠光向周遭散射。因此在地面上的人們會看到更強的橘紅光、更少的藍綠光,在眼中交織出濃郁不祥的天色。

米氏共振的知識,不只能為我們驅除對橘紅天空的疑懼,還可能推進尖端科技發展。透過光與特定尺寸的粒子產生米氏共振,大幅散射/吸收光線,科學家得以操縱光學「非線性」,在訊號傳遞上超越既有科技。

-----廣告,請繼續往下閱讀-----

「非線性」的力量:米氏共振

「非線性」指輸入和輸出訊號之間的關係不呈線性。例如輸入訊號加倍,輸出訊號不變或暴增數十倍,都是非線性的表現。輸入和輸出訊號偏離線性關係的程度,就稱為非線性的大小。

具有非線性的媒介,經常成為資訊科技的核心元件。例如電晶體核心機制,就是透過電子訊號的「非線性」表現,來達到「以電控制電」的閘門效果。通常媒介的非線性愈大,作為閘門的效果會愈好。

臺大物理系教授朱士維團隊利用連續波雷射,測試不同材料、尺寸、形狀的奈米粒子,發現許多光學非線性現象,其中蘊含超乎預期地巨大的光學非線性。

朱士維團隊研究米氏共振與光熱光學效應(photo-thermo-optical effect)交織的情境,以操縱、擴大光學非線性。近十年來,他們已在自然通訊(Nature Communications)等重要期刊上發表多篇論文,領先國際。

-----廣告,請繼續往下閱讀-----

材料吸收入射光的能量,使溫度上升為光熱效應;材料的折射率因此改變,進而影響吸收或散射的程度則為光學效應。

米氏共振實驗則是操縱材料尺寸:高折射率材料縮小到約百奈米時,特定波長的入射光會因為共振效應,產生該材料原本不會發生的強吸收或強散射(即米氏散射),呈現新的光學特性。

金懸浮液的不同顏色大圖
不同尺寸金奈米粒子的懸浮液,發出從紫色到紅色的不同散射光。圖/Wikimedia

金、銀與電晶體中的矽,這些高折射率材料形成奈米結構後,不再呈現一般顏色。原本黃澄耀眼的黃金,以奈米結構照光,會呈現令人驚訝的紅或藍色光澤。

朱士維團隊發現,若以用矽製作成奈米方塊,可以透過長寬比例來調整米氏共振效果。某些尺寸的矽晶體會有特別強的吸收,光熱效應更加明顯,溫度劇烈上升,進而大幅改變折射率。

-----廣告,請繼續往下閱讀-----

單憑光熱效應,能提升奈米矽晶體的非線性 3 到 4 個數量級,透過米氏共振能夠再提升 3 到 5 個數量級。如此可以導致散射光頻率大幅偏離入射光,帶來巨大光學非線性。

如此一來,原本光學非線性微弱的矽,可以得到遠高於一般材料的光學非線性,而且僅需奈秒等級的反應時間,便能成為效率更勝電晶體的全光學開關(All-optical switch),在計算機中發揮光訊號閘門的功能。

儘管是半導體產業的最主要材料,矽製電晶體正面臨電路尺寸與運算速度的極限。若以光取代電子傳輸訊號,可能提升資料處理速度,縮減晶體尺寸,構成運算速度更快、體積更小的光子計算機。奈米矽晶體的光學性質是此實現趨勢的關鍵知識。

從扭曲中看見超解析影像:飽和激發顯微術(SAX)

光學非線性除了應用在全光學開關外,也可以應用在超解析顯微成像:飽和激發顯微術(SAturated eXcitation microscopy, SAX)。

-----廣告,請繼續往下閱讀-----

當雷射光聚焦掃描奈米粒子,其成像會呈現中心強周邊弱的高斯分佈。隨著雷射的強度升高,非線性現象會發生在散射光強度最高的中心位置,使映射出的影像扭曲變形。

光學非線性使觀測者無法看清顯微影像,但科學家找到了提升成像解析度的方法:辨別目標中心變形部分(非線性訊號)與周邊(線性訊號)的散射頻率差異。

SAX 顯微術的原理,是在入射光源中加上單一頻率 fm 的強度調變,若粒子與光之間只有線性效應,散射訊號將會展現出符合入射光的基頻 fm。

若非線性效應出現,散射訊號將會偏離線性、產生更高頻的諧頻訊號,經傅立葉頻譜轉換會出現 2fm、3fm 的高階諧頻。

若以「無線電波載送特定音頻」進行類比:入射光是無線電波,fm 是其載送的音頻。目標被此無線電波擊中後,散射出的音頻訊號頻率倍增;偵測此高頻訊號便能得知目標的位置。

在奈米層級,科學家藉由辨識基頻與高階諧頻的散射訊號,探測光學線性與非線性訊號的空間分布,將影像解析度提升到繞射極限以上。而且 SAX 顯微術毋須對樣本標記或染色,擺脫了多數當代超解析顯微技術的基礎需求。

Sax諧頻訊號可以大幅提升解析度
圖 1. 米氏共振說明。圖/朱士維博士

圖 1.(a) 中有兩顆金奈米粒子,其間距小於繞射極限,fm 訊號成像無法有效分辨兩者。SAX 的 2fm 高階諧頻成像,則可以分辨兩個奈米粒子的位置。而圖 1.(b) 呈現單顆矽奈米方塊,fm 基頻訊號成像較為模糊,SAX 的 2fm 成像縮小許多,解析度大幅提升。

光學技術新維度:移位共振

2023 年,朱士維與跨國學者合作,在米氏光學基礎上得到進一步發現:聚焦光斑(雷射聚焦形成的光點,laser focal spot)尺寸若與被照射的奈米粒子相近,調整光斑與奈米粒子的距離,會出現嶄新的共振型態,名為「移位共振」(displacement resonance)。

移位共振
圖 2. 移位共振說明。圖/朱士維博士

圖 2.(A) 展示了移位共振發生於立方粒子邊長(w)與移位(d)都接近聚焦光斑(FWHM)大小時。圖 2.(B) 則表現出寬度接近聚焦光斑大小的奈米矽粒子,會在距離粒子中心約一個雷射聚焦光斑寬度處,展現散射極大值。圖 2.(C) 以暗視野顯維術觀察奈米矽粒子,可以發現散射最強處位於粒子中心,符合米氏散射理論。若以高強度雷射掃描相同粒子,會發現最強散射位置在粒子周邊,得到如圖 2.(D) 的不同明暗分布,可以發展為光學開關的調控機制。

這一系列實驗以飽和激發(focused excitation)探索光學共振的新維度——移位(displacement)——以雷射光聚焦照射奈米粒子中心與其周邊,並觀察粒子與聚焦光斑尺寸、偏差距離的多種變化組合,探測產生新型共振的條件。

如前所述,光與奈米粒子的交互作用(吸收與散射)最強的配置,傳統認知上是以聚焦光斑對正奈米粒子中央,可以得到最明顯的散射。但是朱士維與合作團隊發現,特定大小的聚焦光斑與奈米粒子稍有偏差時,會檢測到意外的散射光極大值,而且散射位置並非粒子中心,而在偏移大約 100 奈米處!

利用「移位共振」的新現象,可以透過調整聚焦光斑,將光學開關從正向變成負向。利用百奈米的位移調整光學開關符號的可能性,是過往科學家從未想像的。

同時,實驗團隊也發現吸收效率也受移位共振影響,將聚焦光斑與奈米粒子中心錯開,可以得到最高效率的光熱效應。此知識將有助於加速奈米矽晶體的光學非線性反應速度。

從懸浮粒子帶來的奇幻天色、毋須螢光標記的飽和激發顯微術,到可能構成超快光子計算機的全光學開關;隨著實驗與材料製備技術的進步,光學脫離了「落伍物理學」的蒙塵櫥窗,再度為人類照亮科技進步的可能性。

參考資料

  • 《物理雙月刊》:「用光控制光」:以奈米材料大幅增強光學非線性
  • SMC 資料庫:「森林大火為什麼會導致天空變成橘紅色?」專家 QA
  • Y.-L. Tang, T.-H. Yen, K. Nishida, C.-H. Li, Y.-C. Chen, T. Zhang, C.-K. Pai, K.-P. Chen, X. Li*, J. Takahara*, and S.-W. Chu, “Multipole engineering by displacement resonance: a new degree of freedom of Mie resonance” Nat. Comm. 14, 7213 (2023)
  • S.-W. Chu, T.-Y. Su, R. Oketani, Y.-T. Huang, H.-Y. Wu, Y. Yonemaru, M. Yamanaka, H. Lee, G.-Y. Zhuo, M.-Y. Lee, S. Kawata, and K. Fujita, “Measurement of a Saturated Emission of Optical Radiation from Gold Nanoparticles: Application to an Ultrahigh Resolution Microscope,” Phys. Rev. Lett. 112, 017402 (2014).

查看原始文章

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

顯微觀點_96
44 篇文章 ・ 10 位粉絲
從細微的事物出發,關注微觀世界的一切,對肉眼所不能見的事物充滿好奇,發掘蘊藏在微觀影像之下的故事。

0

0
0

文字

分享

0
0
0
【成語科學】雨過天青:天空為什麼是藍色的?傍晚的橘紅色天空又是怎麼形成的?
張之傑_96
・2023/10/06 ・1183字 ・閱讀時間約 2 分鐘

-----廣告,請繼續往下閱讀-----

下過雨後,天空藍得透明。這個自然現象,衍生出成語雨過天青,比喻情況由壞轉好。雨過天晴也有同樣的意思,不過仍以雨過天青較為正式。閒話少說,讓我們造兩個句吧。

這事挽救及時,現已雨過天青。

雨過天青,您的事可以放心了。

下過雨後,天空藍得透明。圖/pixabay

這個成語還有個故事呢。有一種瓷器,稱為雨過天青,起源於五代‧後周柴世宗。某日臣子請示,皇家瓷器要燒成什麼顏色?柴世宗隨手批示:「雨過天青雲破處,這般顏色作將來。」工匠經過多次實驗,終於燒製出來,這就是有名的「柴窯」。由於沒有作品傳世,柴窯的真面目已無從查考。

談到這裡,該談談這個成語的意涵了。大雨過後,天空為什麼藍得透明?這是因為空氣中的灰塵隨著雨下降下,空氣較為潔淨的關係。喜歡打破沙鍋問到底的小朋友或許還會問:為什麼空氣潔淨、天就較藍?

這要從天空為什麼呈藍色說起。空氣的成份,主要是氮氣和氧氣。晴天的時候,射到地球上的陽光碰到空氣中的氮分子或氧分子,會引起散射作用。藍光的波長較紅光短,散射得較厲害,看在我們眼裡,天空就成為藍色的。

-----廣告,請繼續往下閱讀-----
藍光的波長較紅光短,散射得較厲害,看在我們眼裡,天空就成為藍色的。圖/pixabay

這個道理看起來好像很簡單,但是人類明白這個道理是 19 世紀末的事。1873 年,英國物理學家瑞利是第一位看天看出名堂的人。他的散射理論——瑞利散射,破解了天色的秘密。

在陽光的七種色光中,紅、橙、黃光的波長較長,藍、靛、紫光的波長較短。空氣中的氧分子、氮分子,大小恰好可以散射波長較短的藍光,藍光散了一天,天空當然呈藍色的。

到了傍晚,夕陽西下,陽光打斜裡射過來,較接近地面,而地面的空氣含有較多的水氣和灰塵,粒子比氧分子、氮分子大得多,較容易散射波長較長的紅光、橙光或黃光,艷麗的晚霞就是這樣散射出來的。

陽光打斜裡射過來,而地面的空氣含有較多的水氣和灰塵,較容易散射波長較長的紅光、橙光或黃光。圖/pixabay

如果天上懸浮著小水滴,也就是雲,那又是另一種景象。小水滴比灰塵大得多,各種波長的色光都能被它散射,結果雲就成為白色的。如果雲層較厚較密,陽光穿不過去,就變成了灰色或黑色。白雲蒼狗,不過是陽光玩的把戲而已!

-----廣告,請繼續往下閱讀-----

當雲聚成雨滴的時候,顆粒就更大了,大得具有稜鏡的作用。倘若一邊已出太陽,一邊還在下雨,陽光穿過雨滴,就會形成彩虹。噴泉和瀑布上也可以出現彩虹,原理是一樣的。

-----廣告,請繼續往下閱讀-----