Loading [MathJax]/extensions/tex2jax.js

0

6
4

文字

分享

0
6
4

海和天為什麼是藍的?——水的散射│環球科學札記(25)

張之傑_96
・2021/05/05 ・1588字 ・閱讀時間約 3 分鐘 ・SR值 440 ・四年級

-----廣告,請繼續往下閱讀-----

  • 作者 / 張之傑

我們這趟環球之旅,很少遇到陰雨天氣,特別是在紅海和地中海期間,晴空無雲,天藍得透亮,沒有一點兒雜質;海藍得像面鏡子,閃耀著藍寶石似的光影。

若干年長或行動不便的乘客,喜歡鎮日坐在八樓長廊的沙發上,望著舷窗外的碧海藍天打發時光。我常帶著筆電在八樓長廊寫作,累了就眺望著海天一色的海平線。由於地球是圓的,海平線以一個很大的弧度中消失在視線中。

海和天為什麼是藍色的?這和散射有關。陽光射到地球,會碰到空氣和懸浮在空中的小水珠(雲),使得天空的顏色經常展現變化。晴天的時候,射到地球上的光線碰到空氣中的氮分子或氧分子,就會引起散射作用,藍光的波長較紅光短,散射得較厲害,看在我們眼裡,天空就成為藍色的。

這個道理看起來好像很簡單,但是人類明白這個道理是十九世紀末葉的事。一八七三年,英國物理學家瑞利(Lord Rayleigh)是第一位看天看出名堂的人。他的散射理論——瑞利散射,使我們了解了天色的秘密。

-----廣告,請繼續往下閱讀-----
瑞利像。圖/wikipedia

在陽光的七種色光中,紅、橙、黃光的波長較長,藍、靛、紫光的波長較短。所謂波長,就是兩個波峯間的距離;而波峯,是指物質振動最大的地方。舉個例子,當我們扔一塊石頭到水裡,會激起一圈圈漣漪。兩圈漣漪間的距離就是波長。當然啦,光波的波長比漣漪的波長小得多了,波長最長的紅光,不過十萬分之七、八公分,藍光不過十萬分之四、五公分而已。

瑞利發現,散射不會改變射入光的波長,只會改變射入光的方向。那麼散射又怎麼會造成天空的各種顏色呢?原來散射的作用截面,既與散射粒子的大小有關,也與被散射光的波長有關。空氣中的氧分子、氮分子,大小恰好可以散射波長較短的藍光,藍光散了一天,天空當然呈藍色的。

到了傍晚,夕陽西下,陽光打斜裡射過來,較接近地面,而地面的空氣含有較多的水氣和灰塵,粒子比氧分子、氮分子大得多,較容易散射波長較長的紅光、橙光或黃光,艷麗的晚霞就是這樣散射出來的。

如果天上水浮著小水滴,也就是雲,那又是另一種景象。小水滴比灰塵大得多,各種波長的色光都能被它散射,結果,雲就成了白色的。如果雲層較厚較密,陽光穿不過去,就變成了灰色或黑色。白雲蒼狗,不過是陽光玩的把戲而已!

-----廣告,請繼續往下閱讀-----

當雲聚成雨滴的時候,顆粒就更大了,大得具有稜鏡的作用。倘若一邊已經出太陽,一邊還在下雨,陽光穿過雨滴,就會形成我們看到的虹。噴泉和瀑布上也可以出現虹,原理是一樣的。此次環球之旅,我們看到過幾次彩虹,印象最深刻的一次是在復活節島。公路靠海的一側,忽然出現拱門似的彩虹,距離我們目測不到五十公尺。站在彩虹下照相,宛如置身彩虹之下呢!

陽光照到水裡,又是一番景況。較深的水都是藍色的。水原本透明無色,水分子的大小可讓波長較長的紅色繞過去,而波長較短的藍光被散射,所以較深的水莫不是藍色的。水愈深,散射、反射的藍光就愈多,看起來就愈藍了。

同樣是水,為什麼海是藍的,而浪花卻是白的?為什麼驚濤拍岸,會捲起千堆雪?道理很簡單,所謂浪花,其實就是小水滴,可以散射各種波長的光,所以浪花就和白雲一樣,變成白色的了。

就像看天一樣,人類真正懂得看海也是晚近的事。印度物理學家拉曼(Sir Chandrasekhara Raman),從印度搭船去英國。天連海、海連天的景況,使他悟出海水和天空的顏色,都是光線散射所造成的。一九二一年,拉曼在英國《自然》上發表了一篇論文,提出他的散射理論,題目是〈海的顏色〉。古今中外,多少人有過「看海的日子」,卻只有拉曼獨具智眼,看出別人看不出的道理。

-----廣告,請繼續往下閱讀-----
拉曼像。圖/wikipedia
-----廣告,請繼續往下閱讀-----
文章難易度
張之傑_96
104 篇文章 ・ 224 位粉絲
張之傑,字百器,出入文理,著述多樣,其中以科普和科學史較為人知。

0

1
0

文字

分享

0
1
0
米式散射:野火警訊與光子計算機
顯微觀點_96
・2024/06/10 ・4597字 ・閱讀時間約 9 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自顯微觀點

野火懸浮粒子導致大量米氏散射現象

野火燭天的兩種散射

2020 年 9 月 8 日早晨,美國加州舊金山居民準備開始新的一天,他們拉開窗簾、打量天色,無不屏息失措。理應湛藍乾爽的天空,被染成濃厚的橘紅色,四下黯淡如黃昏,彷彿啟示錄降臨。

詭譎光景來自數百公里外的野火。猛烈擴散的山間火勢搭配風向,將懸浮微粒吹送到舊金山所在的灣區空中,進而散射陽光,改變天色。這片昏黃天空蘊藏的散射不只一種,其光學原理還能應用於精密的超解析顯微術和光子電腦。

Smoky Fires At Golden Gate Bridge
圖/Unsplash

平常人眼所見的藍天,並非陽光或空氣粒子本身的顏色,而是來自「散射(scattering)」:光子與粒子碰撞,改變行進方向。我們生活中接觸的散射大多為下列兩種:「瑞利散射(Rayleigh scattering)」與「米氏散射(Mie scattering)」。

-----廣告,請繼續往下閱讀-----

「瑞利散射」來自光照射直徑遠小於光波長的粒子(通常小於光波長的 1/10)。當光照射到這種小粒子,會向四面八方散射。光波長越短,向周遭散射強度越大。

如短波長的藍光,散射強度大於紅光。紫光的波長雖短於藍光,但人眼對紫光較為遲鈍,因此會看到蔚藍的天空。

陽光中的藍、紫光向四周散射消耗的程度較高,紅、黃光散射量較低,較能保留在原入射方向上。因此晨昏直視日頭時,會看見燦爛的橘黃色(實際上太陽發出的是白光)。

「米氏散射」則發生於光照射直徑接近或略大於光波長的粒子,主要散射方向會維持原本入射方向。不同於瑞利散射的是,米氏散射的強度與光波長沒有固定關係。

-----廣告,請繼續往下閱讀-----

但在粒子大小接近入射光波長時,會發生名為米氏共振(Mie resonance)的共振增強現象,沿著原方向散射的光線比入射光更強,而且是非線性的增強關係。

討論散射時,(顆粒)大小很重要

大氣層中的空氣分子大小約 1 奈米,遠小於可見光波長(360~760 奈米)。含有各種波長光線的陽光,進入大氣層、照射空氣分子,將發生瑞利散射:將光向四周散射。

單憑日常可見的瑞利散射,不足以造成籠罩加州天空的末世光景,還需要機緣巧合之下的米氏散射。

米氏散射的發生條件,是受照射粒子的直徑與入射光波長相近。

-----廣告,請繼續往下閱讀-----

野火懸浮微粒遠大於空氣分子,直徑可從 100 奈米分布至超過 2500 奈米。而直徑 300~1000 奈米的微粒能在大氣中懸浮最久,不易沉降或擴散離開大氣,具有從山野間長途飄盪至都會區的能力。

而可見光波長 360~760 奈米,恰好與都會上空的野火懸浮微粒直徑(300~1000 奈米)相近,達成米氏散射的恰當條件。

當懸浮微粒直徑與光波長相當時,米氏共振現象加強橘紅光向前散射,同時空氣分子的瑞利散射持續將藍綠光向周遭散射。因此在地面上的人們會看到更強的橘紅光、更少的藍綠光,在眼中交織出濃郁不祥的天色。

米氏共振的知識,不只能為我們驅除對橘紅天空的疑懼,還可能推進尖端科技發展。透過光與特定尺寸的粒子產生米氏共振,大幅散射/吸收光線,科學家得以操縱光學「非線性」,在訊號傳遞上超越既有科技。

-----廣告,請繼續往下閱讀-----

「非線性」的力量:米氏共振

「非線性」指輸入和輸出訊號之間的關係不呈線性。例如輸入訊號加倍,輸出訊號不變或暴增數十倍,都是非線性的表現。輸入和輸出訊號偏離線性關係的程度,就稱為非線性的大小。

具有非線性的媒介,經常成為資訊科技的核心元件。例如電晶體核心機制,就是透過電子訊號的「非線性」表現,來達到「以電控制電」的閘門效果。通常媒介的非線性愈大,作為閘門的效果會愈好。

臺大物理系教授朱士維團隊利用連續波雷射,測試不同材料、尺寸、形狀的奈米粒子,發現許多光學非線性現象,其中蘊含超乎預期地巨大的光學非線性。

朱士維團隊研究米氏共振與光熱光學效應(photo-thermo-optical effect)交織的情境,以操縱、擴大光學非線性。近十年來,他們已在自然通訊(Nature Communications)等重要期刊上發表多篇論文,領先國際。

-----廣告,請繼續往下閱讀-----

材料吸收入射光的能量,使溫度上升為光熱效應;材料的折射率因此改變,進而影響吸收或散射的程度則為光學效應。

米氏共振實驗則是操縱材料尺寸:高折射率材料縮小到約百奈米時,特定波長的入射光會因為共振效應,產生該材料原本不會發生的強吸收或強散射(即米氏散射),呈現新的光學特性。

金懸浮液的不同顏色大圖
不同尺寸金奈米粒子的懸浮液,發出從紫色到紅色的不同散射光。圖/Wikimedia

金、銀與電晶體中的矽,這些高折射率材料形成奈米結構後,不再呈現一般顏色。原本黃澄耀眼的黃金,以奈米結構照光,會呈現令人驚訝的紅或藍色光澤。

朱士維團隊發現,若以用矽製作成奈米方塊,可以透過長寬比例來調整米氏共振效果。某些尺寸的矽晶體會有特別強的吸收,光熱效應更加明顯,溫度劇烈上升,進而大幅改變折射率。

-----廣告,請繼續往下閱讀-----

單憑光熱效應,能提升奈米矽晶體的非線性 3 到 4 個數量級,透過米氏共振能夠再提升 3 到 5 個數量級。如此可以導致散射光頻率大幅偏離入射光,帶來巨大光學非線性。

如此一來,原本光學非線性微弱的矽,可以得到遠高於一般材料的光學非線性,而且僅需奈秒等級的反應時間,便能成為效率更勝電晶體的全光學開關(All-optical switch),在計算機中發揮光訊號閘門的功能。

儘管是半導體產業的最主要材料,矽製電晶體正面臨電路尺寸與運算速度的極限。若以光取代電子傳輸訊號,可能提升資料處理速度,縮減晶體尺寸,構成運算速度更快、體積更小的光子計算機。奈米矽晶體的光學性質是此實現趨勢的關鍵知識。

從扭曲中看見超解析影像:飽和激發顯微術(SAX)

光學非線性除了應用在全光學開關外,也可以應用在超解析顯微成像:飽和激發顯微術(SAturated eXcitation microscopy, SAX)。

-----廣告,請繼續往下閱讀-----

當雷射光聚焦掃描奈米粒子,其成像會呈現中心強周邊弱的高斯分佈。隨著雷射的強度升高,非線性現象會發生在散射光強度最高的中心位置,使映射出的影像扭曲變形。

光學非線性使觀測者無法看清顯微影像,但科學家找到了提升成像解析度的方法:辨別目標中心變形部分(非線性訊號)與周邊(線性訊號)的散射頻率差異。

SAX 顯微術的原理,是在入射光源中加上單一頻率 fm 的強度調變,若粒子與光之間只有線性效應,散射訊號將會展現出符合入射光的基頻 fm。

若非線性效應出現,散射訊號將會偏離線性、產生更高頻的諧頻訊號,經傅立葉頻譜轉換會出現 2fm、3fm 的高階諧頻。

若以「無線電波載送特定音頻」進行類比:入射光是無線電波,fm 是其載送的音頻。目標被此無線電波擊中後,散射出的音頻訊號頻率倍增;偵測此高頻訊號便能得知目標的位置。

在奈米層級,科學家藉由辨識基頻與高階諧頻的散射訊號,探測光學線性與非線性訊號的空間分布,將影像解析度提升到繞射極限以上。而且 SAX 顯微術毋須對樣本標記或染色,擺脫了多數當代超解析顯微技術的基礎需求。

Sax諧頻訊號可以大幅提升解析度
圖 1. 米氏共振說明。圖/朱士維博士

圖 1.(a) 中有兩顆金奈米粒子,其間距小於繞射極限,fm 訊號成像無法有效分辨兩者。SAX 的 2fm 高階諧頻成像,則可以分辨兩個奈米粒子的位置。而圖 1.(b) 呈現單顆矽奈米方塊,fm 基頻訊號成像較為模糊,SAX 的 2fm 成像縮小許多,解析度大幅提升。

光學技術新維度:移位共振

2023 年,朱士維與跨國學者合作,在米氏光學基礎上得到進一步發現:聚焦光斑(雷射聚焦形成的光點,laser focal spot)尺寸若與被照射的奈米粒子相近,調整光斑與奈米粒子的距離,會出現嶄新的共振型態,名為「移位共振」(displacement resonance)。

移位共振
圖 2. 移位共振說明。圖/朱士維博士

圖 2.(A) 展示了移位共振發生於立方粒子邊長(w)與移位(d)都接近聚焦光斑(FWHM)大小時。圖 2.(B) 則表現出寬度接近聚焦光斑大小的奈米矽粒子,會在距離粒子中心約一個雷射聚焦光斑寬度處,展現散射極大值。圖 2.(C) 以暗視野顯維術觀察奈米矽粒子,可以發現散射最強處位於粒子中心,符合米氏散射理論。若以高強度雷射掃描相同粒子,會發現最強散射位置在粒子周邊,得到如圖 2.(D) 的不同明暗分布,可以發展為光學開關的調控機制。

這一系列實驗以飽和激發(focused excitation)探索光學共振的新維度——移位(displacement)——以雷射光聚焦照射奈米粒子中心與其周邊,並觀察粒子與聚焦光斑尺寸、偏差距離的多種變化組合,探測產生新型共振的條件。

如前所述,光與奈米粒子的交互作用(吸收與散射)最強的配置,傳統認知上是以聚焦光斑對正奈米粒子中央,可以得到最明顯的散射。但是朱士維與合作團隊發現,特定大小的聚焦光斑與奈米粒子稍有偏差時,會檢測到意外的散射光極大值,而且散射位置並非粒子中心,而在偏移大約 100 奈米處!

利用「移位共振」的新現象,可以透過調整聚焦光斑,將光學開關從正向變成負向。利用百奈米的位移調整光學開關符號的可能性,是過往科學家從未想像的。

同時,實驗團隊也發現吸收效率也受移位共振影響,將聚焦光斑與奈米粒子中心錯開,可以得到最高效率的光熱效應。此知識將有助於加速奈米矽晶體的光學非線性反應速度。

從懸浮粒子帶來的奇幻天色、毋須螢光標記的飽和激發顯微術,到可能構成超快光子計算機的全光學開關;隨著實驗與材料製備技術的進步,光學脫離了「落伍物理學」的蒙塵櫥窗,再度為人類照亮科技進步的可能性。

  • 《物理雙月刊》:「用光控制光」:以奈米材料大幅增強光學非線性
  • SMC 資料庫:「森林大火為什麼會導致天空變成橘紅色?」專家 QA
  • Y.-L. Tang, T.-H. Yen, K. Nishida, C.-H. Li, Y.-C. Chen, T. Zhang, C.-K. Pai, K.-P. Chen, X. Li*, J. Takahara*, and S.-W. Chu, “Multipole engineering by displacement resonance: a new degree of freedom of Mie resonance” Nat. Comm. 14, 7213 (2023)
  • S.-W. Chu, T.-Y. Su, R. Oketani, Y.-T. Huang, H.-Y. Wu, Y. Yonemaru, M. Yamanaka, H. Lee, G.-Y. Zhuo, M.-Y. Lee, S. Kawata, and K. Fujita, “Measurement of a Saturated Emission of Optical Radiation from Gold Nanoparticles: Application to an Ultrahigh Resolution Microscope,” Phys. Rev. Lett. 112, 017402 (2014).

查看原始文章

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

顯微觀點_96
30 篇文章 ・ 5 位粉絲
從細微的事物出發,關注微觀世界的一切,對肉眼所不能見的事物充滿好奇,發掘蘊藏在微觀影像之下的故事。

0

0
0

文字

分享

0
0
0
【成語科學】雨過天青:天空為什麼是藍色的?傍晚的橘紅色天空又是怎麼形成的?
張之傑_96
・2023/10/06 ・1183字 ・閱讀時間約 2 分鐘

下過雨後,天空藍得透明。這個自然現象,衍生出成語雨過天青,比喻情況由壞轉好。雨過天晴也有同樣的意思,不過仍以雨過天青較為正式。閒話少說,讓我們造兩個句吧。

這事挽救及時,現已雨過天青。

雨過天青,您的事可以放心了。

下過雨後,天空藍得透明。圖/pixabay

這個成語還有個故事呢。有一種瓷器,稱為雨過天青,起源於五代‧後周柴世宗。某日臣子請示,皇家瓷器要燒成什麼顏色?柴世宗隨手批示:「雨過天青雲破處,這般顏色作將來。」工匠經過多次實驗,終於燒製出來,這就是有名的「柴窯」。由於沒有作品傳世,柴窯的真面目已無從查考。

談到這裡,該談談這個成語的意涵了。大雨過後,天空為什麼藍得透明?這是因為空氣中的灰塵隨著雨下降下,空氣較為潔淨的關係。喜歡打破沙鍋問到底的小朋友或許還會問:為什麼空氣潔淨、天就較藍?

這要從天空為什麼呈藍色說起。空氣的成份,主要是氮氣和氧氣。晴天的時候,射到地球上的陽光碰到空氣中的氮分子或氧分子,會引起散射作用。藍光的波長較紅光短,散射得較厲害,看在我們眼裡,天空就成為藍色的。

-----廣告,請繼續往下閱讀-----
藍光的波長較紅光短,散射得較厲害,看在我們眼裡,天空就成為藍色的。圖/pixabay

這個道理看起來好像很簡單,但是人類明白這個道理是 19 世紀末的事。1873 年,英國物理學家瑞利是第一位看天看出名堂的人。他的散射理論——瑞利散射,破解了天色的秘密。

在陽光的七種色光中,紅、橙、黃光的波長較長,藍、靛、紫光的波長較短。空氣中的氧分子、氮分子,大小恰好可以散射波長較短的藍光,藍光散了一天,天空當然呈藍色的。

到了傍晚,夕陽西下,陽光打斜裡射過來,較接近地面,而地面的空氣含有較多的水氣和灰塵,粒子比氧分子、氮分子大得多,較容易散射波長較長的紅光、橙光或黃光,艷麗的晚霞就是這樣散射出來的。

陽光打斜裡射過來,而地面的空氣含有較多的水氣和灰塵,較容易散射波長較長的紅光、橙光或黃光。圖/pixabay

如果天上懸浮著小水滴,也就是雲,那又是另一種景象。小水滴比灰塵大得多,各種波長的色光都能被它散射,結果雲就成為白色的。如果雲層較厚較密,陽光穿不過去,就變成了灰色或黑色。白雲蒼狗,不過是陽光玩的把戲而已!

-----廣告,請繼續往下閱讀-----

當雲聚成雨滴的時候,顆粒就更大了,大得具有稜鏡的作用。倘若一邊已出太陽,一邊還在下雨,陽光穿過雨滴,就會形成彩虹。噴泉和瀑布上也可以出現彩虹,原理是一樣的。

-----廣告,請繼續往下閱讀-----

0

4
2

文字

分享

0
4
2
舌頭、石頭,迸出新滋味?科學家為什麼要舔石頭?——2023 搞笑諾貝爾獎
PanSci_96
・2023/09/30 ・3674字 ・閱讀時間約 7 分鐘

J……J 個是!這顆石頭一接觸到我的舌頭,它就像火一樣燃燒,同時留下苦澀和尿味的味道,在這之後還留下了一點甜味。

圖/Youtube

這,這一顆石頭不一樣,它有酸辣味和硫酸鹽味,卻同時給我一種難以形容的愉悅感!就像在品嘗紅酒的酸味一樣!

圖/Youtube

等等,我並沒有壞掉,我現在做的事是某些地質學家和古生物學家真的會做的事,而且這件事還得了諾貝爾獎!只是是搞笑諾貝爾獎。

搞笑歸搞笑,舔石頭卻真的是再實用不過的方法。因為,舌頭真的是太好用了!

-----廣告,請繼續往下閱讀-----

地質地科系祖傳秘招——舔石大法!

2023 年的搞笑諾貝爾獎的化學與地質獎頒給了地質學家揚.扎拉謝維奇,得獎的原因不是因為特定研究,而是它整理了地質學家和古生物學家「品嘗」岩石和化石的「研究史」。

有在跟我們直播的泛糰肯定知道,在今年搞笑諾貝爾獎頒發的隔週,上個月的 9 月 18 日,我們在 YouTube 官方舉辦的 2023 YouTube Festival 活動中,辦了一個實體見面會。在見面會中我們介紹了今年其中三個搞笑諾貝爾獎,其中就包含這則「地質學家為什麼要舔石頭」。另外兩個獎項分別是操縱死靈蜘蛛,和研究為什麼上課為什麼會令人感到無聊。這場見面會也有同時開直播,連結放在右上角的資訊卡,裡面提到不少有趣的觀點,歡迎去直播存檔複習。

當天,除了就像開場演繹的,不同岩石真的嚐起來味道不一樣以外,有一個地科系的觀眾,現場分享了另一個有趣的觀點。但先說聲抱歉,那時候觀眾手持的麥克風訊號沒有進到我們的混音器,所以在線上收聽的朋友沒有聽到前半段。

我們這邊重新轉述一下,這位觀眾說早在這個獎項頒發前,就知道用舔石頭來辨識種類的這種方法了,因為他的老師就是這麼教他的!沒想到,這竟然是地科與地質系祖傳的秘技嗎!

-----廣告,請繼續往下閱讀-----

舌頭比手指還好用?

但除了味道外,觀眾還分享了一個這次搞諾沒有提到的原因,就是舌頭的觸覺可能比手還靈敏。某些岩石例如砂岩跟頁岩,可能用手摸不出差別;用舌頭舔,竟然就能分別出差別。

什麼,舌頭真的這麼厲害嗎?想想好像也是,我們吃東西的時候會用舌頭去感受食物的形狀,這些觸感甚至也是我們品嘗食物時,了解食物的重要一環。除此之外,我們還可以找出食物中的魚刺,或是卡在牙縫中的菜渣,有些人還能幫櫻桃梗打結呢。

圖/Giphy

但好像從來沒有人拿舌頭和手去做比較,因為只要講到觸覺,我們第一時間就會認為手指更加靈敏。

其實,還真的找到有人研究過,一群俄亥俄州立大學食品科技系的實驗團隊,就研究了這個問題。他們準備了幾個形狀極為相似的樣品,樣品的長度、厚度、缺口的大小都一樣,只有缺口處的傾角不同。

-----廣告,請繼續往下閱讀-----

傾角從 45 度到 90 度都有,每塊的角度以 5 度為間隔。受試者必須拿起兩塊樣品,並在蒙眼的情況下,分別用摸或舔的方式來分辨出兩者分別為哪一塊。其中一塊始終是 90 度,另一塊則是從 65 度開始角度遞增。

這次的實驗有 30 位受試者,結果表明,使用手指來分辨兩塊樣品,平均要兩塊的角度差超過 19.81 度時,才能分辨出差異。如果用舌頭舔呢?只要兩者的角度差超過 12.75 度,就能分辨出差異!比用手摸的角度差小了許多,也就是舌頭真的比較靈敏。

實驗結果數據,JND(Just Noticeable Difference)表受試者在樣品相差幾度時能感受到差異。圖/Comparison of The Tactile Sensitivity of Tongue and Fingertip Using a Pure-Tactile Task

當然,這個實驗還有兩個方向值得討論,一是這只針對物體邊緣形狀的靈敏作分析,但觸覺有許多不同感受,例如紋理、粗糙程度等,所以可能每種觸覺做出來的實驗結果會不同。這個實驗看起來不難做,各位可以準備一些能放入嘴的材料,例如請朋友直接將比較硬的芭樂切成不同形狀來舔舔看差別,就能簡單復刻這個實驗甚至更改參數,有實際測試的觀眾也不要忘記留言告訴我們。我們這邊也同步徵求花京院來協助我們實驗。

而另一點是,關於舌頭為什麼有跟手指同等,甚至更強觸覺的生理機制,本篇研究僅止於現象探討,還未有深入研究。

-----廣告,請繼續往下閱讀-----
圖/Giphy

濕濕的石頭更好觀察?

除了味覺和觸覺外,舔石頭還有另一個重要的原因,就是濕潤的石頭紋理更清楚,更方便研究。

這應該大家都有經驗,在學校的大理石地板拖地,或是海邊的鵝卵石,沾到水之後,石頭的紋理都更加清楚,看起來也更漂亮。但這又是為什麼呢?

影響的原因有很多,但影響最大的,就是濕潤的表面讓石頭更「平」,產生類似拋光的效果。但為什麼磨平拋光,顏色就更好看呢?

我們知道光線照到鏡子會產生反射,但鏡子很平整,如果現在照射到的是一個凹凸不平的表面,光線就會往四處反射,這種現象稱為漫反射。當我們只想看石頭上的其中一點時,旁邊的光卻會雜亂的跑進我們的眼睛,影響到對比度。並且各種顏色的色光聚在一起會形成白光,因此這些漫反射而來的光線,就會以白光的形式被我們看到。白話文就是,物體的對比下降了,但是整體的亮度提高,變成我們常看到灰白色的石頭表面。

-----廣告,請繼續往下閱讀-----

直到石頭被拋光,或是因為濕潤產生拋光的效果,這些漫反射就會減少,石頭整體變得比較暗沉,但是斑紋之間的對比度提高了。這就是為什麼粗糙的石頭顯得灰白,浸濕之後卻呈現深沉而圖樣明顯的原因。

還沒完,薄薄一層水還會造成更多影響。例如,這層折射率介於空氣與石頭之間的介質,可以幫助光線稍微穿透岩石的表層後再反射出來,提供視覺上更多的紋理細節。如果將水換成木工中常使用的亮光漆,除了反射與折射外,亮光漆中的分子,還足以讓光線產生散射,讓你在上不同厚度的亮光漆時,能產生不同的顏色變化。

簡單來說,不論是水還是漆,這薄薄的一層介質,能像相機的鏡片一樣,透過光學調校,將更清楚、細節更多的影像送進相機的感光元件,也就是我們的眼睛上。而替換不同的鏡片,就能改變我們看到的樣子。

有介質存在於空氣與觀測物間時,光會產生折射,造成不同視覺效果。圖/askamathematician.com

這個看似玩笑的舔石頭研究,確實好像又有幾分認真的道理,我們自己在研究的時候,最開始也覺得超ㄎㄧㄤ,後來又發現能學到不少冷知識。

-----廣告,請繼續往下閱讀-----

最後也想調查一下,除了舔石頭以外,大家還對哪一則搞笑諾貝爾獎有興趣,希望我們也來講講呢?

  1. 帶電的筷子,能讓食物更好吃?
  2. 哪些人有倒著說話的特殊能力?
  3. 要多少人抬頭看天空,才會吸引路人跟著抬頭?

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----
PanSci_96
1262 篇文章 ・ 2412 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。