6

35
5

文字

分享

6
35
5

元旦驚現詭異「血月」,2021年注定是災難的一年?用科學打破凶兆預言!

Mia_96
・2021/01/08 ・3601字 ・閱讀時間約 7 分鐘 ・SR值 490 ・五年級

2021 年 1 月 1 日夜晚,有許多南部民眾看見一輪又圓又紅的月亮,甚至泛著血紅色的光,如此詭異的顏色讓許多民眾惶惶不安:「元旦當天出現血月,是不是預言 2021 年將是災難的一年呢?」

俗稱「血月」的天象,真的是引起災難的前兆嗎?

事實上,血月與俗稱「天狗食日」的日食一樣,都只是特殊的天文景象罷了,關於月亮的顏色迷思也不只有血月一種,甚至還有所謂的「藍月」。現在,就讓我們一起用地球科學解開血月、藍月的凶兆傳言吧!

那一顆又紅、又圓的血月

為什麼會有血月的發生呢?首先,當天的月相「圓月」,便是造成天上高掛血月的原因之一。

下圖為太陽、地球、月亮三者的相對位置,太陽與其所發出的太陽光來自圖的右側,地球則為在圖的正中間,而在地球外圈圍繞一圈的,即為地球的衛星——月球。

-----廣告,請繼續往下閱讀-----
太陽、地球、月亮的相對位置,以及我們所看見的月相。圖/Wikipedia

在地球外圍的第一個圓圈為「太陽照射到的月球表面」。

因太陽的體積相對於地球與月球十分龐大,而月球與地球之間的距離也比圖中來的更加遙遠,所以如果以讀者的方位看,太陽光永遠會照到月球的右側

有趣的是,因為月球的公轉速度與自轉速度相似,所以月球總以同一面面向地球,地球上的人們看到的月球永遠是同一面唷

最外圍的圓圈為在地球上的「人們抬頭所看到的月相」。

當這三顆星球的相對位置是「地、月、日」時,地球完全無法看到太陽光照亮月球的半面,故當天的月相便是我們時常聽到的「新月」、「朔月」(上圖 3 點鐘方向的月相),時間約在農曆初一前後。

而當它們是「月、地、日」時,地球人可以看到太陽光照亮月球的半面,看起來就是一顆圓圓的月亮,當天的月相即是我們說的「滿月」、「望月」(上圖 9 點鐘方向的月相),滿月的時間約在農曆十五前後。

-----廣告,請繼續往下閱讀-----
顏色逐漸變化的月亮。圖/wikipedia

重要的是,滿月時,因為這三顆星球的相對位置是「月、地、日」,所以大部分太陽光都會「先經過地球,再打到月球」。

民眾所拍下的血月,從月亮的圓缺可以知道當時應該在滿月前後,查閱日曆後,也可以確定元旦當天的農曆日期是十八號。

七彩繽紛的太陽光,由不同波長所組成

光,是電磁波的一種,每種天體都會輻射出不同波長長度的電磁波,當電磁波的波長落在「可見光」的波段時,我們就可以用肉眼看見這些光,而不同波長的光,會呈現出不同的顏色。

而太陽光主要放出的電磁波段就是可見光的波段,在可見光的波段中,包含了波長較長的紅光,到波長較短的紫光等七種顏色,也就是我們熟悉的彩虹七顏色。

可見光於電磁波波譜的位置。圖/wikipedia

當我們的眼睛接收到波長比較長的光時,看到的顏色就會偏向紅、橘色,反之短波長的光,即偏向藍、紫色。

-----廣告,請繼續往下閱讀-----

被大氣層「改造」的太陽光!

當陽光經過地球大氣層時,會被大氣層中的空氣分子吸收、散射,而不同波長被散射的程度不一樣,短波長(藍光)的電磁波段比較容易被散射,使得大量藍光散射到天空中,天空佈滿著被散射的藍光,才形成我們所看到的藍天。

以上此種空氣分子造成的散射現象稱為「瑞利散射」1

滿月時,因為許多陽光都會經過地球大氣再照射到月球表面,在這個過程中,大部分藍光都會散射於地球大氣層,剩下長波長的紅光繼續前進,最終剩下紅光折射到月球表面,就會使得月球表面看起來偏紅色。這,就是血月的成因。

由此可知其實每一次的滿月多多少少都會被比較多的紅光照射,只是在不同的情況下,有時紅色很明顯、有時又會不太明顯。

-----廣告,請繼續往下閱讀-----

例如,出現月全食時,因為幾乎所有的太陽光都會被地球擋住,只剩下波長較長的紅光可以從大氣層折射到月球表面,容易使月亮呈現明顯的紅色。

總而言之,血月並非災難要發生的前兆,而僅僅是正常的自然現象!

在本影區為月全食,地球會遮住所有來自太陽的直射光,出現只剩下紅光可以折射到月球表面,呈現紅色月亮;在半影區,只有部分的陽光被遮住,即為月偏食或半影月食。圖/wikipedia

不是滿月的血月、越來越紅的夕陽

雖然血月多出現在滿月、月食的時候,但仍有其他情況會影響月亮表面的顏色。

若月亮的仰角較低時,可見光會穿過更厚的大氣層,使藍光更容易散射到大氣中,便更有可能在地平面附近看到紅色的月球,抑或是當空氣中的微粒過多時,也有可能在天空中看到偏紅色的月亮,

但無論是哪一種情況,「散射」都是使月亮呈現紅色最主要的原因!

-----廣告,請繼續往下閱讀-----

平日看到的橙色夕陽也是差不多的道理!當太陽越來越接近地平線,陽光穿過的越大氣層也會更厚、散射更多藍光,使得陽光越靠近地平線而變得更紅了。

美麗的夕陽,也是來自散射!圖/Pixabay

如果當時的大氣中除了空氣粒子外,還有其他粒徑較小的微粒,較小微粒越多,散射作用越強烈,微粒大量反射紅光與橙光,也會使天空出現美麗的彩霞。

藍月才不是藍色的月亮!

除了血月,我們也偶爾會聽到「藍月」。

每當藍月出現,媒體或是社群網站都會爭相報導,並且在旁邊加上大大的藍色月亮照片,使不少民眾都會期待在天空看到藍色的月亮。

-----廣告,請繼續往下閱讀-----

殊不知,藍月根本就不是「藍色的月亮」!藍月指的是一個月當中連續出現「第二次滿月」的現象。

我們習慣將月球繞地球公轉一圈的時間視為一個月,大月有 31 天,小月有 30 天,但事實上,月球繞地球公轉一圈的週期是 29.5303 天,每個月完整的天數與實際天數的時間差大約為 0.5303 天。

隨著兩者的時間差逐漸累積,每隔 2 到 3 年後,便會使得某個月會多出一次滿月,而這額外多出現一次的滿月即稱做「藍月」。

火山爆發,讓你看見真正的藍色月亮

雖然平常新聞所報導的藍月並不是指「藍色的月亮」,但在很偶爾的偶爾,我們其實真的可以看到稍微偏藍色的月亮。

-----廣告,請繼續往下閱讀-----

在劇烈的火山噴發或是森林大火發生時,空氣會充滿火山或是大火產生的懸浮微粒,而這些懸浮微粒的粒徑較大、數量也比平時更多,當它們充滿大氣時,就會使波長較長的紅光、橙光、黃光產生大量散射,而我們稱這種散射稱為「米氏散射」2

聖海倫火山美國華盛頓州,曾於 1980 年 5 月 18 日爆發。圖/wikipedia

隨著長波長的光被大量散射,就會使當時的月亮呈現偏藍色,在 1980 年聖海倫火山與 1991 年皮納圖博火山噴發時,人們都在夜空中看到了真正的藍色月亮。

血月、藍月,有哪些特殊意涵?

無論是血月或是藍月,都因非常罕見而被人們賦予特殊的意義,不同的文化對於它們也有許多不同的詮釋。

多數文化都認為紅色月亮擁有著不祥的意義,認為當血月出現時,便會有血光之災發生,也因此當民眾看到血月高掛於天上時,才會將其與災難聯想在一起。

藍月出現的次數較為稀少,所以國外時常會以「Once in a blue moon」來形容較不容易或是不常發生的事件。

  • 編按:如果到 Google 搜尋「once in a blue moon」,會得到藍月出現的頻率: 1.16699016×10-8赫茲。
搜尋「once in a blue moon」的結果。

希望大家再聽到新聞提及血月或是藍月時,可以想起他們的真正成因,別再把人家醜化成凶兆和災難的象徵啦!讓我們的生活處處都充滿著地球科學吧!

備註

  1. 瑞利散射:當微粒粒徑小於 1/10 波長產生的散射現象,例如空氣分子與可見光波段。
  2. 米氏散射:當微粒粒徑等於或大於波長產生的散射現象,例如水滴、汙染物等與可見光波段。
-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 6
Mia_96
17 篇文章 ・ 30 位粉絲
喜歡教育又喜歡地科,最後變成文理科混雜出生的地科老師

0

0
0

文字

分享

0
0
0
停工即停薪:如何證明你的時間值多少?車禍背後的認知 x 情緒 x 金錢 x 法律大混戰
鳥苷三磷酸 (PanSci Promo)_96
・2026/01/09 ・3286字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 PAMO車禍線上律師 合作,泛科學企劃執行

走在台灣的街頭,你是否發現馬路變得越來越「急躁」?滿街穿梭的外送員、分秒必爭的多元計程車,為了拚單量與獎金,每個人都在跟時間賽跑 。與此同時,拜經濟發展所賜,路上的豪車也變多了 。

這場關於速度與金錢的博弈,讓車禍不再只是一場意外,更是一場複雜的經濟算計。PAMO 車禍線上律師施尚宏律師在接受《思想實驗室 video podcast》訪談時指出,我們正處於一個交通生態的轉折點,當「把車當生財工具」的職業駕駛,撞上了「將車視為珍貴資產」的豪車車主,傳統的理賠邏輯往往會失靈 。

在「停工即停薪」(有跑才有錢,沒跑就沒收入)的零工經濟時代,如果運氣不好遇上車禍,我們該如何證明自己的時間價值?又該如何在保險無法覆蓋的灰色地帶中全身而退?

-----廣告,請繼續往下閱讀-----
如果運氣不好遇上車禍,我們該如何證明自己的時間價值?/ 圖片來源: Nano Banana

薪資證明的難題:零工經濟者的「隱形損失」

過去處理車禍理賠,邏輯相對單純:拿出公司的薪資單或扣繳憑單,計算這幾個月的平均薪資,就能算出因傷停工的「薪資損失」。

但在零工經濟時代,這套邏輯卡關了!施尚宏律師指出,許多外送員、自由接案者或是工地打工者,他們的收入往往是領現金,或者分散在多個不同的 App 平台中 。更麻煩的是,零工經濟的特性是「高度變動」,上個月可能拚了 7 萬,這個月休息可能只有 0 元,導致「平均收入」難以定義 。

這時候,律師的角色就不只是法條的背誦者,更像是一名「翻譯」。

施律師解釋「PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言。」 這包括將不同平台(如 Uber、台灣大車隊)的流水帳整合,或是找出過往的接單紀錄來證明當事人的「勞動能力」。即使當下沒有收入(例如學生開學期間),只要能證明過往的接單能力與紀錄,在談判桌上就有籌碼要求合理的「勞動力減損賠償 」。

-----廣告,請繼續往下閱讀-----
PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言 / 圖片來源: Nano Banana

300 萬張罰單背後的僥倖:你的直覺,正在害死你

根據警政署統計,台灣交通違規的第一名常年是「違規停車」,一年可以開出約 300 萬張罰單 。這龐大的數字背後,藏著兩個台灣駕駛人最容易誤判的「直覺陷阱」。

陷阱 A:我在紅線違停,人還在車上,沒撞到也要負責? 許多人認為:「我人就在車上,車子也沒動,甚至是熄火狀態。結果一台機車為了閃避我,自己操作不當摔倒了,這關我什麼事?」

施律師警告,這是一個致命的陷阱。「人在車上」或「車子沒動」在法律上並不是免死金牌 。法律看重的是「因果關係」。只要你的違停行為阻礙了視線或壓縮了車道,導致後方車輛必須閃避而發生事故,你就可能必須背負民事賠償責任,甚至揹上「過失傷害」的刑責 。 

數據會說話: 台灣每年約有 700 件車禍是直接因違規停車導致的 。這 300 萬張罰單背後的僥倖心態,其巨大的代價可能是人命。

-----廣告,請繼續往下閱讀-----

陷阱 B:變換車道沒擦撞,對方自己嚇到摔車也算我的? 另一個常年霸榜的肇事原因是「變換車道不當」 。如果你切換車道時,後方騎士因為嚇到而摔車,但你感覺車身「沒震動、沒碰撞」,能不能直接開走?

答案是:絕對不行。

施律師強調,車禍不以「碰撞」為前提 。只要你的駕駛行為與對方的事故有因果關係,你若直接離開現場,在法律上就構成了「肇事逃逸」。這是一條公訴罪,後果遠比你想像的嚴重。正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。

正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。/ 圖片來源: Nano Banana

保險不夠賠?豪車時代的「超額算計」

另一個現代駕駛的惡夢,是撞到豪車。這不僅是因為修車費貴,更因為衍生出的「代步費用」驚人。

-----廣告,請繼續往下閱讀-----

施律師舉例,過去撞到車,只要把車修好就沒事。但現在如果撞到一台 BMW 320,車主可能會主張修車的 8 天期間,他需要租一台同等級的 BMW 320 來代步 。以一天租金 4000 元計算,光是代步費就多了 3 萬多塊 。這時候,一般人會發現「全險」竟然不夠用。為什麼?

因為保險公司承擔的是「合理的賠償責任」,他們有內部的數據庫,只願意賠償一般行情的修車費或代步費 。但對方車主可能不這麼想,為了拿到這筆額外的錢,對方可能會採取「以刑逼民」的策略:提告過失傷害,利用刑事訴訟的壓力(背上前科的恐懼),迫使你自掏腰包補足保險公司不願賠償的差額 。

這就是為什麼在全險之外,駕駛人仍需要懂得談判策略,或考慮尋求律師協助,在保險公司與對方的漫天喊價之間,找到一個停損點 。

談判桌的最佳姿態:「溫柔而堅定」最有效?

除了有單據的財損,車禍中最難談判的往往是「精神慰撫金」。施律師直言,這在法律上沒有公式,甚至有點像「開獎」,高度依賴法官的自由心證 。

-----廣告,請繼續往下閱讀-----

雖然保險公司內部有一套簡單的算法(例如醫療費用的 2 到 5 倍),但到了法院,法官會考量雙方的社會地位、傷勢嚴重程度 。在缺乏標準公式的情況下,正確的「態度」能幫您起到加分效果。

施律師建議,在談判桌上最好的姿態是「溫柔而堅定」。有些人會試圖「扮窮」或「裝兇」,這通常會有反效果。特別是面對看過無數案件的保險理賠員,裝兇只會讓對方心裡想著:「進了法院我保證你一毛都拿不到,準備看你笑話」。

相反地,如果你能客氣地溝通,但手中握有完整的接單紀錄、醫療單據,清楚知道自己的底線與權益,這種「堅定」反而能讓談判對手買單,甚至在證明不足的情況下(如外送員的開學期間收入),更願意採信你的主張 。

車禍不只是一場意外,它是認知、情緒、金錢與法律邏輯的總和 。

在這個交通環境日益複雜的時代,無論你是為了生計奔波的職業駕駛,還是天天上路的通勤族,光靠保險或許已經不夠。大部分的車禍其實都是小案子,可能只是賠償 2000 元的輕微擦撞,或是責任不明的糾紛。為了這點錢,要花幾萬塊請律師打官司絕對「不划算」。但當事人往往會因為資訊落差,恐懼於「會不會被告肇逃?」、「會不會留案底?」、「賠償多少才合理?」而整夜睡不著覺 。

-----廣告,請繼續往下閱讀-----

PAMO看準了這個「焦慮商機」, 推出了一種顛覆傳統的解決方案——「年費 1200 元的訂閱制法律服務 」。

這就像是「法律界的 Netflix」或「汽車強制險」的概念。PAMO 的核心邏輯不是「代打」,而是「賦能」。不同於傳統律師收費高昂,PAMO 提倡的是「大腦武裝」,當車禍發生時,線上律師團提供策略,教你怎麼做筆錄、怎麼蒐證、怎麼判斷對方開價合不合理等。

施律師表示,他們的目標是讓客戶在面對不確定的風險時,背後有個軍師,能安心地睡個好覺 。平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。

平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。 / 圖片來源: Nano Banana

從違停的陷阱到訂閱制的解方,我們正處於交通與法律的轉型期。未來,挑戰將更加嚴峻。

-----廣告,請繼續往下閱讀-----

當 AI 與自駕車(Level 4/5)真正上路,一旦發生事故,責任主體將從「駕駛人」轉向「車廠」或「演算法系統」 。屆時,誰該負責?怎麼舉證?

但在那天來臨之前,面對馬路上的豪車、零工騎士與法律陷阱,你選擇相信運氣,還是相信策略? 先「武裝好自己的大腦」,或許才是現代駕駛人最明智的保險。

PAMO車禍線上律師官網:https://pse.is/8juv6k 

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
242 篇文章 ・ 318 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
1

文字

分享

0
1
1
米式散射:野火警訊與光子計算機
顯微觀點_96
・2024/06/10 ・4597字 ・閱讀時間約 9 分鐘

本文轉載自顯微觀點

野火懸浮粒子導致大量米氏散射現象

野火燭天的兩種散射

2020 年 9 月 8 日早晨,美國加州舊金山居民準備開始新的一天,他們拉開窗簾、打量天色,無不屏息失措。理應湛藍乾爽的天空,被染成濃厚的橘紅色,四下黯淡如黃昏,彷彿啟示錄降臨。

詭譎光景來自數百公里外的野火。猛烈擴散的山間火勢搭配風向,將懸浮微粒吹送到舊金山所在的灣區空中,進而散射陽光,改變天色。這片昏黃天空蘊藏的散射不只一種,其光學原理還能應用於精密的超解析顯微術和光子電腦。

Smoky Fires At Golden Gate Bridge
圖/Unsplash

平常人眼所見的藍天,並非陽光或空氣粒子本身的顏色,而是來自「散射(scattering)」:光子與粒子碰撞,改變行進方向。我們生活中接觸的散射大多為下列兩種:「瑞利散射(Rayleigh scattering)」與「米氏散射(Mie scattering)」。

-----廣告,請繼續往下閱讀-----

「瑞利散射」來自光照射直徑遠小於光波長的粒子(通常小於光波長的 1/10)。當光照射到這種小粒子,會向四面八方散射。光波長越短,向周遭散射強度越大。

如短波長的藍光,散射強度大於紅光。紫光的波長雖短於藍光,但人眼對紫光較為遲鈍,因此會看到蔚藍的天空。

陽光中的藍、紫光向四周散射消耗的程度較高,紅、黃光散射量較低,較能保留在原入射方向上。因此晨昏直視日頭時,會看見燦爛的橘黃色(實際上太陽發出的是白光)。

「米氏散射」則發生於光照射直徑接近或略大於光波長的粒子,主要散射方向會維持原本入射方向。不同於瑞利散射的是,米氏散射的強度與光波長沒有固定關係。

-----廣告,請繼續往下閱讀-----

但在粒子大小接近入射光波長時,會發生名為米氏共振(Mie resonance)的共振增強現象,沿著原方向散射的光線比入射光更強,而且是非線性的增強關係。

討論散射時,(顆粒)大小很重要

大氣層中的空氣分子大小約 1 奈米,遠小於可見光波長(360~760 奈米)。含有各種波長光線的陽光,進入大氣層、照射空氣分子,將發生瑞利散射:將光向四周散射。

單憑日常可見的瑞利散射,不足以造成籠罩加州天空的末世光景,還需要機緣巧合之下的米氏散射。

米氏散射的發生條件,是受照射粒子的直徑與入射光波長相近。

-----廣告,請繼續往下閱讀-----

野火懸浮微粒遠大於空氣分子,直徑可從 100 奈米分布至超過 2500 奈米。而直徑 300~1000 奈米的微粒能在大氣中懸浮最久,不易沉降或擴散離開大氣,具有從山野間長途飄盪至都會區的能力。

而可見光波長 360~760 奈米,恰好與都會上空的野火懸浮微粒直徑(300~1000 奈米)相近,達成米氏散射的恰當條件。

當懸浮微粒直徑與光波長相當時,米氏共振現象加強橘紅光向前散射,同時空氣分子的瑞利散射持續將藍綠光向周遭散射。因此在地面上的人們會看到更強的橘紅光、更少的藍綠光,在眼中交織出濃郁不祥的天色。

米氏共振的知識,不只能為我們驅除對橘紅天空的疑懼,還可能推進尖端科技發展。透過光與特定尺寸的粒子產生米氏共振,大幅散射/吸收光線,科學家得以操縱光學「非線性」,在訊號傳遞上超越既有科技。

-----廣告,請繼續往下閱讀-----

「非線性」的力量:米氏共振

「非線性」指輸入和輸出訊號之間的關係不呈線性。例如輸入訊號加倍,輸出訊號不變或暴增數十倍,都是非線性的表現。輸入和輸出訊號偏離線性關係的程度,就稱為非線性的大小。

具有非線性的媒介,經常成為資訊科技的核心元件。例如電晶體核心機制,就是透過電子訊號的「非線性」表現,來達到「以電控制電」的閘門效果。通常媒介的非線性愈大,作為閘門的效果會愈好。

臺大物理系教授朱士維團隊利用連續波雷射,測試不同材料、尺寸、形狀的奈米粒子,發現許多光學非線性現象,其中蘊含超乎預期地巨大的光學非線性。

朱士維團隊研究米氏共振與光熱光學效應(photo-thermo-optical effect)交織的情境,以操縱、擴大光學非線性。近十年來,他們已在自然通訊(Nature Communications)等重要期刊上發表多篇論文,領先國際。

-----廣告,請繼續往下閱讀-----

材料吸收入射光的能量,使溫度上升為光熱效應;材料的折射率因此改變,進而影響吸收或散射的程度則為光學效應。

米氏共振實驗則是操縱材料尺寸:高折射率材料縮小到約百奈米時,特定波長的入射光會因為共振效應,產生該材料原本不會發生的強吸收或強散射(即米氏散射),呈現新的光學特性。

金懸浮液的不同顏色大圖
不同尺寸金奈米粒子的懸浮液,發出從紫色到紅色的不同散射光。圖/Wikimedia

金、銀與電晶體中的矽,這些高折射率材料形成奈米結構後,不再呈現一般顏色。原本黃澄耀眼的黃金,以奈米結構照光,會呈現令人驚訝的紅或藍色光澤。

朱士維團隊發現,若以用矽製作成奈米方塊,可以透過長寬比例來調整米氏共振效果。某些尺寸的矽晶體會有特別強的吸收,光熱效應更加明顯,溫度劇烈上升,進而大幅改變折射率。

-----廣告,請繼續往下閱讀-----

單憑光熱效應,能提升奈米矽晶體的非線性 3 到 4 個數量級,透過米氏共振能夠再提升 3 到 5 個數量級。如此可以導致散射光頻率大幅偏離入射光,帶來巨大光學非線性。

如此一來,原本光學非線性微弱的矽,可以得到遠高於一般材料的光學非線性,而且僅需奈秒等級的反應時間,便能成為效率更勝電晶體的全光學開關(All-optical switch),在計算機中發揮光訊號閘門的功能。

儘管是半導體產業的最主要材料,矽製電晶體正面臨電路尺寸與運算速度的極限。若以光取代電子傳輸訊號,可能提升資料處理速度,縮減晶體尺寸,構成運算速度更快、體積更小的光子計算機。奈米矽晶體的光學性質是此實現趨勢的關鍵知識。

從扭曲中看見超解析影像:飽和激發顯微術(SAX)

光學非線性除了應用在全光學開關外,也可以應用在超解析顯微成像:飽和激發顯微術(SAturated eXcitation microscopy, SAX)。

-----廣告,請繼續往下閱讀-----

當雷射光聚焦掃描奈米粒子,其成像會呈現中心強周邊弱的高斯分佈。隨著雷射的強度升高,非線性現象會發生在散射光強度最高的中心位置,使映射出的影像扭曲變形。

光學非線性使觀測者無法看清顯微影像,但科學家找到了提升成像解析度的方法:辨別目標中心變形部分(非線性訊號)與周邊(線性訊號)的散射頻率差異。

SAX 顯微術的原理,是在入射光源中加上單一頻率 fm 的強度調變,若粒子與光之間只有線性效應,散射訊號將會展現出符合入射光的基頻 fm。

若非線性效應出現,散射訊號將會偏離線性、產生更高頻的諧頻訊號,經傅立葉頻譜轉換會出現 2fm、3fm 的高階諧頻。

若以「無線電波載送特定音頻」進行類比:入射光是無線電波,fm 是其載送的音頻。目標被此無線電波擊中後,散射出的音頻訊號頻率倍增;偵測此高頻訊號便能得知目標的位置。

在奈米層級,科學家藉由辨識基頻與高階諧頻的散射訊號,探測光學線性與非線性訊號的空間分布,將影像解析度提升到繞射極限以上。而且 SAX 顯微術毋須對樣本標記或染色,擺脫了多數當代超解析顯微技術的基礎需求。

Sax諧頻訊號可以大幅提升解析度
圖 1. 米氏共振說明。圖/朱士維博士

圖 1.(a) 中有兩顆金奈米粒子,其間距小於繞射極限,fm 訊號成像無法有效分辨兩者。SAX 的 2fm 高階諧頻成像,則可以分辨兩個奈米粒子的位置。而圖 1.(b) 呈現單顆矽奈米方塊,fm 基頻訊號成像較為模糊,SAX 的 2fm 成像縮小許多,解析度大幅提升。

光學技術新維度:移位共振

2023 年,朱士維與跨國學者合作,在米氏光學基礎上得到進一步發現:聚焦光斑(雷射聚焦形成的光點,laser focal spot)尺寸若與被照射的奈米粒子相近,調整光斑與奈米粒子的距離,會出現嶄新的共振型態,名為「移位共振」(displacement resonance)。

移位共振
圖 2. 移位共振說明。圖/朱士維博士

圖 2.(A) 展示了移位共振發生於立方粒子邊長(w)與移位(d)都接近聚焦光斑(FWHM)大小時。圖 2.(B) 則表現出寬度接近聚焦光斑大小的奈米矽粒子,會在距離粒子中心約一個雷射聚焦光斑寬度處,展現散射極大值。圖 2.(C) 以暗視野顯維術觀察奈米矽粒子,可以發現散射最強處位於粒子中心,符合米氏散射理論。若以高強度雷射掃描相同粒子,會發現最強散射位置在粒子周邊,得到如圖 2.(D) 的不同明暗分布,可以發展為光學開關的調控機制。

這一系列實驗以飽和激發(focused excitation)探索光學共振的新維度——移位(displacement)——以雷射光聚焦照射奈米粒子中心與其周邊,並觀察粒子與聚焦光斑尺寸、偏差距離的多種變化組合,探測產生新型共振的條件。

如前所述,光與奈米粒子的交互作用(吸收與散射)最強的配置,傳統認知上是以聚焦光斑對正奈米粒子中央,可以得到最明顯的散射。但是朱士維與合作團隊發現,特定大小的聚焦光斑與奈米粒子稍有偏差時,會檢測到意外的散射光極大值,而且散射位置並非粒子中心,而在偏移大約 100 奈米處!

利用「移位共振」的新現象,可以透過調整聚焦光斑,將光學開關從正向變成負向。利用百奈米的位移調整光學開關符號的可能性,是過往科學家從未想像的。

同時,實驗團隊也發現吸收效率也受移位共振影響,將聚焦光斑與奈米粒子中心錯開,可以得到最高效率的光熱效應。此知識將有助於加速奈米矽晶體的光學非線性反應速度。

從懸浮粒子帶來的奇幻天色、毋須螢光標記的飽和激發顯微術,到可能構成超快光子計算機的全光學開關;隨著實驗與材料製備技術的進步,光學脫離了「落伍物理學」的蒙塵櫥窗,再度為人類照亮科技進步的可能性。

參考資料

  • 《物理雙月刊》:「用光控制光」:以奈米材料大幅增強光學非線性
  • SMC 資料庫:「森林大火為什麼會導致天空變成橘紅色?」專家 QA
  • Y.-L. Tang, T.-H. Yen, K. Nishida, C.-H. Li, Y.-C. Chen, T. Zhang, C.-K. Pai, K.-P. Chen, X. Li*, J. Takahara*, and S.-W. Chu, “Multipole engineering by displacement resonance: a new degree of freedom of Mie resonance” Nat. Comm. 14, 7213 (2023)
  • S.-W. Chu, T.-Y. Su, R. Oketani, Y.-T. Huang, H.-Y. Wu, Y. Yonemaru, M. Yamanaka, H. Lee, G.-Y. Zhuo, M.-Y. Lee, S. Kawata, and K. Fujita, “Measurement of a Saturated Emission of Optical Radiation from Gold Nanoparticles: Application to an Ultrahigh Resolution Microscope,” Phys. Rev. Lett. 112, 017402 (2014).

查看原始文章

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

顯微觀點_96
44 篇文章 ・ 10 位粉絲
從細微的事物出發,關注微觀世界的一切,對肉眼所不能見的事物充滿好奇,發掘蘊藏在微觀影像之下的故事。

0

6
4

文字

分享

0
6
4
除了蚯蚓、地震魚和民間達人,那些常見的臺灣地震預測謠言
鳥苷三磷酸 (PanSci Promo)_96
・2024/02/29 ・2747字 ・閱讀時間約 5 分鐘

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

災害性大地震在臺灣留下無數淚水和難以抹滅的傷痕,921 大地震甚至直接奪走了 2,400 人的生命。既有這等末日級的災難記憶,又位處於板塊交界處的地震帶,「大地震!」三個字,總是能挑動臺灣人最脆弱又敏感的神經。

因此,當我們發現臺灣被各式各樣的地震傳說壟罩,像是地震魚、地震雲、蚯蚓警兆、下雨地震說,甚至民間地震預測達人,似乎也是合情合理的現象?

今日,我們就要來破解這些常見的地震預測謠言。

-----廣告,請繼續往下閱讀-----

漁民捕獲罕見的深海皇帶魚,恐有大地震?

說到在坊間訛傳的地震謠言,許多人第一個想到的,可能是盛行於日本、臺灣的「地震魚」傳說。

在亞熱帶海域中,漁民將「皇帶魚」暱稱為地震魚,由於皇帶魚身型較為扁平,生活於深海中,魚形特殊且捕獲量稀少,因此流傳著,是因為海底的地形改變,才驚擾了棲息在深海的皇帶魚,並因此游上淺水讓人們得以看見。

皇帶魚。圖/wikimedia

因此,民間盛傳,若漁民捕撈到這種極為稀罕的深海魚類,就是大型地震即將發生的警兆。

然而,日本科學家認真蒐集了目擊深海魚類的相關新聞和學術報告,他們想知道,這種看似異常的動物行為,究竟有沒有機會拿來當作災前的預警,抑或只是無稽之談?

-----廣告,請繼續往下閱讀-----

可惜的是,科學家認為,地震魚與地震並沒有明顯的關聯。當日本媒體報導捕撈深海魚的 10 天內,均沒有發生規模大於 6 的地震,規模 7 的地震前後,甚至完全沒有深海魚出現的紀錄!

所以,在科學家眼中,地震魚僅僅是一種流傳於民間的「迷信」(superstition)。

透過動物來推斷地震消息的風俗並不新穎,美國地質調查局(USGS)指出,早在西元前 373 年的古希臘,就有透過動物異常行為來猜測地震的紀錄!

人們普遍認為,比起遲鈍的人類,敏感的動物可以偵測到更多來自大自然的訊號,因此在大地震來臨前,會「舉家遷徙」逃離原本的棲息地。

-----廣告,請繼續往下閱讀-----

當臺灣 1999 年發生集集大地震前後,由於部分地區出現了大量蚯蚓,因此,臺灣也盛傳著「蚯蚓」是地震警訊的說法。

20101023 聯合報 B2 版 南投竹山竄出蚯蚓群爬滿路上。

新聞年年報的「蚯蚓」上街,真的是地震警訊嗎?

​當街道上出現一大群蚯蚓時,密密麻麻的畫面,不只讓人嚇一跳,也往往讓人感到困惑:為何牠們接連地湧向地表?難道,這真的是動物們在向我們預警天災嗎?動物們看似不尋常的行為,總是能引發人們的好奇與不安情緒。

如此怵目驚心的畫面,也經常成為新聞界的熱門素材,每年幾乎都會看到類似的標題:「蚯蚓大軍又出沒 網友憂:要地震了嗎」,甚至直接將蚯蚓與剛發生的地震連結起來,發布成快訊「昨突竄大量蚯蚓!台東今早地牛翻身…最大震度4級」,讓人留下蚯蚓預言成功的錯覺。

然而,這些蚯蚓大軍,真的與即將來臨的天災有直接關聯嗎?

-----廣告,請繼續往下閱讀-----

蚯蚓與地震有關的傳聞,被學者認為起源於 1999 年的 921 大地震後,在此前,臺灣少有流傳地震與蚯蚓之間的相關報導。

雖然曾有日本學者研究模擬出,與地震相關的電流有機會刺激蚯蚓離開洞穴,但在現實環境中,有太多因素都會影響蚯蚓的行為了,而造成蚯蚓大軍浮現地表的原因,往往都是氣象因素,像是溫度、濕度、日照時間、氣壓等等,都可能促使蚯蚓爬出地表。

大家不妨觀察看看,白日蚯蚓大軍的新聞,比較常出現在天氣剛轉涼的秋季。

因此,下次若再看到蚯蚓大軍湧現地表的現象,請先別慌張呀!

-----廣告,請繼續往下閱讀-----

事實上,除了地震魚和蚯蚓外,鳥類、老鼠、黃鼠狼、蛇、蜈蚣、昆蟲、貓咪到我們最熟悉的小狗,都曾經被流傳為地震預測的動物專家。

但可惜的是,會影響動物行為的因素實在是太多了,科學家仍然沒有找到動物異常行為和地震之間的關聯或機制。

遍地開花的地震預測粉專和社團

這座每天發生超過 100 次地震的小島上,擁有破萬成員的地震討論臉書社團、隨處可見的地震預測粉專或 IG 帳號,似乎並不奇怪。

國內有許多「憂國憂民」的神通大師,這些號稱能夠預測地震的奇妙人士,有些人會用身體感應,有人熱愛分析雲層畫面,有的人甚至號稱自行建製科學儀器,購買到比氣象署更精密的機械,偵測到更準確的地震。

-----廣告,請繼續往下閱讀-----

然而,若認真想一想就會發現,臺灣地震頻率極高,約 2 天多就會發生 1 次規模 4.0 至 5.0 的地震, 2 星期多就可能出現一次規模 5.0 至 6.0 的地震,若是有心想要捏造地震預言,真的不難。 

在學界,一個真正的地震預測必須包含地震三要素:明確的時間、 地點和規模,預測結果也必須來自學界認可的觀測資料。然而這些坊間貼文的預測資訊不僅空泛,也並未交代統計數據或訊號來源。

作為閱聽者,看到如此毫無科學根據的預測言論,請先冷靜下來,不要留言也不要分享,不妨先上網搜尋相關資料和事實查核。切勿輕信,更不要隨意散播,以免造成社會大眾的不安。

此外,大家也千萬不要隨意發表地震預測、觀測的資訊,若號稱有科學根據或使用相關資料,不僅違反氣象法,也有違反社會秩序之相關法令之虞唷!

-----廣告,請繼續往下閱讀-----

​地震預測行不行?還差得遠呢!

由於地底的環境太過複雜未知,即使科學家們已經致力於研究地震前兆和地震之間的關聯,目前地球科學界,仍然無法發展出成熟的地震預測技術。

與其奢望能提前 3 天知道地震的預告,不如日常就做好各種地震災害的防範,購買符合防震規範的家宅、固定好家具,做好防震防災演練。在國家級警報響起來時,熟練地執行避震保命三步驟「趴下、掩護、穩住」,才是身為臺灣人最關鍵的保命之策。

延伸閱讀

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
242 篇文章 ・ 318 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia