網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策

6

35
5

文字

分享

6
35
5

元旦驚現詭異「血月」,2021年注定是災難的一年?用科學打破凶兆預言!

Mia_96
・2021/01/08 ・3601字 ・閱讀時間約 7 分鐘 ・SR值 490 ・五年級

2021 年 1 月 1 日夜晚,有許多南部民眾看見一輪又圓又紅的月亮,甚至泛著血紅色的光,如此詭異的顏色讓許多民眾惶惶不安:「元旦當天出現血月,是不是預言 2021 年將是災難的一年呢?」

俗稱「血月」的天象,真的是引起災難的前兆嗎?

事實上,血月與俗稱「天狗食日」的日食一樣,都只是特殊的天文景象罷了,關於月亮的顏色迷思也不只有血月一種,甚至還有所謂的「藍月」。現在,就讓我們一起用地球科學解開血月、藍月的凶兆傳言吧!

那一顆又紅、又圓的血月

為什麼會有血月的發生呢?首先,當天的月相「圓月」,便是造成天上高掛血月的原因之一。

下圖為太陽、地球、月亮三者的相對位置,太陽與其所發出的太陽光來自圖的右側,地球則為在圖的正中間,而在地球外圈圍繞一圈的,即為地球的衛星——月球。

太陽、地球、月亮的相對位置,以及我們所看見的月相。圖/Wikipedia

在地球外圍的第一個圓圈為「太陽照射到的月球表面」。

因太陽的體積相對於地球與月球十分龐大,而月球與地球之間的距離也比圖中來的更加遙遠,所以如果以讀者的方位看,太陽光永遠會照到月球的右側

有趣的是,因為月球的公轉速度與自轉速度相似,所以月球總以同一面面向地球,地球上的人們看到的月球永遠是同一面唷

最外圍的圓圈為在地球上的「人們抬頭所看到的月相」。

當這三顆星球的相對位置是「地、月、日」時,地球完全無法看到太陽光照亮月球的半面,故當天的月相便是我們時常聽到的「新月」、「朔月」(上圖 3 點鐘方向的月相),時間約在農曆初一前後。

而當它們是「月、地、日」時,地球人可以看到太陽光照亮月球的半面,看起來就是一顆圓圓的月亮,當天的月相即是我們說的「滿月」、「望月」(上圖 9 點鐘方向的月相),滿月的時間約在農曆十五前後。

顏色逐漸變化的月亮。圖/wikipedia

重要的是,滿月時,因為這三顆星球的相對位置是「月、地、日」,所以大部分太陽光都會「先經過地球,再打到月球」。

民眾所拍下的血月,從月亮的圓缺可以知道當時應該在滿月前後,查閱日曆後,也可以確定元旦當天的農曆日期是十八號。

七彩繽紛的太陽光,由不同波長所組成

光,是電磁波的一種,每種天體都會輻射出不同波長長度的電磁波,當電磁波的波長落在「可見光」的波段時,我們就可以用肉眼看見這些光,而不同波長的光,會呈現出不同的顏色。

而太陽光主要放出的電磁波段就是可見光的波段,在可見光的波段中,包含了波長較長的紅光,到波長較短的紫光等七種顏色,也就是我們熟悉的彩虹七顏色。

可見光於電磁波波譜的位置。圖/wikipedia

當我們的眼睛接收到波長比較長的光時,看到的顏色就會偏向紅、橘色,反之短波長的光,即偏向藍、紫色。

被大氣層「改造」的太陽光!

當陽光經過地球大氣層時,會被大氣層中的空氣分子吸收、散射,而不同波長被散射的程度不一樣,短波長(藍光)的電磁波段比較容易被散射,使得大量藍光散射到天空中,天空佈滿著被散射的藍光,才形成我們所看到的藍天。

以上此種空氣分子造成的散射現象稱為「瑞利散射」1

滿月時,因為許多陽光都會經過地球大氣再照射到月球表面,在這個過程中,大部分藍光都會散射於地球大氣層,剩下長波長的紅光繼續前進,最終剩下紅光折射到月球表面,就會使得月球表面看起來偏紅色。這,就是血月的成因。

由此可知其實每一次的滿月多多少少都會被比較多的紅光照射,只是在不同的情況下,有時紅色很明顯、有時又會不太明顯。

例如,出現月全食時,因為幾乎所有的太陽光都會被地球擋住,只剩下波長較長的紅光可以從大氣層折射到月球表面,容易使月亮呈現明顯的紅色。

總而言之,血月並非災難要發生的前兆,而僅僅是正常的自然現象!

在本影區為月全食,地球會遮住所有來自太陽的直射光,出現只剩下紅光可以折射到月球表面,呈現紅色月亮;在半影區,只有部分的陽光被遮住,即為月偏食或半影月食。圖/wikipedia

不是滿月的血月、越來越紅的夕陽

雖然血月多出現在滿月、月食的時候,但仍有其他情況會影響月亮表面的顏色。

若月亮的仰角較低時,可見光會穿過更厚的大氣層,使藍光更容易散射到大氣中,便更有可能在地平面附近看到紅色的月球,抑或是當空氣中的微粒過多時,也有可能在天空中看到偏紅色的月亮,

但無論是哪一種情況,「散射」都是使月亮呈現紅色最主要的原因!

平日看到的橙色夕陽也是差不多的道理!當太陽越來越接近地平線,陽光穿過的越大氣層也會更厚、散射更多藍光,使得陽光越靠近地平線而變得更紅了。

美麗的夕陽,也是來自散射!圖/Pixabay

如果當時的大氣中除了空氣粒子外,還有其他粒徑較小的微粒,較小微粒越多,散射作用越強烈,微粒大量反射紅光與橙光,也會使天空出現美麗的彩霞。

藍月才不是藍色的月亮!

除了血月,我們也偶爾會聽到「藍月」。

每當藍月出現,媒體或是社群網站都會爭相報導,並且在旁邊加上大大的藍色月亮照片,使不少民眾都會期待在天空看到藍色的月亮。

殊不知,藍月根本就不是「藍色的月亮」!藍月指的是一個月當中連續出現「第二次滿月」的現象。

我們習慣將月球繞地球公轉一圈的時間視為一個月,大月有 31 天,小月有 30 天,但事實上,月球繞地球公轉一圈的週期是 29.5303 天,每個月完整的天數與實際天數的時間差大約為 0.5303 天。

隨著兩者的時間差逐漸累積,每隔 2 到 3 年後,便會使得某個月會多出一次滿月,而這額外多出現一次的滿月即稱做「藍月」。

火山爆發,讓你看見真正的藍色月亮

雖然平常新聞所報導的藍月並不是指「藍色的月亮」,但在很偶爾的偶爾,我們其實真的可以看到稍微偏藍色的月亮。

在劇烈的火山噴發或是森林大火發生時,空氣會充滿火山或是大火產生的懸浮微粒,而這些懸浮微粒的粒徑較大、數量也比平時更多,當它們充滿大氣時,就會使波長較長的紅光、橙光、黃光產生大量散射,而我們稱這種散射稱為「米氏散射」2

聖海倫火山美國華盛頓州,曾於 1980 年 5 月 18 日爆發。圖/wikipedia

隨著長波長的光被大量散射,就會使當時的月亮呈現偏藍色,在 1980 年聖海倫火山與 1991 年皮納圖博火山噴發時,人們都在夜空中看到了真正的藍色月亮。

血月、藍月,有哪些特殊意涵?

無論是血月或是藍月,都因非常罕見而被人們賦予特殊的意義,不同的文化對於它們也有許多不同的詮釋。

多數文化都認為紅色月亮擁有著不祥的意義,認為當血月出現時,便會有血光之災發生,也因此當民眾看到血月高掛於天上時,才會將其與災難聯想在一起。

藍月出現的次數較為稀少,所以國外時常會以「Once in a blue moon」來形容較不容易或是不常發生的事件。

  • 編按:如果到 Google 搜尋「once in a blue moon」,會得到藍月出現的頻率: 1.16699016×10-8赫茲。
搜尋「once in a blue moon」的結果。

希望大家再聽到新聞提及血月或是藍月時,可以想起他們的真正成因,別再把人家醜化成凶兆和災難的象徵啦!讓我們的生活處處都充滿著地球科學吧!

備註

  1. 瑞利散射:當微粒粒徑小於 1/10 波長產生的散射現象,例如空氣分子與可見光波段。
  2. 米氏散射:當微粒粒徑等於或大於波長產生的散射現象,例如水滴、汙染物等與可見光波段。

文章難易度
所有討論 6
Mia_96
13 篇文章 ・ 19 位粉絲
喜歡教育又喜歡地科,最後變成文理科混雜出生的地科老師


0

11
5

文字

分享

0
11
5

揭開人體的基因密碼!——「基因定序」是實現精準醫療的關鍵工具

科技魅癮_96
・2021/11/16 ・1998字 ・閱讀時間約 4 分鐘

為什麼有些人吃不胖,有些人沒抽菸卻得肺癌,有些人只是吃個感冒藥就全身皮膚紅腫發癢?這一切都跟我們的基因有關!無論是想探究生命的起源、物種間的差異,乃至於罹患疾病、用藥的風險,都必須從了解基因密碼著手,而揭開基因密碼的關鍵工具就是「基因定序」技術。

揭開基因密碼的關鍵工具就是「基因定序」技術。圖/科技魅癮提供

基因定序對人類生命健康的意義

在歷史上,DNA 解碼從 1953 年的華生(James Watson)與克里克(Francis Crick)兩位科學家確立 DNA 的雙螺旋結構,闡述 DNA 是以 4 個鹼基(A、T、C、G)的配對方式來傳遞遺傳訊息,並逐步發展出許多新的研究工具;1990 年,美國政府推動人類基因體計畫,接著英國、日本、法國、德國、中國、印度等陸續加入,到了 2003 年,人體基因體密碼全數解碼完成,不僅是人類探索生命的重大里程碑,也成為推動醫學、生命科學領域大躍進的關鍵。原本這項計畫預計在 2005 年才能完成,卻因為基因定序技術的突飛猛進,使得科學家得以提前完成這項壯舉。

提到基因定序技術的發展,早期科學家只能測量 DNA 跟 RNA 的結構單位,但無法排序;直到 1977 年,科學家桑格(Frederick Sanger)發明了第一代的基因定序技術,以生物化學的方式,讓 DNA 形成不同長度的片段,以判讀測量物的基因序列,成為日後定序技術的基礎。為了因應更快速、資料量更大的基因定序需求,出現了次世代定序技術(NGS),將 DNA 打成碎片,並擴增碎片到可偵測的濃度,再透過電腦大量讀取資料並拼裝序列。不僅更快速,且成本更低,讓科學家得以在短時間內讀取數百萬個鹼基對,解碼許多物種的基因序列、追蹤病毒的變化行蹤,也能用於疾病的檢測、預防及個人化醫療等等。

在疾病檢測方面,儘管目前 NGS 並不能找出全部遺傳性疾病的原因,但對於改善個體健康仍有積極的意義,例如:若透過基因檢測,得知將來罹患糖尿病機率比別人高,就可以透過健康諮詢,改變飲食習慣、生活型態等,降低發病機率。又如癌症基因檢測,可分為遺傳性的癌症檢測及癌症組織檢測:前者可偵測是否有單一基因的變異,導致罹癌風險增加;後者則針對是否有藥物易感性的基因變異,做為臨床用藥的參考,也是目前精準醫療的重要應用項目之一。再者,基因檢測後續的生物資訊分析,包含基因序列的註解、變異位點的篩選及人工智慧評估變異點與疾病之間的關聯性等,對臨床醫療工作都有極大的助益。

基因定序有助於精準醫療的實現。圖/科技魅癮提供

建立屬於臺灣華人的基因庫

每個人的基因背景都不同,而不同族群之間更存在著基因差異,使得歐美國家基因庫的資料,幾乎不能直接應用於亞洲人身上,這也是我國自 2012 年發起「臺灣人體生物資料庫」(Taiwan biobank),希望建立臺灣人乃至亞洲人的基因資料庫的主因。而 2018 年起,中央研究院與全臺各大醫院共同發起的「臺灣精準醫療計畫」(TPMI),希望建立臺灣華人專屬的基因數據庫,促進臺灣民眾常見疾病的研究,並開發專屬華人的基因型鑑定晶片,促進我國精準醫療及生醫產業的發展。

目前招募了 20 萬名臺灣人,這些民眾在入組時沒有被診斷為癌症患者,超過 99% 是來自中國不同省分的漢族移民人口,其中少數是臺灣原住民。這是東亞血統個體最大且可公開獲得的遺傳數據庫,其中,漢族的全部遺傳變異中,有 21.2% 的人攜帶遺傳疾病的隱性基因;3.1% 的人有癌症易感基因,比一般人罹癌風險更高;87.3% 的人有藥物過敏的基因標誌。這些訊息對臨床診斷與治療都相當具實用性,例如:若患者具有某些藥物不良反應的特殊基因型,醫生在開藥時就能使用替代藥物,避免病人服藥後產生嚴重的不良反應。

基因時代大挑戰:個資保護與遺傳諮詢

雖然高科技與大數據分析的應用在生醫領域相當熱門,但有醫師對於研究結果能否運用在臨床上,存在著道德倫理的考量,例如:研究用途的資料是否能放在病歷中?個人資料是否受到法規保護?而且技術上各醫院之間的資料如何串流?這些都需要資通訊科技(ICT)產業的協助,而醫師本身相關知識的訓練也需與時俱進。對醫院端而言,建議患者做基因檢測是因為出現症狀,希望找到原因,但是如何解釋以及病歷上如何註解,則是另一項重要議題。

從人性觀點來看,在技術更迭演進的同時,對於受測者及其家人的心理支持及社會資源是否相應產生?回到了解病因的初衷,在知道自己體內可能有遺傳疾病的基因變異時,家庭成員之間的情感衝擊如何解決、是否有對應的治療方式等,都是值得深思的議題,也是目前遺傳諮詢門診中會詳細解說的部分。科技的初衷是為了讓人類的生活變得更好,因此,基因檢測如何搭配專業的遺傳諮詢系統,以及法規如何在科學發展與個資保護之間取得平衡,將是下一個基因時代的挑戰。

更多內容,請見「科技魅癮」:https://charmingscitech.pse.is/3q66cw

文章難易度
科技魅癮_96
1 篇文章 ・ 2 位粉絲
《科技魅癮》的前身為1973年初登場的《科學發展》月刊,每期都精選1個國際關注的科技議題,邀請1位國內資深學者擔任客座編輯,並訪談多位來自相關領域的科研菁英,探討該領域在臺灣及全球的研發現況及未來發展,盼可藉此增進國內研發能量。 擋不住的魅力,戒不了的讀癮,盡在《科技魅癮》