0

0
0

文字

分享

0
0
0

推動海洋的….水母?!

陳俊堯
・2009/07/30 ・397字 ・閱讀時間少於 1 分鐘 ・SR值 580 ・九年級

蝴蝶效應看一隻蝴蝶動個翅膀看會不會引起大災難,那我到海裡游個兩圈總不會影響地球暖化吧?其實,是有那麼點關連哦!

過去研究指出,當浮游性生物們一大群出動時,它們整體造成的水流擾動效果可能相當大。可是這些力量大致在表層海水就散開了,没機會動到下面的海水。達爾文的孫子(物理學家,也叫Charles Darwin)在五十多年前觀察到當一個物體游過水層,就算它不會亂踢擺尾,還是會造成可觀的水體移動。一則刊登Nature的研究指出,海洋中四處游走的眾多生物可以造成相當可觀的水流。根據由研究團隊拍攝水母得到的資料推算,海洋生物趴趴走時提供的力量總和與其它機械力的貢獻是同一個等級的,也就是說,這些柔軟的生物對海洋循環的貢獻是不輸給大浪或著海風的!

Kakani Katija & John O. Dabiri. 2009.
A viscosity-enhanced mechanism for biogenic ocean mixing.
Nature 460, 624-626.

文章來源:30.6kj

-----廣告,請繼續往下閱讀-----
文章難易度
陳俊堯
109 篇文章 ・ 22 位粉絲
慈濟大學生命科學系的教書匠。對肉眼看不見的微米世界特別有興趣,每天都在探聽細菌間的愛恨情仇。希望藉由長時間的發酵,培養出又香又醇的細菌人。

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

3
2

文字

分享

0
3
2
規工欸!為何斷頭水母還是能吃東西?——解構「基轉水母」的神經迴路
Curious曉白_96
・2021/12/22 ・3671字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

人腦的神經運作向來難倒大批科學家,因為人腦擁有一千億個神經元,百億條以上的神經連結。如此錯綜複雜,就像打結成一團的毛線球,究竟該從哪邊開始解?這時,就要使出研究學者通用的訣竅——化繁為簡,越複雜的問題,就用越簡單的雛型為思考出發點。

因此,一群學者發現了一個「極簡風」的研究雛型——水母,那透明小巧的身軀,再結合特殊工具,讓牠們每條神經都發光。在我們的視野下,水母的神經「坦誠相見」,接著發現了很多有趣的現象……欲知詳情,就繼續給他看下去!

為何水母是絕佳的實驗對象

一般研究人類疾病的實驗室採用的實驗動物(也稱模式生物)無非是小鼠、黑猩猩、豬,因為這些動物與人類的親緣關係較近,生理機制也較為雷同。然而,為何研究神經系統,要拿與人類親緣關係一點都不近的水母來研究呢?研究學者對此給出解釋:一部分的學者認為所有生物的神經系統可能共享同一個神經科學原理,因此為了深入調查這個「共享通則」,相較於其他生物,水母小巧好操作,軀體透明好觀察。

最重要的是,牠體內的神經分布不像人腦如毛線球般集中​​在身體的某個部位,而是像一張漁網一樣「分散式」地遍佈全身,而這樣的神經系統優勢就在於即便將牠身體的一小部分獨立分離出來,這一部分仍能正常運行,例如網路火紅的迷因「歸剛欸」水母(影片一),即便水母的嘴被分離了,但這張「獨立的」嘴還是可以正常進食的呦!

-----廣告,請繼續往下閱讀-----
影片一:水母的身軀即便被分離,仍能正常運作。(此為不良示範,請勿隨意模仿、虐待動物!)影/YouTube

相形之下,人類神經細胞一旦離開人體就非常脆弱,在培養皿中一定要有足夠的營養才能支撐它存活(相信養過人類神經細胞的朋朋們一定懂當中辛酸)。因此,綜合操作難易度、觀察便利性、神經細胞的生存韌性,水母可說是作為研究神經系統模式生物的不二人選。另外,還有一個有趣的點即是水母沒有大腦、心、肺,那它究竟是如何進食的呢?以下揭曉答案!

如何研究水母的神經

早期為了研究水母的神經,通常採用單一神經元電生理紀錄(single-unit electrophysiological recordings),透過一個微小細尖的微電極靠在細胞膜附近,以記錄神經元產生的動作電位變化,但是這個方法只能看到單一神經元的狀態,而當水母在做出反應、活動時,都是由好幾個神經細胞們一同作用產生的,所以這個方法可說是見樹不見林,缺乏整體系統性的觀察。

因此科學家們又發明出了一個新方法——基因轉殖水母,要施展這個方法的第一步就是尋覓合適的研究主角,因此他們找到一種名為 Clytia hemisphaerica (圖一)的水螅綱水母,牠擁有嬌小體積(直徑約 1 釐米),且生命週期短,也擁有完整的基因定序,在實驗室操作的便利性極高,可謂是命定首選。

其中, Clytia hemisphaerica 還有更吸引人的一點,即是在進食時,其特定神經元會釋放一種特別的肽 RFamide(RFa)。為了追蹤這種肽如何影響水母的神經活動,一群學者決定將能發出紅螢光的 mCherry 基因質體(plasmid)與 Tol2 轉位酶(Tol2 transposase)[1]顯微注射入大量的水母受精卵當中,以便追蹤身體每一處細胞的位置,並挑選能夠強烈表現出紅螢光基因的受精卵,進而將牠們培養成成體(初代,F0)。這些成體會再跟牠們的親代進行雜交,透過遺傳的方式產生穩定表現轉殖基因的子代(F1),並讓這些子代維持無性繁殖,以維持基因表現的穩定性。

-----廣告,請繼續往下閱讀-----

除了在質體上裝載能讓細胞發紅光的 mCherry,學者也會在質體中放入特定基因,讓子代水母表現此種基因,並觀察此基因對水母進食行為帶來的影響。另外,若要探討神經動作電位,鈣離子的流動狀態一定是不可或缺的電位傳導指標,因此學者也會在質體中加入 GCaMP 這類鈣離子指示劑(calcium indicator)的基因[2],以追蹤後續水母在進行任何反應時神經細胞內鈣離子的濃度。當研究對象、研究工具都準備好了,就是學者大展身手的時刻啦!

圖一:名為 Clytia hemisphaerica 的水螅綱水母擁有嬌小體積(直徑約 1 釐米),且生命週期短,也擁有完整的基因定序,在實驗室操作的便利性極高。圖/Wikipedia

水母進食的神經迴路

水母的神經細胞並非每個都會釋放 RFamide,而是在特定的神經才會產生 RFamide (以下稱這些神經元為 RFa⁺ neuron),而這些 RFa⁺ neuron 分布在水母的神經網(nerve net)、嘴、神經環(nerve rings)及觸手,尤其在神經網的所有神經中約 80% 都是 RFa⁺ neuron,神經網也是 RFa⁺ neuron 最多的地方。學者透過免疫螢光染色發現 RFa⁺ neuron 會與連接放射狀肌纖維神經軸突結節(varicosities)相連而跟著形成放射狀。相較之下,不會產生 RFamide 的 RFa⁻ neuron 則是較為害羞的傢伙,神經元較小,缺乏明確的放射方向。由此可明顯看出,掌握水母行為的主導權主要落在 RFa⁺ neuron 身上,所以學者準備玩轉(殖)這個 RFa⁺ neuron,並進行以下兩種操作:

  1. 消除水母體內的 RFa⁺ neuron

學者為了消除水母體內的 RFa⁺ neuron ,特地在水母的 RFa⁺ 神經細胞中轉殖了硝基還原酶(nitroreductase, NTR)基因,硝基還原酶就像是遙控炸彈,當把這些轉殖基因水母浸泡在甲硝唑(metronidazole, MTZ)溶液(炸彈引爆器)中,便會使帶有硝基還原酶基因的 RFa⁺ 神經細胞產生細胞毒性而死亡,而 RFa⁻ neuron 不會受到影響。

當學者「炸」掉了水母的 RFa⁺ 神經細胞後,發現牠們捕捉獵物和進食能力變差了,不管是食物誘導或是用蝦提取物的化學誘導,水母的觸手完全無法抓取獵物,也無法摺疊身體將食物餵進其口腔內,但周遭肌肉功能正常,且水母仍能正常游泳和蜷縮。然而再將此類水母的下傘面(subumbrella)局部肌肉注入 RFamide,則會使局部肌肉收縮及邊緣傘面折疊。由此可知,水母的獵捕和進食能力主要還是得靠 RFamide 的力量。 

-----廣告,請繼續往下閱讀-----
圖二:Clytia hemisphaerica的生命週期。圖/ReseachGate
  1. 水母神經電位偵測器

為了追蹤水母體內的 RFa⁺ neuron 活動,學者另外也將一群水母的 RFa⁺ neuron 轉殖入鈣離子指示劑 GCaMP6s 基因及紅螢光 mCherry 基因,並將這群水母放入一個小空間,讓他們自然游動,或是將牠們包埋在瓊脂糖凝膠(agarose)中,並攤開牠們的傘狀結構,以便捕捉稍縱即逝的電傳導訊號。

學者將獵物蝦子放在水母身體周遭,發現水母起初最靠近蝦子的一側觸手會先產生電訊號,而這個電訊號會從水母身體邊界傳導至嘴巴,而且整個電訊號路徑會呈現扇形區域(如圖三),接著 RFamide 便會使這個扇形區域的肌肉收縮,讓觸手直接被向內折疊到嘴巴的位置,然後把蝦子吃掉。

圖三:水母在捕捉獵物時,神經傳導訊號路徑呈現披薩片形狀(扇形)。圖/A genetically tractable jellyfish model for systems and evolutionary neuroscience

揭露水母的進食行為:「肽」重要了

以上操作,讓科學家們更了解沒有大腦的水母們究竟是如何進食,也發現 RFamide 對水母們來說「肽」重要了!水母在地球上存在了 5 億多年,卻可以透過如此單一的神經傳導機制生存至今,不過……揪斗!或許,這個發現也可能只是冰山一角;或許,透過水母的神經研究的成果能帶給學者更多對於人腦神經運作的發想,就讓學者邁向這條偉大的航道,去挖掘神經科學中更多的奧秘吧!

註釋

  1. 通常注射入細胞中的質體上也帶有 Tol2 轉位酶基因,而一起被送入細胞的 Tol2 轉位酶(transposase)蛋白會催化此外送質體,並將 Tol2 轉位子活化且同時將外來的基因嵌入受體生物之基因組中,所送入的 Tol2 轉位子會持續跳躍和插入外來基因,直到 Tol2 轉位酶的活性消失或其 mRNA 完全降解為止。此方法常用於基因轉殖生物,主要特色便是外送基因傳承至子代幾乎沒有發生基因默化(gene silencing)的情況,具有高度穩定性,而且脊椎動物也通用此方法。
  2. GCaMP 鈣指示劑是綠螢光蛋白(GFP)、鈣調蛋白(calmodulin,CaM,又稱攜鈣素)及肌球蛋白輕鏈激酶 M13 的合成物。當與鈣離子(Ca²⁺)結合時,GCaMP 便會發出綠螢光信號,而螢光信號會隨著鈣離子濃度的變化而增長或消散。

參考文獻

Curious曉白_96
12 篇文章 ・ 7 位粉絲
對於科學新知充滿好奇心,對於一切新知都想通曉明白,期許自己有一天能成為有所貢獻於社會的曉曉科學家!

0

0
1

文字

分享

0
0
1
一定要有肺才能呼吸?來認識動物們的花式呼吸大法
言蓁
・2020/07/24 ・2369字 ・閱讀時間約 4 分鐘 ・SR值 495 ・六年級

-----廣告,請繼續往下閱讀-----

世上動物千奇百怪,如果要找一個共同點,那應該就是──幾乎所有的動物都需要呼吸。

我們這裡要談的「呼吸」,是呼吸運動,也就是吸入氧氣、排出二氧化碳的動作。一提到這個動作,身為人類的你,或許下意識就會想到肺臟、鼻子等等部位。綜觀動物界,在不同的演化脈絡下,動物們賴以呼吸的構造真可說是無奇不有,就連肺臟、鼻孔本身也可能會有各種不同的形態。

現在,就讓我們來看看那些奇妙的呼吸器官吧!

跟我一起「吸,吸,吐──」圖/GIPHY

大象:你的鼻子為甚麼那麼長?

「媽媽說鼻子長才是漂亮~~」大象(象科 Elephantidae)身上最惹眼的部分就是鼻子了!象鼻是牠們賴以聞嗅味道和呼吸的部位,除此之外,它相當靈巧,舉凡取水、拿東西、攜帶物品等等,象鼻都能做到。

-----廣告,請繼續往下閱讀-----

除了長長的鼻子之外,大象的呼吸構造裡還有一個特殊之處:牠們是目前已知沒有胸膜腔 (Pleural cavity) 的哺乳類動物!

我們人類賴以呼吸的肺臟緊密包覆著一層臟層胸膜 (pulmonary pleurae),會與包覆著胸腔壁內面的壁層胸膜 (parietal pleura) 組成一個很狹小的空間,就是胸膜腔。內部填充有液體潤滑,可避免臟器和胸壁摩擦損傷。

一般我們呼吸的時候,會由肌肉改變胸腔的空間,製造肺部與外在大氣的壓力差,才能夠吸氣或呼氣:當肺內的壓力大於大氣壓力,則會呼氣;而當肺內的壓力小於大氣壓力,則會吸氣。而夾在此之間的胸膜腔,多數時間會維持一定程度的負壓,讓主要由皮膜組織及彈性纖維組成的肺不致塌縮。所謂的「氣胸」就是胸膜受到破壞,使得胸膜腔無法維持負壓,連帶使著肺部塌縮的胸腔疾病。另外,胸腔膜的壓力當然會隨著呼吸而有所變化。

然而,大象的胸膜腔裡,充滿了許多疏鬆的結締組織──也就是說,原本的「腔」不復存在。該怎麼解釋大象沒有胸膜腔呢?

-----廣告,請繼續往下閱讀-----

有個假說認為,這可能跟大象使用長鼻子來「浮潛」有關連。當牠們游泳時,可以將長鼻子舉出水面來呼吸──這是個稍微熟悉大象的人都不意外的畫面。但是成年大象高度可達至少三、四公尺,當游泳使用鼻子呼吸,或是,鼻子端大氣的壓力與位在水下肺部的壓力差距會非常巨大,這時薄薄胸膜腔可能就會頂不住啦,而胸膜腔內的結締組織就有強化的功能。

海豚:我不是跩,只是鼻孔朝天!

海豚(海豚科 Delphinidae)雖然多數生活在海中,少數生活在大河大江中,不過牠們可沒有魚類的鰓,而是用肺呼吸的哺乳類動物。

海豚是從陸生哺乳動物演化而來的,真要說起親緣關係,比起魚類,牠們反而更接近河馬等偶蹄類動物。

大約五千萬年前的始新世時期,陸生哺乳類開始進入水中,在這個過程中,牠們為了適應環境,在形態上產生諸多的改變。為了順利在水中游泳,牠們後肢逐漸退化,形成背鰭及尾鰭,體表變得光滑,身體也變得較偏向流線型。

-----廣告,請繼續往下閱讀-----

而海豚的鼻孔更是位移到了頭頂,成為「呼吸孔」,以便在水面呼吸、換氣。此外,為了不讓自己嗆到,海豚的呼吸孔附近還有由肌肉與結締組織形成的鼻栓 (nasal plug),可以將孔緊閉。鯨魚海豚頭頂的呼吸孔是比較接近鼻孔的構造,因此有些卡通裡會出現鯨魚海豚從嘴裡吸入海水,由呼吸孔噴出海水的情節,在真實世界不大可能出現。

呼吸孔長在頭頂的中華白海豚 (Sousa chinensis)。圖/WIKI

水母:我想要呼吸,全身上下都行

水母是一種無脊椎動物,分類上屬於刺胞動物門 (Cnidaria)。從熱帶、溫帶到淡水區,世界各地的水域都找得到水母的蹤影。牠們的外型多呈現鐘型或者傘狀,構造簡單,體內有超過九成都是水,但沒有肺或鰓。

既然沒有肺或腮,牠們又要怎麼呼吸呢?方式很單純,就是透過擴散作用讓氧氣進出細胞膜。

水母的外表傘蓋的組織相當薄透(想想你吃過的海蜇皮),其中分為外層的表皮層 (epidermis) 和內層的胃皮層 (gastrodermis),兩層之間再夾著一種彈性膠狀物質,又輕又薄的狀態更方便外層組織和海水交換氧氣和二氧化碳。

-----廣告,請繼續往下閱讀-----
看起來有點兒透明的太平洋黃金水母 (Chrysaora fuscescens) 是透過擴散作用的方式來呼吸的。圖/WIKI

牡蠣:一輩子待在原地,就來用鰓呼吸!

牡蠣 (牡蠣科 Ostreidae)的殼有二枚,形狀相當不規則,左殼比右殼大一點。牠們大多棲息在淺海或潮間帶,以左殼固著在物體上,無法自由移動,所以終其一生只能待在原處開開合合,進行呼吸、攝食、生殖、排泄等等行為。

大多數的雙殼綱,殼的頂部有縫可以流通海水,並且在吸排海水的過程中呼吸。牡蠣並不像蛤蜊一樣自備出、入水管,牠們只有腮腔和腮上腔。牡蠣的鰓分左右各一對的內外鰓,上與唇瓣 (labial palps) 相連,下與外套膜 (mantle) 相接,構成一個腔室,水從鰓流入鰓腔及鰓上腔,在過程中進行氣體交換藉以呼吸、獲得氧氣

牡蠣會用左殼附著在物體上,一輩子都不離開原地,並利用腮來呼吸。圖:WIKI

雖然說都是呼吸,但生活在不同地方的生物用的方式卻大不相同,需要根據所在地來大顯神通,除了上述介紹的動物,你知不知道什麼其他特別的呼吸方式呢?

參考資料

言蓁
7 篇文章 ・ 212 位粉絲
喜歡貓但不敢紮實去摸,像對所有喜愛的事物,嚮往也懼怕。依賴文字,生存於不被看好的文組,走著忽焉變成資訊的雜食動物。