0

3
2

文字

分享

0
3
2

規工欸!為何斷頭水母還是能吃東西?——解構「基轉水母」的神經迴路

Curious曉白_96
・2021/12/22 ・3671字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

人腦的神經運作向來難倒大批科學家,因為人腦擁有一千億個神經元,百億條以上的神經連結。如此錯綜複雜,就像打結成一團的毛線球,究竟該從哪邊開始解?這時,就要使出研究學者通用的訣竅——化繁為簡,越複雜的問題,就用越簡單的雛型為思考出發點。

因此,一群學者發現了一個「極簡風」的研究雛型——水母,那透明小巧的身軀,再結合特殊工具,讓牠們每條神經都發光。在我們的視野下,水母的神經「坦誠相見」,接著發現了很多有趣的現象……欲知詳情,就繼續給他看下去!

為何水母是絕佳的實驗對象

一般研究人類疾病的實驗室採用的實驗動物(也稱模式生物)無非是小鼠、黑猩猩、豬,因為這些動物與人類的親緣關係較近,生理機制也較為雷同。然而,為何研究神經系統,要拿與人類親緣關係一點都不近的水母來研究呢?研究學者對此給出解釋:一部分的學者認為所有生物的神經系統可能共享同一個神經科學原理,因此為了深入調查這個「共享通則」,相較於其他生物,水母小巧好操作,軀體透明好觀察。

最重要的是,牠體內的神經分布不像人腦如毛線球般集中​​在身體的某個部位,而是像一張漁網一樣「分散式」地遍佈全身,而這樣的神經系統優勢就在於即便將牠身體的一小部分獨立分離出來,這一部分仍能正常運行,例如網路火紅的迷因「歸剛欸」水母(影片一),即便水母的嘴被分離了,但這張「獨立的」嘴還是可以正常進食的呦!

-----廣告,請繼續往下閱讀-----
影片一:水母的身軀即便被分離,仍能正常運作。(此為不良示範,請勿隨意模仿、虐待動物!)影/YouTube

相形之下,人類神經細胞一旦離開人體就非常脆弱,在培養皿中一定要有足夠的營養才能支撐它存活(相信養過人類神經細胞的朋朋們一定懂當中辛酸)。因此,綜合操作難易度、觀察便利性、神經細胞的生存韌性,水母可說是作為研究神經系統模式生物的不二人選。另外,還有一個有趣的點即是水母沒有大腦、心、肺,那它究竟是如何進食的呢?以下揭曉答案!

如何研究水母的神經

早期為了研究水母的神經,通常採用單一神經元電生理紀錄(single-unit electrophysiological recordings),透過一個微小細尖的微電極靠在細胞膜附近,以記錄神經元產生的動作電位變化,但是這個方法只能看到單一神經元的狀態,而當水母在做出反應、活動時,都是由好幾個神經細胞們一同作用產生的,所以這個方法可說是見樹不見林,缺乏整體系統性的觀察。

因此科學家們又發明出了一個新方法——基因轉殖水母,要施展這個方法的第一步就是尋覓合適的研究主角,因此他們找到一種名為 Clytia hemisphaerica (圖一)的水螅綱水母,牠擁有嬌小體積(直徑約 1 釐米),且生命週期短,也擁有完整的基因定序,在實驗室操作的便利性極高,可謂是命定首選。

其中, Clytia hemisphaerica 還有更吸引人的一點,即是在進食時,其特定神經元會釋放一種特別的肽 RFamide(RFa)。為了追蹤這種肽如何影響水母的神經活動,一群學者決定將能發出紅螢光的 mCherry 基因質體(plasmid)與 Tol2 轉位酶(Tol2 transposase)[1]顯微注射入大量的水母受精卵當中,以便追蹤身體每一處細胞的位置,並挑選能夠強烈表現出紅螢光基因的受精卵,進而將牠們培養成成體(初代,F0)。這些成體會再跟牠們的親代進行雜交,透過遺傳的方式產生穩定表現轉殖基因的子代(F1),並讓這些子代維持無性繁殖,以維持基因表現的穩定性。

-----廣告,請繼續往下閱讀-----

除了在質體上裝載能讓細胞發紅光的 mCherry,學者也會在質體中放入特定基因,讓子代水母表現此種基因,並觀察此基因對水母進食行為帶來的影響。另外,若要探討神經動作電位,鈣離子的流動狀態一定是不可或缺的電位傳導指標,因此學者也會在質體中加入 GCaMP 這類鈣離子指示劑(calcium indicator)的基因[2],以追蹤後續水母在進行任何反應時神經細胞內鈣離子的濃度。當研究對象、研究工具都準備好了,就是學者大展身手的時刻啦!

圖一:名為 Clytia hemisphaerica 的水螅綱水母擁有嬌小體積(直徑約 1 釐米),且生命週期短,也擁有完整的基因定序,在實驗室操作的便利性極高。圖/Wikipedia

水母進食的神經迴路

水母的神經細胞並非每個都會釋放 RFamide,而是在特定的神經才會產生 RFamide (以下稱這些神經元為 RFa⁺ neuron),而這些 RFa⁺ neuron 分布在水母的神經網(nerve net)、嘴、神經環(nerve rings)及觸手,尤其在神經網的所有神經中約 80% 都是 RFa⁺ neuron,神經網也是 RFa⁺ neuron 最多的地方。學者透過免疫螢光染色發現 RFa⁺ neuron 會與連接放射狀肌纖維神經軸突結節(varicosities)相連而跟著形成放射狀。相較之下,不會產生 RFamide 的 RFa⁻ neuron 則是較為害羞的傢伙,神經元較小,缺乏明確的放射方向。由此可明顯看出,掌握水母行為的主導權主要落在 RFa⁺ neuron 身上,所以學者準備玩轉(殖)這個 RFa⁺ neuron,並進行以下兩種操作:

  1. 消除水母體內的 RFa⁺ neuron

學者為了消除水母體內的 RFa⁺ neuron ,特地在水母的 RFa⁺ 神經細胞中轉殖了硝基還原酶(nitroreductase, NTR)基因,硝基還原酶就像是遙控炸彈,當把這些轉殖基因水母浸泡在甲硝唑(metronidazole, MTZ)溶液(炸彈引爆器)中,便會使帶有硝基還原酶基因的 RFa⁺ 神經細胞產生細胞毒性而死亡,而 RFa⁻ neuron 不會受到影響。

當學者「炸」掉了水母的 RFa⁺ 神經細胞後,發現牠們捕捉獵物和進食能力變差了,不管是食物誘導或是用蝦提取物的化學誘導,水母的觸手完全無法抓取獵物,也無法摺疊身體將食物餵進其口腔內,但周遭肌肉功能正常,且水母仍能正常游泳和蜷縮。然而再將此類水母的下傘面(subumbrella)局部肌肉注入 RFamide,則會使局部肌肉收縮及邊緣傘面折疊。由此可知,水母的獵捕和進食能力主要還是得靠 RFamide 的力量。 

-----廣告,請繼續往下閱讀-----
圖二:Clytia hemisphaerica的生命週期。圖/ReseachGate
  1. 水母神經電位偵測器

為了追蹤水母體內的 RFa⁺ neuron 活動,學者另外也將一群水母的 RFa⁺ neuron 轉殖入鈣離子指示劑 GCaMP6s 基因及紅螢光 mCherry 基因,並將這群水母放入一個小空間,讓他們自然游動,或是將牠們包埋在瓊脂糖凝膠(agarose)中,並攤開牠們的傘狀結構,以便捕捉稍縱即逝的電傳導訊號。

學者將獵物蝦子放在水母身體周遭,發現水母起初最靠近蝦子的一側觸手會先產生電訊號,而這個電訊號會從水母身體邊界傳導至嘴巴,而且整個電訊號路徑會呈現扇形區域(如圖三),接著 RFamide 便會使這個扇形區域的肌肉收縮,讓觸手直接被向內折疊到嘴巴的位置,然後把蝦子吃掉。

圖三:水母在捕捉獵物時,神經傳導訊號路徑呈現披薩片形狀(扇形)。圖/A genetically tractable jellyfish model for systems and evolutionary neuroscience

揭露水母的進食行為:「肽」重要了

以上操作,讓科學家們更了解沒有大腦的水母們究竟是如何進食,也發現 RFamide 對水母們來說「肽」重要了!水母在地球上存在了 5 億多年,卻可以透過如此單一的神經傳導機制生存至今,不過……揪斗!或許,這個發現也可能只是冰山一角;或許,透過水母的神經研究的成果能帶給學者更多對於人腦神經運作的發想,就讓學者邁向這條偉大的航道,去挖掘神經科學中更多的奧秘吧!

註釋

  1. 通常注射入細胞中的質體上也帶有 Tol2 轉位酶基因,而一起被送入細胞的 Tol2 轉位酶(transposase)蛋白會催化此外送質體,並將 Tol2 轉位子活化且同時將外來的基因嵌入受體生物之基因組中,所送入的 Tol2 轉位子會持續跳躍和插入外來基因,直到 Tol2 轉位酶的活性消失或其 mRNA 完全降解為止。此方法常用於基因轉殖生物,主要特色便是外送基因傳承至子代幾乎沒有發生基因默化(gene silencing)的情況,具有高度穩定性,而且脊椎動物也通用此方法。
  2. GCaMP 鈣指示劑是綠螢光蛋白(GFP)、鈣調蛋白(calmodulin,CaM,又稱攜鈣素)及肌球蛋白輕鏈激酶 M13 的合成物。當與鈣離子(Ca²⁺)結合時,GCaMP 便會發出綠螢光信號,而螢光信號會隨著鈣離子濃度的變化而增長或消散。

參考文獻

文章難易度
Curious曉白_96
12 篇文章 ・ 7 位粉絲
對於科學新知充滿好奇心,對於一切新知都想通曉明白,期許自己有一天能成為有所貢獻於社會的曉曉科學家!

0

15
2

文字

分享

0
15
2
大腦與骨骼的關係,比我們想像的還要深?!阿茲海默症最新病因假說
Y.L._96
・2023/06/12 ・2803字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

本文翻自<Astrocyte Dysregulation and Calcium Ion Imbalance May Link the Development of Osteoporosis and Alzheimer’s Disease>一文

蔡依良 撰

加拿大的研究報告中指出,阿茲海默症患者罹患骨質疏鬆症和骨折發生率是同年齡神經正常成人的兩倍多 [1]。一項為期兩年的縱向研究也表明,與非失智症的患者相比,阿茲海默症患者的骨骼密度流失的更多 [2]。目前已有少量的實證證據,證明了阿茲海默症的神經病理生理學特徵可能導致骨質流失 [3, 4]。藥物方面,也有報告指出使用鈣離子通道阻滯劑和用於治療骨質疏鬆症的雙磷酸鹽類藥物,可以有效地緩解阿茲海默症的症狀。

為什麼骨質疏鬆與阿茲海默症會有關係呢?這就要從阿茲海默症是什麼開始說起。

阿茲海默症是五種失智症的一種

我們所說的阿茲海默症,只是失智症的其中一種。失智症主要可分為五大類型:路易氏體失智症、額顳葉失智症、血管型失智症、混合性癡呆,以及阿茲海默症。其中阿茲海默症為最常見的失智症,它是一種與年齡相關,認知能力下降的退化性疾病,包括記憶力改變和定向能力下降。

在阿茲海默症的病程中,有高達 70-80% 的患者會表現出非認知症狀,這會導致患者煩躁不安,表現妄想、抑鬱、幻覺、錯誤識別、睡眠障礙、冷漠、攻擊性、進食障礙、不適當的性行為或徘徊。

-----廣告,請繼續往下閱讀-----
70-80% 的患者會表現出非認知症狀。圖/envatoelements

因此我們有必要先強調,這些研究都只說明了其中一種失智症類型——阿茲海默症,與骨質疏鬆有關,不是所有失智症都跟骨質疏鬆有關係。

為什麼阿茲海默症會跟骨質疏鬆扯上關係?

在病理學上,阿茲海默症患者的典型症狀是澱粉樣蛋白-β (Aβ) 斑塊和 tau 過度磷酸化。然而,最近的研究表明,這些症狀並不是疾病的原因,而是發病後產生的。與其他類型的失智症相比,阿茲海默症具有明顯的松果體鈣化及體積縮小,和褪黑激素分泌減少的特徵。

而這幾個跟「松果體」有關的特徵,跟阿茲海默與骨質疏鬆症有密不可分的關係。

松果體是什麼?

松果體位於腦部中央的上視丘,介於兩個腦半球之間,藏在丘腦兩半連接處的凹槽中。是一個對光敏感的小型神經內分泌器官,透過眼球接受光的信息,調整褪黑激素的分泌量,進而控制動物的睡眠時間。它具有高度血管化的構造,不依賴血腦屏障(BBB)所提供的保護。由星狀膠質細胞、小膠質細胞、內皮細胞和釋放褪黑激素的松果體細胞所組成的器官。

-----廣告,請繼續往下閱讀-----

松果體的分泌能力與其體積大小成正比。因此當羥基磷灰石逐漸沉積在松果體形成鈣化時,成為我們俗稱的「腦砂」,勢必將減少褪黑激素的產生。這就是上面提到的「阿茲海默症具有明顯的松果體鈣化及體積縮小,和褪黑激素分泌減少」。

松果體鈣化是導致阿茲海夢症的特徵之一。圖/envatoelements

褪黑激素與骨細胞增殖有關

有趣的是,褪黑激素除了與腦的關聯外,其他研究還發現使用褪黑激素可增加正常人的骨細胞和成骨細胞的增殖。這即是一開始研究所說的「阿茲海默症與骨質疏鬆症有關係」的原因之一。

為什麼是之一呢?因為不只在褪黑激素上,找到阿茲海默症和骨質疏鬆症二種疾病的關聯性,也在其他骨鈣代謝激素,像是:腦雌激素、甲狀旁腺素、維生素 D3、降鈣素、骨鈣素…等,也都有研究找出該激素與兩種疾病之間的關聯性。

骨質疏鬆症。圖/envatoelements

骨鈣代謝激素對阿茲海默症的影響

腦雌激素由星狀膠質細胞合成,具有神經保護的功能,維生素 D3 除了可以保護骨骼,同時也是一種神經類固醇激素,在大腦中扮演保護和調節作用。Hana 等人研究則是發現「降鈣素基因相關肽拮抗劑(CGRP)」,具有成骨和維持骨穩態的作用,可能成為延緩人類認知衰退的治療靶點 [5]。

-----廣告,請繼續往下閱讀-----

還有,成骨細胞衍生的骨鈣素,發現可以改善與年齡相關的認知衰退、預防抑鬱和焦慮,以及減少星形膠質細胞和小膠質細胞的增殖。綜合上述,我們可以得知阿茲海默症和骨質疏鬆症之間,確實存在著某種相關性。

阿茲海默症與骨質疏鬆有關的可能原因

雖然有不少研究支持阿茲海默症與骨質疏鬆有關聯性,但兩者的因果關係,尚未有統一答案,不過,我們可以藉由以下幾點推測可能原因:

一、松果體中的星狀膠質細胞對鈣離子平衡作用

星形膠質細胞為組成松果體的重要細胞之一,它的功能有維持鈣離子濃度平衡,提供神經細胞營養,並可在體內遷移。鈣離子是人類重要的神經傳遞物質之一,一旦被觸發,星形膠質細胞之間就會形成鈣波,激活其他星形膠質細胞傳遞信息。

二、調節骨頭生長的骨細胞為星狀型態細胞

人體大多數的鈣質儲存在骨骼中,以維持一生的鈣穩態。骨組織主要由骨細胞、成骨細胞和蝕骨細胞組成。在骨重塑當中,成骨細胞是生成骨頭的細胞,蝕骨細胞則是分解骨頭的細胞,而骨細胞是調節蝕骨細胞和成骨細胞活性的星狀型態細胞。在成熟的骨骼中,骨細胞是數量最多的細胞類型,有著與生命體本身一樣長的壽命。

-----廣告,請繼續往下閱讀-----

雖然骨細胞的並非星形膠質細胞,但無論在形態或功能上,都有相似之處,同樣為星形,也都與鈣離子濃度的調節有關,只是松果體內的星狀細胞是直接調整鈣離子,骨細胞是藉由控制成骨與蝕骨細胞,來影響周圍鈣離子濃度。為了方便起見,我們假設骨細胞是星形膠質細胞的一種,而松果體主要也是由星形膠質細胞組成。

骨質疏鬆導致鈣離子被釋放到血液中,從而促進松果體鈣化。圖/envatoelements

在鈣波的影響下,那麼當蝕骨細胞有較高的細胞活性,加上星形膠質細胞逐漸失去功能時,鈣將從骨骼中逐漸流失,從而引發骨質疏鬆症。隨後被釋放到血液中的鈣離子可能在松果體中蓄積並導致異位鈣化,從而促進阿茲海默症的發生。

最後值得我們進一步思考的是,長期的慢性發炎時常伴隨著鈣化現象的發生。如果我們常常半夜不睡覺,或在睡前接收大量的光線刺激。長期不正常的光週期是否會導致松果體慢性發炎,誘發松果體鈣化增加罹患阿茲海默症的風險呢?

參考資料

  1. Weller I I. The relation between hip fracture and Alzheimer’s disease in the canadian national population health survey health institutions data, 1994-1995. A cross-sectional study. Ann Epidemiol. 2000;10(7):461. doi:10.1016/s1047-2797(00)00085-5
  2. Loskutova N, Watts AS, Burns JM. The cause-effect relationship between bone loss and Alzheimer’s disease using statistical modeling. Med Hypotheses. 2019;122:92-97. doi:10.1016/j.mehy.2018.10.024
  3. Dengler-Crish CM, Elefteriou F. Shared mechanisms: osteoporosis and Alzheimer’s disease?. Aging (Albany NY). 2019;11(5):1317-1318. doi:10.18632/aging.101828
  4. Minoia A, Dalle Carbonare L, Schwamborn JC, Bolognin S, Valenti MT. Bone Tissue and the Nervous System: What Do They Have in Common?. Cells. 2022;12(1):51. Published 2022 Dec 22. doi:10.3390/cells12010051
  5. Na H, Gan Q, Mcparland L, et al. Characterization of the effects of calcitonin gene-related peptide receptor antagonist for Alzheimer’s disease. Neuropharmacology. 2020;168:108017. doi:10.1016/j.neuropharm.2020.108017

0

15
1

文字

分享

0
15
1
猴痘病毒會入侵到神經系統,造成腦霧和嗅覺異常嗎?淺談猴痘症狀及研究現況
YTC_96
・2023/05/24 ・3388字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

猴痘如何影響大腦和神經系統?會出現嗅味覺喪失或是腦霧的症狀嗎?圖/Pixabay

猴痘(Monkeypox)疫情在 2022 年 7 月 23 日被世界衛生組織(WHO)宣布為「構成國際關注的突發公共衛生事件(Public health emergency of international concern)」,至今(2023 年 5 月)確診的病例數約 8 萬人[1]

歐美地區在去年 8 月底猴痘疫情就開始降溫,但亞洲地區包含臺灣反而開始升溫[2](圖一)。雖然亞洲地區感染的總人數仍遠遠低於歐美,但許多人重新警覺到猴痘大流行的可能性,以及感染後可能帶來的長遠影響。

2022 年 5 月至 2023 年 5 月,亞洲地區以及歐美地區猴痘感染人數變化趨勢圖。歐美地區在 2022 年 8 月底就開始趨緩,但亞洲地區從 2023 年初開始明顯增加。圖/Our World in Data

據統計結果,感染猴痘的早期症狀包括發燒、頭痛、肌肉疼痛、淋巴結腫大、發冷和疲倦,接著身上會出現皮膚病灶(如皮疹、斑疹、斑丘疹、水泡、膿疱等)[3]。猴痘作為天花的近親,隨著疫情數的增加,也讓人不免擔心猴痘的症狀嚴重性是否被低估。

猴痘病毒會有什麼樣神經系統的症狀?又是否會像新冠病毒一樣,產生腦霧和嗅覺異常的症狀?

猴痘病毒入侵到神經系統的臨床證據?與猴痘病毒有關的腦脊髓炎病例

過去的紀錄中,因猴痘引發神經系統症狀的病例相當罕見,但隨著這波猴痘病例數的爆發,學者們也擔憂因病毒感染而產生神經系統症狀的人數會開始出現且增加[4]

-----廣告,請繼續往下閱讀-----

2022 年的夏天,科羅拉多大學醫學院神經病學和傳染病副教授,丹尼爾帕斯圖拉(Daniel Pastula)和研究同仁發現兩例與猴痘相關的腦脊髓炎(encephalomyelitis)病人[5][6]。這兩位年輕且健康的病人分別來自科羅拉多州以及華盛頓特區,其中一位在出現典型全身性猴痘症狀五天後,另一位則是在九天後,分別觀察到腦和脊髓的炎症。

雖然當時醫療團隊並不清楚腦與脊髓的炎症原因是直接病毒神經侵襲,還是副感染性自身免疫(parainfectious autoimmune)反應導致免疫系統攻擊腦與脊髓,但透過適當的抗病毒藥物、靜脈注射免疫調節藥物免疫球蛋白,以及血漿置換後,病人整體狀況有好轉,也開始能開始走動。

2022 年 8 月的時候,西班牙衛生部也通報兩名成年男子在感染猴痘病毒後出現致命的腦脊髓炎[7]。病人的腦脊髓液(cerebrospinal fluid,CSF)皆分別透過 PCR 以及酵素結合免疫吸附分析法,Enzyme—linked immunosorbent assay(ELISA)檢測出猴痘病毒核酸以及抗痘病毒免疫球蛋白。由於是直接在腦脊髓液檢測到病毒和免疫反應,這也是猴痘病毒入侵神經系統的有效證據。

從老鼠、松鼠、以及狗的動物實驗研究表明,猴痘病毒不論是透過皮內、腹腔、又或是鼻腔吸入感染的接種方式,都有可能感染大腦[8-13]。由於並非所有被感染的實驗動物的大腦組織都觀察到猴痘病毒,這也說明猴痘病毒入侵到神經系統並非典型症狀。目前認為病毒是直接感染神經組織,或是透過循環系統,並藉由穿過血腦屏障來入侵中樞神經系統[14](圖二)。

-----廣告,請繼續往下閱讀-----

但究竟病毒是在什麼條件下才會感染神經系統?背後機制為何?還有什麼常見的神經併發症?這些相關問題仍需要未來進一步的追蹤研究。

(圖二)正痘類病毒(例如猴痘 MPXV)感染神經系統的路徑圖。病毒可能直接感染中樞神經節的感覺神經細胞,又或是經由循環系統穿過血腦屏障來感染神經細胞。圖/ScienceDirect

猴痘病毒造成的精神及神經併發症

猴痘感染的典型症狀之一,頭痛,可以說是最常見的神經症狀,一份尚未經過同儕審查的文章指出,大約一半的患者都出現頭痛的症狀[15]

透過系統性的文獻研究,三個與神經疾病相關的臨床特徵:癲癇(seizure)、意識模糊(confusion)以及腦炎(encephalitis)都符合分析的條件,但出現比例都小於 3%。癲癇症狀出現比例為 2.7%,意識模糊症狀為 2.4%,腦炎症狀則是 2.0%。

至於一般的神經併發症如頭痛、肌肉痠痛、以及暈眩,又或是焦慮、憂鬱症等其他神經精神症狀的盛行率則尚不清楚[16]。比起新冠病人有 31%~69% 會出現神經精神症狀如睡眠障礙、憂鬱症、焦慮症以及認知功能降低[17]。猴痘引發的精神及神經併發症比例相當的低,且目前沒有足夠的數據來給出定論。

由於猴痘感染會在皮膚上出疹甚至留下疤痕,加上民眾對於該疾病不瞭解所產生的污名化影響,患者心理健康都有可能因此受到影響甚至產生心理疾病。

-----廣告,請繼續往下閱讀-----

根據一篇刊登在新英格蘭醫學期刊(The New England Journal of Medicine)的研究,在分析 16 個不同國家約 500 名患者後,發現有將近一成的猴痘患者都出現心情低落的情況[18]。但我們無法確認患者情緒的改變是因為神經系統被猴痘病毒感染,又或是外在的間接因素造成。

尚未有報告指出猴痘病毒造成嗅味覺喪失或是腦霧

動物實驗上已發現猴痘病毒能透過鼻腔吸入感染宿主,並進一步入侵到大腦[8,10,11,12,13],也有臨床觀察發現,病人出現口腔以及舌頭潰瘍[19]。但現階段還並未有研究報告指出猴痘病毒會造成嗅味覺喪失[20],又或是造成長期認知功能受損以及腦霧的後遺症。

猴痘與天花有著相似的神經併發症

天花作為猴痘的近親,讓許多人擔心猴痘爆發是不是代表著天花(small pox)捲土重來。好消息是雖然猴痘症狀與天花相似,但病情卻較輕微,並且我們已經有許多治療天花抗病毒藥物以及天花疫苗來對抗猴痘。

猴痘與天花有著相似的神經症狀,譬如頭痛和腦炎。但天花和痘苗(vaccinia,又譯牛痘)疫苗有著較為嚴重的神經併發症,譬如急性瀰漫性腦脊髓炎(acute disseminated encephalomyelitis, ADEM)、貫穿性脊髓炎(transverse myelitis)、急性無力脊髓炎(acute flaccid myelitis)以及格林—–巴利症候群(Guillain-Barré syndrome,GBS,又稱脫髓鞘多發性神經炎)[21]

-----廣告,請繼續往下閱讀-----

猴痘症狀雖然較少有嚴重的炎症,但卻觀察到有情緒疾病以及神經病變痛的狀況,後續仍需要更多的數據來驗證這些症狀出現的比例。

天花、痘苗疫苗以及猴痘的神經併發症比較圖。圖/JAMA Network

結論:謹慎看待猴痘對神經系統的影響但不需恐慌

人類目前感染猴痘病毒後,引起的症狀主要類似流感的和皮膚問題,嚴重的神經精神症狀並不常見,民眾不用過度恐慌擔心。但有鑑於世界各地病例的增加,神經學專家應該準備好識別、診斷和治療潛在的神經侵入性疾病或其他神經症狀。

從公共衛生角度,醫療單位必須向當地衛生部門通報疑似猴痘引發的神經併發症,以建構臨床數據的完整性,協助後續治療的選擇和可能造成的影響。

參考資料

  1. https://www.cdc.gov/poxvirus/mpox/response/2022/world-map.html
  2. https://ourworldindata.org/monkeypox
  3. https://www.cdc.gov/poxvirus/mpox/symptoms/index.html
  4. An Overview of Monkeypox Virus and Its Neuroinvasive Potential – Pastula – 2022 – Annals of Neurology – Wiley Online Library
  5. Two Cases of Monkeypox-Associated Encephalomyelitis — Colorado and the District of Columbia, July–August 2022 | MMWR (cdc.gov)
  6. https://news.cuanschutz.edu/medicine/cu-researcher-encephalomyelitis-monkeypox-virus
  7. Ministerio de Sanidad de España. Current monkeypox situation in Spain. Technical report August 2, 2022. Available at: https://cdn.who.int/media/docs/default-source/blue-print/isabel-jado_case-control-studies_who-monkeypox-vaccine-research_2aug2022.pdf?sfvrsn=d81df2d0_3. Accessed August 3, 2022.
  8. Comparative live bioluminescence imaging of monkeypox virus dissemination in a wild-derived inbred mouse (Mus musculus castaneus) and outbred African dormouse (Graphiurus kelleni) – PubMed (nih.gov)
  9. Further Assessment of Monkeypox Virus Infection in Gambian Pouched Rats (Cricetomys gambianus) Using In Vivo Bioluminescent Imaging – PubMed (nih.gov)
  10. Characterization of Monkeypox virus infection in African rope squirrels (Funisciurus sp.) – PubMed (nih.gov)
  11. Comparison of Monkeypox Virus Clade Kinetics and Pathology within the Prairie Dog Animal Model Using a Serial Sacrifice Study Design – PubMed (nih.gov)
  12. Experimental infection of ground squirrels (Spermophilus tridecemlineatus) with monkeypox virus – PubMed (nih.gov)
  13. Experimental infection of prairie dogs with monkeypox virus – PubMed (nih.gov)
  14. Monkeypox virus neurological manifestations in comparison to other orthopoxviruses – ScienceDirect
  15. Neurological and psychiatric presentations associated with human monkeypox virus infection: a systematic review and meta-analysis | medRxiv
  16. Neurological and psychiatric presentations associated with human monkeypox virus infection: A systematic review and meta-analysis – eClinicalMedicine (thelancet.com)
  17. Brain fog as a Long-term Sequela of COVID-19 – PMC (nih.gov)
  18. Monkeypox Virus Infection in Humans across 16 Countries — April–June 2022 | NEJM
  19. Clinical Recognition | Mpox | Poxvirus | CDC
  20. Monkeypox | Microbiology Society
  21. Neurologic Complications of Smallpox and Monkeypox: A Review | Infectious Diseases | JAMA Neurology | JAMA Network
YTC_96
11 篇文章 ・ 17 位粉絲
從大學部到博士班,在神經科學界打滾超過十年,研究過果蠅、小鼠以及大鼠。在美國取得神經科學博士學位之後,決定先沉澱思考未來的下一步。現在於加勒比海擔任志工進行精神健康知識以及大腦科學教育推廣。有任何問題,歡迎來信討論 ytc329@gmail.com。

2

3
1

文字

分享

2
3
1
致親愛的弗瑞曼人:一封來自地球的沙蟲愛好者之信——《沙丘》(二)
YTLai_96
・2022/10/26 ・4100字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

尊敬的弗瑞曼人,您好:

是的,又是我,來自地球的沙蟲愛好者。自從上次鼓起勇氣提筆寫信給您,我實在難以抑遏再次提筆寫信的激動與衝動,因此在短時間內又冒昧寫了這第二封信,希望您能夠海涵。也希望您與族人能夠感受到我對沙蟲的熱情,當您們閃著幽藍雙眼凝望沙漠深處之時,我是多麼期望能夠與您們在陰影下並肩,用皮膚體會厄拉克斯星球的乾熱、空中沙塵的粗糲、鼻尖若有似無的香料氣息、以及如果有幸的話,或許可以聽見沙蟲在遠方的低鳴,甚至一瞥祂磅礡無匹的身影。

身為地球的沙蟲愛好者,只能看著厄拉克斯星球的最新生態人文記錄片,遙想沙蟲的一切。

但您知道,地球距離厄拉克斯星球是多麼的遙遠啊。我只能在夢裡遙想您們所見所聞,期望您和族人們能夠體諒遙遠地球的沙蟲愛好者的迫切心情,並且願意抽空回覆與我分享關於沙蟲的見聞與觀察,哪怕只是隻字片語都好,對我而言都將是莫大榮幸更如獲至寶。


上一封信中,我談到沙蟲的龐大體型可能會帶來的諸多難題,也斗膽提出了我的猜想:沙蟲這麼大的體型,必定需要又輕又強韌的成份(如木質纖維素或幾丁質)構成身體,而且體內很可能具有許多氣囊和氣管系統,如此不僅可以促成身體大幅輕量化,氣囊與氣管系統和外界頻繁交換空氣也能解決龐大身體核心難以排出餘熱的問題、形成有效率的呼吸系統、大力輔佐循環系統、甚至也能夠解釋沙蟲在沙漠中快速游動的本事。

-----廣告,請繼續往下閱讀-----
看看沙蟲這樣挺出沙漠表面又低頭俯視的姿態,體內一定需要強力的支持系統。 圖/wikipedia

不過我沒講完的是,即使如此,看著歷年來厄拉克斯星球的生態記錄片中珍貴的沙蟲畫面,我認為沙蟲還是必然擁有較為堅硬的骨骼系統,才可能辦到記錄片中把身體前端穿出沙漠表面還懸空低頭的動作。根據弗瑞曼族人的觀察,沙蟲表面有鱗片被覆,那麼像是地球上的蛇類一樣體內有脊椎貫串,似乎也不會太奇怪。

可是,根據我淺薄的理解,弗瑞曼人的重要文獻中從來沒提到沙蟲死後有留下明顯骨骼。於是我大膽的猜想,沙蟲的骨骼系統可能是像地球上的棘皮動物那樣,沒有脊椎骨、且主要由細碎骨片構成,又或者也可能是像地球上的節肢動物一樣,身體具有分節且帶關節的外骨骼系統。

沙蟲體內可能具有類似棘皮動物的骨片。 圖/wikimedia

不過我猜想,除了堅硬的骨骼系統外,更重要的是沙蟲體內應該擁有大量的縱向、橫向、以及環狀的肌肉或結締組織,就像我們口中的舌頭、大象(地球上最大的陸地動物)的長鼻子、章魚(地球上最聰明的無脊椎動物)的腳那樣,藉著這些肌肉構成的所謂的「肌肉水骨骼系統」,可以伸縮俯仰翻轉自如,來達成柔軟又強韌的身體動作。

舌頭就是肌肉水骨骼結構的絕佳範例。 圖/wikimedia

這樣大膽的猜想,終究只能依賴勇敢的弗瑞曼人您們對沙蟲的觀察與判斷,才能稍微確認是否屬實。下次有族人近距離看見沙蟲、或是正巧遇見沙蟲神聖的大體時,在敬畏俯首之前,可以請您們幫我仔細瞧瞧嗎?

-----廣告,請繼續往下閱讀-----

不過,在沙蟲的龐大身軀裡,有一件事情始終讓我百思不得其解,那就是沙蟲的神經傳導機制與速度。試想,沙蟲那麼巨大的身體,神經傳導速度該有多快啊?就算根據弗瑞曼人重要文獻「沙丘」所述,沙蟲擁有所謂分散式的神經網狀節點,那也就像是地球上的環節動物或節肢動物那樣,在身體各節擁有自己的神經節,但是神經節之間還是要依靠神經索彼此連結,以互相協調傳遞訊息啊。

以地球已知最快的神經傳導速度 200 公尺/秒為前提,頭尾長達 200 公尺的中型沙蟲,訊息從頭傳到尾需要整整一秒,更別說更大的沙蟲就需要更久的時間,這樣的神經傳導速度要應付沙蟲的動作協調和反應,真的來得及嗎?但仰望沙蟲那樣迅速的活動與反應,我不禁揣想沙蟲其實擁有地球生物不曾演化出來的神經傳導機制,所以具備望塵莫及的神經傳導速度吧?

尊敬的弗瑞曼人啊,如果有族人正巧遇見沙蟲神聖的大體時,可以請您們幫我仔細觀察沙蟲令人敬畏的軀體內的神經系統嗎?

就算依照厄拉克斯星球的重要文獻「沙丘」所述,沙蟲體內只有分散的神經節點,那大概就像是地球上的蛭類一樣的神經系統,但身體前段與後段的神經節還是離得很遠啊,該怎麼快速傳導神經訊息呢? 圖/Nervous Systems

其實,我光是從歷年來的生態人文記錄片中,隔著螢幕就可以感受到沙蟲令人敬畏的魄力,曾經與祂面對面、被祂的陰影與低鳴吞噬的弗瑞曼人您們,必定更是深深臣服於祂的神性。

-----廣告,請繼續往下閱讀-----

而坦白說,沙蟲那麼龐大的體型,在厄拉克斯星球的沙漠中還能夠存活多年,也實在是一種奇蹟。地球上最大的動物藍鯨要靠著吞食大團磷蝦與小魚來支撐所需能量和營養,沙蟲又比藍鯨大上了 50 倍有餘,需要的食物也該有十倍以上才對。

然而以生態學的角度來看,厄拉克斯星球的沙漠看起來就沒什麼初級生產力,沙蟲光靠吃沙子裡面的浮沙生物(Plankton,姑且容我如此翻譯)怎麼可能撐得起自身所需的龐大能量,實在令人費解。

地球上的鬚鯨需要大量取食小魚小蝦,才能撐起龐大身體所需的能量和營養。

基於我們近年來在地球的微生物群聚生態學的研究進展,請允許我做出如此大膽的猜想:沙蟲或許並不真的靠沙子和浮沙生物為食,而是在體內保有大量的、緊密共生的自營微生物,藉由這些自營微生物光合作用產物的供養,獲得大多數的必須營養與能量甚至還可能有氧氣。

如果我大膽的猜想屬實,那麼在神秘的沙漠深處,沙蟲的日常生活或許就只是攤在沙漠表面曬太陽,不時翻個面確保曬得均勻,讓體內各處的共生自營微生物都能夠充分進行光合作用。

-----廣告,請繼續往下閱讀-----

當然,我相信弗瑞曼人對沙蟲的觀察依然無誤,沙蟲的確會吞食沙子和裡頭的浮沙生物,但是目的或許不是為了以這些浮沙生物為食,而是要把它們納入體內收集起來,成為緊密共生的好夥伴。

畢竟,殺掉一隻母雞頂多飽餐一頓,但是把母雞養起來就可以持續獲得雞蛋,沙蟲這樣收集共生自營微生物並且永續經營利用的習性,不也正展現祂們富有靈性與智慧的存在嗎?

地球上有好些水母湖,湖裡面的水母整天只管翻面曬太陽讓體內共生微生物行光合作用提供養分過活。小小的水母都有如此本事,巨大的沙蟲身上有些特殊的共生微生物提供各種好處也不會太意外吧。

如果弗瑞曼族人們覺得我的猜想似乎有理,那麼請容我更進一步說明。

共生自營微生物跟沙蟲緊密依存的假說,不僅能夠解釋沙蟲龐大身軀的營養來源,也可以解釋沙蟲身邊的火光與閃電現象。根據重要文獻所述,沙蟲的排泄物會產生大量氧氣,移動時尾部還常伴隨摩擦而來之火花與氧氣燃燒的火光。

-----廣告,請繼續往下閱讀-----

但我們從地球的基礎化學知識得知,氧氣只是助燃氣體,真正燃燒的必定另有他物,如果沙蟲體內的共生自營微生物會產生氫氣或甲烷等易燃易爆氣體,混合氧氣後只要有點靜電火光就會爆炸燃燒,那麼沙蟲的糞便產生大量氧氣、移動時候尾部會冒出火光就不再只是神秘奧妙的現像,而是合理的化學反應與氣體燃燒了。

同樣的,弗瑞曼人歷代所描述的沙蟲,在沙漠淺層水平移動時的高速摩擦會產生閃電,也可能並非真的閃電,而是和沙蟲體內共生自營微生物的產氣有關。

厄拉克斯星球的空氣那麼乾燥,沙蟲移動時要累積靜電很容易,但是要突破大片乾燥空氣的絕緣特性,在沙蟲周圍產生長距離的閃電弧光則應該非常困難。但只要沙蟲體內有大量會產出易燃易爆氣體的共生自營微生物,當沙蟲移動時為了把沙團液化所以從氣孔往前噴氣,氣流裡面的易燃易爆氣體與氧氣混合以後被靜電點火,爆炸瞬間燃燒出銀色或藍色條狀火焰,看起來不就像是閃電模樣了嗎?

如此一來,沙蟲周圍的電光火花等異象也就都解釋得通了。

-----廣告,請繼續往下閱讀-----
沙蟲體內如果有很多共生自營微生物產出的沼氣、甲烷或氫氣,往尾部或頭部噴出以後,被靜電的火花點著燃燒出藍色火光,看起來以為是閃電也不意外。 圖/Youtube

不過,地球的自然總有令人難解之處,厄拉克斯星球的自然當然也不例外。

我始終無法想像,如果沙蟲其實主要依賴共生自營微生物獲得能量和營養,平時只要曬太陽就能輕鬆過活,為什麼還要有強烈領域性呢?沙蟲們排好躺平一起曬太陽互不干涉也是挺好的不是嘛?這一點實在令人費解啊。

抱歉,再次強調我對沙蟲沒有一點不尊敬的意思,也理解弗瑞曼族人一時可能不容易接受這些大膽的沙蟲猜想和假說。無論如何,非常感謝您撥空讀信與理解,希望能夠很快收到來自厄拉克斯星球的回音,給我這個地球上的沙蟲愛好者更多的指引,衷心感激。

祝弗瑞曼族人們健康平安。

-----廣告,請繼續往下閱讀-----

來自地球的沙蟲愛好者敬上

所有討論 2