0

0
2

文字

分享

0
0
2

別小看無腦水螅,牠可以用神經系統和細菌溝通呢!

MiTalk
・2019/05/24 ・2726字 ・閱讀時間約 5 分鐘 ・SR值 544 ・八年級

-----廣告,請繼續往下閱讀-----

  • 許嘉合/中央研究院/生物多樣性研究中心/博士後研究員

由目前的證據推測,科學家們認為這可能是因為神經系統在演化上出現的時間比後天免疫系統還早,在後天免疫系統還沒發展出來的年代,神經系統在動物演化的長河中就扮演了與細菌房客交流的重要的角色!

「靠!絞痛又開始了,而且一陣比一陣還痛!」心裡忍不住的罵了髒話後,我還是認命的吞下ㄧ顆止痛藥。對許多受原發性經痛困擾的女性朋友來說,止痛藥才是我們的好朋友。真不知道痛覺神經演化出來折磨人幹麻?其實,這一切的始作俑者就讓我們怪罪給水螅與它的祖先!

水螅 (hydra) 生活在淡水中[註1], 屬於刺絲胞動物門 (Cnidaria)、水螅蟲綱 (Hydrozoa)。同樣隸屬於刺絲胞動物門的還有水母、海葵、珊瑚。它們擁有簡單的散漫神經系[註2],是第一群具有神經系統的動物。其中水螅因為構造簡單,培養、繁殖容易的特性,最適合拿來當模式物種來研究神經傳導。

水螅照片與形態。形態圖改繪自 GeoChembio.com , 照片/visualhunt
  • [註1]:水螅構造簡單,呈輻射對稱:觸手環繞在口部周圍用以捕食;基盤用來附著或移動。雌雄同體,有精巢和卵巢可行有性生殖,但通常行無性的出芽生殖。常見的種類有綠水螅與褐水螅。
水螅散漫神經系統示意圖。圖片改繪自 Murillo-Rincon et al . 2017 圖 1c 及Reese et al . 圖 49-2a。
  • [註2]:水螅擁有最簡單的散漫神經系統,神經系統缺乏統整訊息的中樞,具有兩種不同的神經細胞,包括感覺細胞 (sensorycells) 與多極神經元 (ganglionneurons)。水螅上皮細胞表層的黏膜主要成分為醣蛋白複合物,適合細菌居住。

神經系統的功能與定義一直都被認為是清晰無疑的:它可以接收環境中的物理、化學訊息,讓生物能感知、並能對這些訊息有所反應或行動。然而近年來科學家發現神經系統在演化初期可能具有不同功能,可能被用來與周遭環境中的微生物溝通,還能控制微生物菌相的組成。疑!這聽起來是不是很像後天免疫系統的工作內容?由目前的證據推測,科學家們認為這可能是因為神經系統在演化上出現的時間比後天免疫系統還早,在後天免疫系統還沒發展出來的年代,神經系統在動物演化的長河中就扮演了與細菌房客交流的重要的角色!

不會說話的水螅房東,如何和他的細菌房客溝通?

然而,水螅到底是怎麼利用神經系統來跟它們的細菌房客溝通的呢?在水螅 Hydra magnipapillata 的上皮細胞 (epithelialcell) 表面,有群細菌定居在那。裡面數量最多(佔了 75% 以上)的成員是 β- 變形菌綱(β-Proteobacteria)的成員,尤其是曲桿菌屬 (Curvibacter) 的菌種。第二多和第三多的居民則是 γ- 變形菌綱 (γ-Proteobacteria) 和擬桿菌門 (Bacteroidetes) 的菌種。

-----廣告,請繼續往下閱讀-----

細菌房客的種類組成會受水螅房東的種類和健康狀況影響,並且會受水螅上皮細胞分泌的抗微生物胜肽 (antimicrobialpeptides) 抑制。然而,抗微生物胜肽的生成又會受到神經系統的抑制(圖3,a)。因此,科學家在缺乏神經系統的水螅突變個體上,發現過量的抗微生物胜肽導致上皮細胞原有的 β- 變形菌綱菌種大量減少到只剩下原本的一成。但是原來的第三名擬桿菌門菌種的數量則增加了十倍。所以雖然社區裡面的總菌口數還是維持不變,但組成卻大大的改變了。

水螅神經訊息傳遞與抑制途徑示意圖。a. 神經細胞會抑制上皮細胞分泌抗微生物肽,減弱抗微生物肽抑制細菌生長的功效。b.水螅觸手部分的神經細胞會合成神經胜肽 NDA-1,傳送至上皮細胞表面的黏液層中,抑制曲桿菌生長。圖/許嘉合繪製

除此之外, 神經細胞還會分泌另一種叫做 NDA-1 神經胜肽 (cationic neuropeptie), 去控制主要細菌居民曲桿菌 (Curvibacter) 在自己身體上的分佈位置!這種神經胜肽 NDA-1 在水螅的觸手細胞製造得比較多,合成後會被傳送至上皮細胞表面的黏液層中,用來抑制曲桿菌生長(圖3,b)。這也是為什麼曲桿菌主要出現在水螅的軀幹而非觸手上的原因。這個結果證實水螅能用神經系統控制細菌社區的成員組成與分布位置。

垃圾吃垃圾大?長細菌的水螅好壯壯?

但是,如果你以為細菌只能單方面受制於水螅,那就錯了!細菌與水螅的溝通是雙向的。雖然目前還沒有直接的證據,可是當研究人員用抗生素去除掉水螅身上的細菌後,發現如果水螅身上沒有細菌的話,身體收縮的頻率會不正常升高。另外在水螅胚胎發育的過程中,如果和有正常菌陪伴成長的水螅胚胎相比,無菌的水螅胚胎在發育時更容易發生嚴重的真菌感染。所以,好房客細菌可以保庇你健康長大!而為了要讓好房客細菌乖乖的、不離家出走、不失控,神經系統可是擔負著重要的使命呢!

整合目前在水螅的研究結果,科學家推測神經系統不但可以偵測環境中的細菌、辨認出其中的特定菌種,還可以依據細菌房客組成的不同,來調節體內的生理代謝狀況或控制、篩選體表菌相的組成。當有房客搗亂時,它們還可以引發上皮細胞的先天免疫反應,來維持秩序。

-----廣告,請繼續往下閱讀-----

當研究回到人身上,有腦的我們也能和細菌溝通嗎?

藉由研究模範房東水螅與細菌房客的對話,我們才有機會進一步瞭解神經、免疫系統與共棲微生物的交互作用。例如水螅上的共棲菌如何影響神經系統的放電,以及如何影響水螅的行為。這樣的研究對應到人類,就和最近很夯的:腸腦軸線 (gut-brain axis) 有關。所謂的「腦腸軸線」,是指腸與腦兩個器官間有神經網路讓彼此,連結溝通。近年來科學家發現,藉由這條專線,腸內的菌群可以影響大腦的發育、功能與內分泌系統;而大腦也利用這條熱線控制腸胃道內的內分泌與免疫反應,進而影響了腸道內的菌群組成。

所以當你緊張時可能會拉肚子或引起腸躁症;而當你飲食不正常造成腸內菌相失衡時,也可能引起過敏反應或增加焦慮、憂鬱行為。廣義來說,腦腸軸線其實包含了腸道菌群、神經系統、內分泌系統與免疫系統。其研究範疇更可以橫跨微生物學、生理學與神經心理學,在高等生物上所牽涉到的反應非常的錯綜複雜。因此,或許藉由研究小巧簡單的神經模式物種-水螅,能夠幫助我們釐清一些蛛絲馬跡,找到新的答案。

在了解了神經系統的重要性與在演化中所扮演的角色後,我比較能體諒神經系統這一路走來所負擔的工作既複雜又辛苦。我想下次經痛時,我我我….. 髒話會少罵一點的!

參考資料

  1. Augustin R, Schröder K, Murillo Rincón AP, Fraune S, Anton-Erxleben F, Herbst E-M et al. (2017). A secreted antibacterial neuropeptideshapes the microbiome of Hydra. Nature Communications 8: 698.
  2. Bosch TCG, Miller DJ (2016). The hydra holobiont: a tale of several symbiotic lineages. In: Bosch TCG, Miller DJ (eds). The Holobiont Imperative: Perspectives from Early Emerging Animals. Springer Vienna: Vienna. pp 79-97.
  3. Murillo-Rincon AP, Klimovich A, Pemoller E, Taubenheim J, Mortzfeld B, Augustin R et al. (2017). Spontaneous body contractions are modulated by the microbiome of Hydra. Sci Rep 7: 15937.
  4. Reece JB, Urry LA, Cain ML, Wasserman SA, Minorsky PV, Jackson RB (2010). Campbell Biology, 9th edition. Pearson Education.
  5. Foster JA, McVey Neufeld KA (2013). Gut–brain axis: how the microbiome influences anxiety and depression. Trends Neurosci 36: 305-
    312.

本文轉載自MiTalkzine,原文《神經散漫的水螅與細菌小房客的對話

-----廣告,請繼續往下閱讀-----

歡迎訂閱微雜誌MiTalkzine,加入 MiTalker 的行列,一起來認識這個星球上千萬種各式各樣的微生物吧!

訂閱連結:https://goo.gl/Qo59iG

文章難易度
MiTalk
10 篇文章 ・ 5 位粉絲
MiTalk 由一群微生物領域的科學家組成,希望能讓更多人喜歡上這些有趣的小生物。MiTalkzine 是我們推出的免費電子科普雜誌,歡迎訂閱

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

2
0

文字

分享

0
2
0
大腦與微生物的熱線:腸腦軸線
TingWei
・2022/06/12 ・2584字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

餓了就要吃飯,冷了就會找衣服穿。一個生物體會反覆在不同的變化中,維持著某種「動態平衡」,無論是體溫、血壓還是血糖,身體內這些物理或化學條件的恆定性,是許多生理反應的核心,也是讓身體各部位可以在正常範圍內運作的主因。

然而,身體的調節不見得只是機械性的生理變化,更可能還牽涉到與微生物的互動。自2004年「腸腦軸線」 (gut-brain axis) 的概念出現,科學家對於生活在腸道中的微生物如何與大腦互相交流影響,有了越來越多的理解。

大腦與微生物之間的關係,可能比你想像中的近。 圖/pixaday

許多疾病,也與腸道生物有關?

雖然有很多細節待釐清,但有許多研究發現到腸道微生物的種類與許多嚴重疾病有關聯,如自閉症、焦慮症、肥胖症、精神分裂症、帕金森氏症與阿茲海默症等。

以往的研究認為,腸道微生物群的代謝產物,如短鏈脂肪酸支鏈胺基酸肽聚醣 (peptidoglycan) 等成分會透過免疫系統、迷走神經、腸道神經叢進行調節,與大腦互相交流,因此也有人主張應該稱之為「微生物─腸─腦軸線」。過去科學家發現微生物影響大腦的途徑,基本上都是比較間接的。但在2022年4月15日的《科學》 (Science) 中,科學家發現到腦部的下視丘 (hypothalamic) 神經元可以直接偵測細菌活動的變化,相對應的調整食慾與身體溫度。也就是說,這似乎是科學家第一次找到微生物直接跟大腦「對話」的證據。

-----廣告,請繼續往下閱讀-----

微生物怎麼影響你?NOD2──模式鑑別受器

首先介紹本次研究中最重要的腦部構造,下視丘 (Hypothalamas) 。下視丘位在腦的基底,在一般成年人身上大概只有一顆碗豆的大小,卻負責調控非常多重要的生理機能,包括體溫、情緒、飢餓、口渴。

下視丘還負責調控腦垂腺前葉,參與多種內分泌調控。可以說,微生物如果能夠影響下視丘的功能,相當於開啟了影響生理機制的大門。

回到微生物,剛剛有提到微生物釋放在血液中的物質可以影響宿主的免疫、代謝與大腦等等功能。這些代謝產物會被生物體內許多受器所感測。最具代表性的受器為模式鑑別受器 (pattern recognition receptors, PRRs)

過去,科學家認為模式鑑別受器主要由先天免疫系統的細胞,偵測微生物病原體或者受損的細胞黏膜表面、組織間與細胞內出現病毒、細菌、真菌的訊號。

-----廣告,請繼續往下閱讀-----

其中,有一種模式鑑別受器被稱為 NOD2 (Nucleotide-binding oligomerization domain-containing protein 2) ,會偵測細菌細胞壁的主要成分肽聚醣(也稱為細胞壁胜肽(muropeptides)。因此,科學家過去認為,NOD2的功能有可能就是幫助免疫系統辨識細菌細胞壁的碎片。

利用腦部成像技術,科學家進一步觀察小鼠腦部的不同區域,尤其在下視丘,紀錄 NOD2 受器的表現。結果證明,若是缺乏NOD2受器的腦袋可是會出問題的,過去科學家們已經確定 NOD2受器的突變,與消化系統疾病如克隆氏症 (Crohn’s disease) 有關,也與幾種神經系統疾病情緒障礙有關聯。

小鼠研究中揭露了, NOD2 可能在多種免疫與神經的機制上扮演了重要的角色。為了進一步解相關的功能,團隊還開發出一種在下視丘區域缺乏 NOD2 受體的小鼠,這些小鼠對於許多行為與生理包括體溫保存、築巢行為、晝夜節律、禁食與腎上腺刺激等等都有所減弱。更長時間的觀察還顯示,這些失去 NOD2 的小鼠體重會增加,且更容易罹患第二型糖尿病,這些情況尤其在年老的雌鼠上更為嚴重。

透過小鼠研究,科學家發現NOD2可能在多種免疫與神經的機制上扮演了重要的角色。 圖/SCIENCE

細菌與神經元的你增我減

那麼,正常小鼠的 NOD2 受體作用是什麼呢?若小鼠擁有正常的 NOD2 神經元,其神經活動在遭遇到肽聚醣時會受抑制。換句話說,如果NOD2受器消失了,這些神經元就不再受到抑制。

-----廣告,請繼續往下閱讀-----

肽聚醣在腦部、血液或腸道中都被認為是細菌增殖 (proliferation) 的標誌物,而研究發現,不管是口服或腸道菌釋出肽聚醣都會抵達大腦的許多區域,包括下視丘中,負責體溫調節、進食行為的弓形核 (arcuate nucles) 。而其中的 GABA 神經元在接觸到肽聚醣時,也會遭到抑制。

研究人員進一步測試微生物與 NOD2 在下視丘 GABA 神經元的表現,是否確實與食物攝取和體溫調節有關?研究顯示,在使用抗生素消除微生物,或是以病毒消除在下視丘的 NOD2 基因表現後,都會導致年老的小鼠體重增加與行為改變。

至此,科學家初步證實,下視丘神經元可以直接偵測到細菌的成分,並改變進食、築巢與體溫調節的行為。微生物非常有可能能夠藉由 NOD2 來調節宿主的一些行為,或者反過來也可以解釋成,大腦藉由 NOD2 受器接受到的訊號,來偵測微生物的狀況、進行一些調節。

微生物幫助你維持完美平衡

某種程度上,腸道菌可能被大腦視為攝入食物品質的某種直接指標;而另一方面,腸道菌的增長或死亡也與腸道的恆定或病理機制有關,因此下視丘進行調節可能至關重要。下視丘主掌的多種生理調控,在腸道菌生長得「不如人意」時,改變攝食與體溫來調整腸道菌相,似乎也相當合理。

-----廣告,請繼續往下閱讀-----

反過來,某些腸道菌叢可能也會提供調節訊號,以維繫適合自己的生活環境。影響腸道細菌生長最主要的兩個因子,就是食物以及體溫。舉例來說,大量攝取單一種類的食物,有可能會導致某些細菌甚至是病原菌不成比例的生長,因而危及腸道平衡。因此對於腸道菌來說,有管道可以「上達天聽」似乎是頗合邏輯的。

整個調控機制到底是腸道菌主動、大腦掌握主導權,抑或是兩者基本上「狼狽為奸」,尚待進一步的研究。然而發現大腦可以直接偵測細菌活動,即使是遠在腸道的腸道菌的增生或是死亡,也讓我們了解到大腦與身體待解的謎題,或許遠比想像中還來的多。

細菌細胞壁的肽聚醣會影響下視丘神經元與代謝,那還有沒有更多細菌影響大腦功能的機制呢?本次發現到 NOD2 受器在中樞神經中扮演的角色,未來是否能以此為開端,為腦部疾病與代謝性疾病,如糖尿病與肥胖症找到新的治療手法?就讓我們繼續看下去吧!

參考資料:

  1. Institut Pasteur. (2022, April 15). Decoding a direct dialog between the gut microbiota and the brain. ScienceDaily. Retrieved April 29, 2022 from www.sciencedaily.com/releases/2022/04/220415100551.htm
  2. Gabanyi, I., Lepousez, G., Wheeler, R., Vieites-Prado, A., Nissant, A., Wagner, S., … & Lledo, P. M. (2022). Bacterial sensing via neuronal Nod2 regulates appetite and body temperature. Science, 376(6590), eabj3986.
  3. Cryan, J. F., O’Riordan, K. J., Cowan, C. S., Sandhu, K. V., Bastiaanssen, T. F., Boehme, M., … & Dinan, T. G. (2019). The microbiota-gut-brain axis. Physiological reviews.
TingWei
13 篇文章 ・ 15 位粉絲
據說一生科科的生科中人,不務正業嗜好以書櫃堆滿房間,努力養活雙貓為近期的主要人生目標。

0

0
2

文字

分享

0
0
2
別小看無腦水螅,牠可以用神經系統和細菌溝通呢!
MiTalk
・2019/05/24 ・2726字 ・閱讀時間約 5 分鐘 ・SR值 544 ・八年級

  • 許嘉合/中央研究院/生物多樣性研究中心/博士後研究員

由目前的證據推測,科學家們認為這可能是因為神經系統在演化上出現的時間比後天免疫系統還早,在後天免疫系統還沒發展出來的年代,神經系統在動物演化的長河中就扮演了與細菌房客交流的重要的角色!

「靠!絞痛又開始了,而且一陣比一陣還痛!」心裡忍不住的罵了髒話後,我還是認命的吞下ㄧ顆止痛藥。對許多受原發性經痛困擾的女性朋友來說,止痛藥才是我們的好朋友。真不知道痛覺神經演化出來折磨人幹麻?其實,這一切的始作俑者就讓我們怪罪給水螅與它的祖先!

水螅 (hydra) 生活在淡水中[註1], 屬於刺絲胞動物門 (Cnidaria)、水螅蟲綱 (Hydrozoa)。同樣隸屬於刺絲胞動物門的還有水母、海葵、珊瑚。它們擁有簡單的散漫神經系[註2],是第一群具有神經系統的動物。其中水螅因為構造簡單,培養、繁殖容易的特性,最適合拿來當模式物種來研究神經傳導。

水螅照片與形態。形態圖改繪自 GeoChembio.com , 照片/visualhunt

  • [註1]:水螅構造簡單,呈輻射對稱:觸手環繞在口部周圍用以捕食;基盤用來附著或移動。雌雄同體,有精巢和卵巢可行有性生殖,但通常行無性的出芽生殖。常見的種類有綠水螅與褐水螅。

水螅散漫神經系統示意圖。圖片改繪自 Murillo-Rincon et al . 2017 圖 1c 及Reese et al . 圖 49-2a。

-----廣告,請繼續往下閱讀-----
  • [註2]:水螅擁有最簡單的散漫神經系統,神經系統缺乏統整訊息的中樞,具有兩種不同的神經細胞,包括感覺細胞 (sensorycells) 與多極神經元 (ganglionneurons)。水螅上皮細胞表層的黏膜主要成分為醣蛋白複合物,適合細菌居住。

神經系統的功能與定義一直都被認為是清晰無疑的:它可以接收環境中的物理、化學訊息,讓生物能感知、並能對這些訊息有所反應或行動。然而近年來科學家發現神經系統在演化初期可能具有不同功能,可能被用來與周遭環境中的微生物溝通,還能控制微生物菌相的組成。疑!這聽起來是不是很像後天免疫系統的工作內容?由目前的證據推測,科學家們認為這可能是因為神經系統在演化上出現的時間比後天免疫系統還早,在後天免疫系統還沒發展出來的年代,神經系統在動物演化的長河中就扮演了與細菌房客交流的重要的角色!

不會說話的水螅房東,如何和他的細菌房客溝通?

然而,水螅到底是怎麼利用神經系統來跟它們的細菌房客溝通的呢?在水螅 Hydra magnipapillata 的上皮細胞 (epithelialcell) 表面,有群細菌定居在那。裡面數量最多(佔了 75% 以上)的成員是 β- 變形菌綱(β-Proteobacteria)的成員,尤其是曲桿菌屬 (Curvibacter) 的菌種。第二多和第三多的居民則是 γ- 變形菌綱 (γ-Proteobacteria) 和擬桿菌門 (Bacteroidetes) 的菌種。

細菌房客的種類組成會受水螅房東的種類和健康狀況影響,並且會受水螅上皮細胞分泌的抗微生物胜肽 (antimicrobialpeptides) 抑制。然而,抗微生物胜肽的生成又會受到神經系統的抑制(圖3,a)。因此,科學家在缺乏神經系統的水螅突變個體上,發現過量的抗微生物胜肽導致上皮細胞原有的 β- 變形菌綱菌種大量減少到只剩下原本的一成。但是原來的第三名擬桿菌門菌種的數量則增加了十倍。所以雖然社區裡面的總菌口數還是維持不變,但組成卻大大的改變了。

水螅神經訊息傳遞與抑制途徑示意圖。a. 神經細胞會抑制上皮細胞分泌抗微生物肽,減弱抗微生物肽抑制細菌生長的功效。b.水螅觸手部分的神經細胞會合成神經胜肽 NDA-1,傳送至上皮細胞表面的黏液層中,抑制曲桿菌生長。圖/許嘉合繪製

-----廣告,請繼續往下閱讀-----

除此之外, 神經細胞還會分泌另一種叫做 NDA-1 神經胜肽 (cationic neuropeptie), 去控制主要細菌居民曲桿菌 (Curvibacter) 在自己身體上的分佈位置!這種神經胜肽 NDA-1 在水螅的觸手細胞製造得比較多,合成後會被傳送至上皮細胞表面的黏液層中,用來抑制曲桿菌生長(圖3,b)。這也是為什麼曲桿菌主要出現在水螅的軀幹而非觸手上的原因。這個結果證實水螅能用神經系統控制細菌社區的成員組成與分布位置。

垃圾吃垃圾大?長細菌的水螅好壯壯?

但是,如果你以為細菌只能單方面受制於水螅,那就錯了!細菌與水螅的溝通是雙向的。雖然目前還沒有直接的證據,可是當研究人員用抗生素去除掉水螅身上的細菌後,發現如果水螅身上沒有細菌的話,身體收縮的頻率會不正常升高。另外在水螅胚胎發育的過程中,如果和有正常菌陪伴成長的水螅胚胎相比,無菌的水螅胚胎在發育時更容易發生嚴重的真菌感染。所以,好房客細菌可以保庇你健康長大!而為了要讓好房客細菌乖乖的、不離家出走、不失控,神經系統可是擔負著重要的使命呢!

整合目前在水螅的研究結果,科學家推測神經系統不但可以偵測環境中的細菌、辨認出其中的特定菌種,還可以依據細菌房客組成的不同,來調節體內的生理代謝狀況或控制、篩選體表菌相的組成。當有房客搗亂時,它們還可以引發上皮細胞的先天免疫反應,來維持秩序。

當研究回到人身上,有腦的我們也能和細菌溝通嗎?

藉由研究模範房東水螅與細菌房客的對話,我們才有機會進一步瞭解神經、免疫系統與共棲微生物的交互作用。例如水螅上的共棲菌如何影響神經系統的放電,以及如何影響水螅的行為。這樣的研究對應到人類,就和最近很夯的:腸腦軸線 (gut-brain axis) 有關。所謂的「腦腸軸線」,是指腸與腦兩個器官間有神經網路讓彼此,連結溝通。近年來科學家發現,藉由這條專線,腸內的菌群可以影響大腦的發育、功能與內分泌系統;而大腦也利用這條熱線控制腸胃道內的內分泌與免疫反應,進而影響了腸道內的菌群組成。

-----廣告,請繼續往下閱讀-----

所以當你緊張時可能會拉肚子或引起腸躁症;而當你飲食不正常造成腸內菌相失衡時,也可能引起過敏反應或增加焦慮、憂鬱行為。廣義來說,腦腸軸線其實包含了腸道菌群、神經系統、內分泌系統與免疫系統。其研究範疇更可以橫跨微生物學、生理學與神經心理學,在高等生物上所牽涉到的反應非常的錯綜複雜。因此,或許藉由研究小巧簡單的神經模式物種-水螅,能夠幫助我們釐清一些蛛絲馬跡,找到新的答案。

在了解了神經系統的重要性與在演化中所扮演的角色後,我比較能體諒神經系統這一路走來所負擔的工作既複雜又辛苦。我想下次經痛時,我我我….. 髒話會少罵一點的!

參考資料

  1. Augustin R, Schröder K, Murillo Rincón AP, Fraune S, Anton-Erxleben F, Herbst E-M et al. (2017). A secreted antibacterial neuropeptideshapes the microbiome of Hydra. Nature Communications 8: 698.
  2. Bosch TCG, Miller DJ (2016). The hydra holobiont: a tale of several symbiotic lineages. In: Bosch TCG, Miller DJ (eds). The Holobiont Imperative: Perspectives from Early Emerging Animals. Springer Vienna: Vienna. pp 79-97.
  3. Murillo-Rincon AP, Klimovich A, Pemoller E, Taubenheim J, Mortzfeld B, Augustin R et al. (2017). Spontaneous body contractions are modulated by the microbiome of Hydra. Sci Rep 7: 15937.
  4. Reece JB, Urry LA, Cain ML, Wasserman SA, Minorsky PV, Jackson RB (2010). Campbell Biology, 9th edition. Pearson Education.
  5. Foster JA, McVey Neufeld KA (2013). Gut–brain axis: how the microbiome influences anxiety and depression. Trends Neurosci 36: 305-
    312.

本文轉載自MiTalkzine,原文《神經散漫的水螅與細菌小房客的對話

歡迎訂閱微雜誌MiTalkzine,加入 MiTalker 的行列,一起來認識這個星球上千萬種各式各樣的微生物吧!

-----廣告,請繼續往下閱讀-----

訂閱連結:https://goo.gl/Qo59iG

文章難易度
MiTalk
10 篇文章 ・ 5 位粉絲
MiTalk 由一群微生物領域的科學家組成,希望能讓更多人喜歡上這些有趣的小生物。MiTalkzine 是我們推出的免費電子科普雜誌,歡迎訂閱

1

6
0

文字

分享

1
6
0
腸道健康至關重要!腸道菌相失衡恐導致「Long COVID」?
細菌姐姐
・2022/06/10 ・2586字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

截至2022/5/28臺灣時間09:20,全世界的COVID-19確診者人數已達5億2444萬多人,其中臺灣已通報的確診人數已超過181萬人,對於COVID-19的得病與否已經無法控制。隨著確診人數不斷攀升,與此同時,臺灣也有了越來越多的康復者。這些康復者得到了超強的COVID-19天然抗體,在短期內不易再被相同病毒株感染,然而,得到超強抗體的同時,即使康復了,不少人仍然承受著病毒感染後的後遺症,也就是所謂的「Long COVID(新冠長期症狀)」

隨著 COVID-19 確診人數逐漸升高,越來越多康復者陷入「Long COVID」的狀況。 圖/envato

什麼是Long COVID?

目前學界對於 Long COVID 的定義仍持續地在修正,大致對於 Long COVID 的描述為:感染過 COVID-19 並康復後,有些因為 COVID-19 感染造成的症狀仍持續4–12週或甚至更久。從中國、英國、法國、西班牙和美國對 Long COVID 患者相關的研究中可以看到,只要具有:

  • 「倦怠(fatigue)」、
  • 「關節疼痛(joint pain)」、
  • 「睡眠障礙(sleep disturbance)」、
  • 「呼吸困難(dyspnea)」、
  • 「味覺或嗅覺喪失(loss of taste/smell)」、
  • 「咳嗽(cough)」、
  • 「頭痛(headache)」、
  • 「掉髮(hair loss)」、
  • 「胸痛(chest pain)」
  • 「拉肚子(diarrhea)」

以上等任何一個症狀,持續了很久都無法痊癒,那這項症狀就是所謂的 Long COVID 症狀。
(以上的症狀占較大的比例,占比較低的症狀並沒有在此列出)

痊癒後,病毒也不會消失……?

許多論文研究指出,具有 Long COVID 症狀的患者的腸道菌相有失衡(dysbiosis)的情況,可能因此造成免疫系統失衡與許多症狀的產生;另外,更有趣的是,在今年的 Nature 期刊中刊出一篇對於 Long COVID 的新發現, Ledford 的團隊發現具有 Long COVID 症狀的康復者在康復7個月後,腸道中仍然可以偵測到 COVID-19 病毒!

-----廣告,請繼續往下閱讀-----

這說明著,即使上呼吸道已經偵測不到病毒,病毒仍有可能藏匿在身體的其他地方(例如腸道),神不知鬼不覺地影響康復者的健康。但也因為這篇研究的樣本數還不夠多,並且受試者皆具有自體免疫相關的疾病,因此,病毒藏匿在腸道的現象,是否也會在健康的 Long COVID 患者身上被發現?這一點需要更進一步的研究。

COVID-19 康復後,病毒仍有可能藏匿在身體的其他地方,導致某些症狀遲遲無法痊癒。 圖/envato

腸道菌相失衡,會導致Long COVID嗎?

雖然,目前為止相關研究的取樣數量仍然不足;但是,與 COVID-19 患者以及康復者的腸道微生物相研究幾乎都指出, COVID-19 會導致患者的腸道微生物多樣性大幅下降,並且導致伺機性病原菌(opportunistic pathogens)在腸道的含量占比大大增加。這些病原菌雖然平常不易引起我們的疾病,但因為腸道菌相失衡,而大幅增加這些病原菌感染我們的機會。既然如此,那如果使用抗生素清除腸道微生物相後,菌相能不能重新恢復健康恆定的狀態?

不幸的是,在感染 COVID-19 的時候,不論病患是否使用抗生素,在康復後,腸道菌相仍然會出現失衡的情況。其中,從這些康復者的糞便中分離出的細菌 Clostridium ramosum, Coprobacillus, Clostridium hathewayi  等的占比,和康復者得到 COVID-19 病症的嚴重性具有高度正相關;而 Alistipes onderdonkii  和 Faecalibacterium prausnitzii (這個菌株具有消炎的效果)的含量,則和 COVID-19 的病症嚴重性具有高度負相關。這些細菌的在腸道中的占比間接指出,重症患者的腸道菌相失衡且伺機性病原菌占比大增的事實。

另外,延續上述所說「COVID-19 病毒會藏匿在康復者腸道的現象」,關於存在於腸道的病毒是否是造成菌相失衡的原因,以及病毒的感染如何造成腸道菌相失衡,科學家們仍持續探究著。

-----廣告,請繼續往下閱讀-----

健康的便便可以治療Long COVID嗎?

為什麼腸道菌相失衡會造成上述的 Long COVID 症狀? Burchill 等人基於腸腦軸線(gut-brain axis)以及腸肺軸線(gut-lung axis)的理論提出假說:腸道微生物相會影響人的心情以及行為等,而腸道微生物相已知和許多嚴重的肺部疾病相關。因此, COVID-19 的患者和康復者因為 COVID-19 造成腸道菌相失衡,而這樣的結果藉由腸腦軸線導致嗜睡、心情低落等症狀,以及藉由腸肺軸線導致呼吸道的症狀。

延伸閱讀:

腸道炎會導致憂鬱症?——淺談體內的腸腦軸線,揭露腸道菌的「腦控」機制!
糞便菌相移植(faecal microbiota transplant, FMT),有機會可以治療 Long COVID嗎? 圖/envato

既然各項症狀都和腸道菌相失衡有關,那麼,如果要讓 COVID-19 的患者和康復者痊癒,是不是只要讓他們的微生物相恢復健康恆定即可?因此,Burchill 等人嘗試探索使用糞便菌相移植(faecal microbiota transplant, FMT)以治療 COVID-19 的方法。

糞便菌相移植在醫學上已行之有年,用以治療許多疾病,其中包含癌症、發炎性腸胃疾病(inflammatory bowel disease)、神經疾病(neurological disorders)等。

然而,若要使用糞便菌相移植治療 COVID-19 ,目前已知可能會有一些潛在的風險,例如:如果健康的糞便捐贈者不具有任何COVID-19症狀,但是血液裡卻帶有病毒呢?病毒是否會透過糞便傳播?再者,需要接受糞便菌相移植的患者,相較於捐贈者,可能較容易被病毒以及其他病原菌感染。因此,在篩選健康菌相時,必須要非常小心並且嚴格地把關,否則可能會輾轉加劇患者的病情。

-----廣告,請繼續往下閱讀-----

目前對於 Long COVID 患者和他們的腸道菌相的研究持續增加中,對於「腸道菌相失衡導致了 Long COVID 」這個問題,從現在的相關研究結果來看仍無法百分之百確定,但可以確定的是,腸道菌相的恆定對於人體的健康具有絕對的重要性。

點開泛科學,帶你更深入瞭解「Long COVID」

參考資料:

  1. 衛生福利部疾病管制署網站。擷取時間:2022/5/28。取自:https://www.cdc.gov.tw/
  1. Burchill E, Lymberopoulos E, Menozzi E, Budhdeo S, Mcllroy JR, Macnaughtan J & Sharma N. (2021). The Unique Impact of COVID-19 on Human Gut Microbiome Research. Frontiers in Medicine 8:652464, doi: 10.3389/fmed.2021.652464
  1. Hilpert K & Mikut R. (2021). Is There a Connection Between Gut Microbiome Dysbiosis Occurring in COVID-19 Patients and Post-COVID-19 Symptoms? Frontiers in Microbiology 12: 732838, doi: 10.3389/fmicb.2021.732838
  1. Ledford H. (2022). Coronavirus ‘ghosts’ found lingering in the gut. Nature 605: 408–409, doi: 10.1038/d41586–022–01280–3
  1. Wang B, Zhang L, Wang Y, Dai T, Qin Z, Zhou F & Zhang. (2022). Alterations in microbiota of patients with COVID-19: potential mechanisms and therapeutic interventions. Signal Transduction and Targeted Therapy 7 (143), doi: 10.1038/s41392-022-00986-0
所有討論 1
細菌姐姐
2 篇文章 ・ 0 位粉絲
研究生一枚,尤其喜歡細菌和其他微生物或動植物之間的互相依靠或是激烈戰爭。 總覺得微生物和動植物的互動和人類的社會很像。期待透過科普的文字將更多人感染成細菌學和微生物學愛好者。