Loading [MathJax]/extensions/tex2jax.js

0

10
0

文字

分享

0
10
0

戰爭的遺毒該如何排除?基轉植物或可分解 RDX 炸藥的有毒物質

科技大觀園_96
・2021/11/27 ・2647字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

一般說到炸藥,大家可能都會想到化學課聽過的「黃色炸藥 TNT 」,而同樣有硝基的常見爆炸物 RDX(Research Department explosive),爆炸強度是 TNT 的 1.5 倍,是目前美國軍事上製造炸藥必須的化學藥品,然而,這些爆炸物容易造成令人頭痛的環境污染,目前許多研究試圖尋找降解此種污染的方法,但一直沒有找到有效經濟又可以持續使用的辦法。今年發表於《Nature Biotechology》的一篇新研究發現,一種在北美草原上常見的植物,透過基因轉殖後可以吸收和分解 RDX!

第二次世界大戰中使用的空襲炸彈,鋼瓶上印有RDX/TNT的字樣,為RDX與TNT混合物。圖/wikipedia

到底是怎麼做到的呢?在了解這個新穎的解決方案之前,我們先來聊聊 RDX 到底是什麼?又是怎麼造成環境污染的?

RDX 的化學式是 (CH2NNO2)3 ,環三亞甲基三硝胺,中文別稱黑索金、海掃更、T4炸藥、炫風炸藥等。如前面所說,RDX 廣用於軍事用途,是二次世界大戰時最常被使用的爆炸物,目前軍用市場上有超過 4000 種彈藥都含有 RDX,通常和其他物質混合作為軍事彈藥,但事實上,RDX 在一開始並不是被用來作為武器,西元 1899 年德國化學家首次合成 RDX 並申請專利,當時主要描述的是 RDX 的醫藥用途,後來,隨著二次大戰開打,由於 RDX 的爆炸力比第一次世界大戰的 TNT 還強,RDX 被雙方軍隊注意到,便被廣泛作為炸藥的材料。

RDX分子模型。圖/wikipedia

那 RDX 會對我們造成什麼影響呢?

事實上,在彈藥發射、丟棄槍械,或是製造彈藥的過程中都可能會釋放 RDX 至周圍環境,例如軍事基地、手榴彈丟擲場、彈藥工廠等場所,受污染較嚴重的以土壤和地下水為主,當 RDX 被釋放到土壤後,會進一步滲透至地下水系統,也就是說,RDX 的影響可能會蔓延到日常飲用水,而且因為 RDX 流動性高又不易降解,不僅會對土壤生態造成影響,若人類攝入過量會有暈眩、嘔吐等症狀,也可能會引起癲癇發作。

-----廣告,請繼續往下閱讀-----

此外,RDX 也是一種可能的致癌物,在美國大約有一萬公頃的射擊場用地已經被 RDX 滲透,因此被美國環境保護署 (Environmental Protection Agency,EPA) 列為飲用水污染物之一,並設立飲用水中的含量標準。

在西元 2012 年時,台灣也增修了環境標準管制草案,因火炸藥屬於管制用品,通常只有軍事用地能夠生產及銷毀,而根據環保署過去的調查計畫也顯示,台灣多處軍事場址內確實有火炸藥類物質的污染,若未來軍事用地轉為公共用途後,使用者受到危害的可能性將會提高。環保署逐年檢測國有地、軍事用地土壤與地下水的相關污染。為了避免 RDX 污染造成環境及健康的威脅,探討 RDX 在土壤及地下水中的特性、機制,並找到整治的方法,便成為研究的一大重點,例如,國內曾有研究利用表面改質奈米零價鐵顆粒,處理受 TNT、RDX 的污染地下水體。

而這次由美國約克大學研究團隊發表的研究,是利用基因轉殖,讓植物能夠降解並吸收 RDX,前面有提過,美國受 RDX 的土地面積非常大,若利用傳統方法,像是填埋、焚燒、氧化等,較適合用於高污染但面積小的土地,根據美國國防部的估計,成本效益不符比例。

事實上,研究團隊在先前就已經分離出一種具有降解 RDX 能力的細菌 Rhodococcus rhodochrous 11Y,能夠在有氧及無氧條件下催化 RDX 還原脫硝,然而,細菌分解的速度不夠快,沒辦法防止 RDX 滲入地下水層。因此,科學家將清除污染的責任放到植物身上,使用植物有許多好處,例如破壞性較小、能幫助土地恢復生機,社會層面上則是具有美感、大眾接受程度也較高,且長期而言,維護植物的生長所需成本較低。

-----廣告,請繼續往下閱讀-----
Rhodococcus 屬細菌於光學顯微鏡(左)與電子顯微鏡(右)下的成像。圖/microbewiki

但是,植物並不具備降解 RDX 的能力,因此,科學家便將與降解能力有關的細菌基因,轉殖至植物的基因裡。在之前的實驗中,他們發現被轉殖過的阿拉伯芥 Arabidopsis thaliana 能夠將 RDX 分解,然後被植物吸收並代謝,不需要收割植物便可以清除污染物。

在實驗室裡成功後,能否在真實環境實行這個方法才是接下來的重頭戲,但這並不是一件容易的事,首先,只有少數幾種適合的植物可以進行基因轉殖,再來,種植基因轉殖作物需要申請大量的文件許可,並且,大面積種植可能需要花上好幾年的時間,而且野外實驗容易受到天氣因素影響,大規模的實驗可能會耗費昂貴的成本及時間,最可怕的是,仍然無法保證會有明確的結果。

後來研究團隊選用一種叫做「柳枝稷」(學名 Panicum virgatum )的植物進行基因轉殖,這是北美洲原生種、多年生的草本植物,接著團隊在紐約洲的一個軍事訓練場進行野外實驗。他們將 27 塊含有 RDX的土地分成三組不同的種植條件,分別為:沒有植物、未轉殖基因的柳枝稷、已轉殖基因的柳枝稷,三年之後,結果顯示,種植轉殖基因柳枝稷的土地流出的水有較低濃度的 RDX,此外,和未轉殖基因的柳枝稷相比,已進行基因轉殖的植物組織內幾乎沒有 RDX,代表這些植物正在吸收和代謝這種化學物質。

柳枝稷 Panicum virgatum 。圖/wikipedia

研究者表示,受較高污染的土地可能需要花幾年種植,但污染較少的地方可以恢復的比較快,與先前的方法相比,使用基因轉殖作物整治的方式經濟實惠許多。當然,在將這個方法運用在土地之前,需要先進行生物安全檢測,確認基因轉殖作物會如何影響當地的植物。最近,研究團隊試著將基因轉殖到另一種原產於美國許多地區的小麥草 Pascopyrum smithii ,希望未來這項技術能用於更多不同地區的受污染土地。

-----廣告,請繼續往下閱讀-----

參考文獻

  • Cary, T. J., Rylott, E. L., Zhang, L., Routsong, R. M., Palazzo, A. J., Strand, S. E., & Bruce, N. C. (2021). Field trial demonstrating phytoremediation of the military explosive RDX by XplA/XplB-expressing switchgrass. Nature Biotechnology, 1-4.
  • Urbanski, T., Laverton, S., & Ornaf, W. (1964). Chemistry and technology of explosives (Vol. 1, p. 635). New York, NY: pergamon press.
  • 國家環境毒物研究中心
  • USEPA. (2014). Technical Fact Sheet–Hexahydro‐1, 3, 5‐trinitro‐1, 3, 5‐triazine (RDX).
  • 軍事爆炸物在土壤及底泥之宿命及生態毒理研究
  • 黃昱恆, 郭驊, 曾逸洲, & 林錕松. (2015). 利用表面改質奈米零價鐵還原降解高能火炸藥 TNT, RDX 及 HMX 污染地下水整治工程技術之研發及評估. 土壤及地下水污染整治, 2(4), 253-270.
  • Rylott, E. L. & Bruce, N. C. Right on target: using plants and microbes to remediate explosives. Int. J. Phytoremediation 21, 1051–1064 (2019).
-----廣告,請繼續往下閱讀-----
文章難易度
科技大觀園_96
82 篇文章 ・ 1126 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。

0

0
0

文字

分享

0
0
0
LDL-C 正常仍中風?揭開心血管疾病的隱形殺手 L5
鳥苷三磷酸 (PanSci Promo)_96
・2025/06/20 ・3659字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文與 美商德州博藝社科技 HEART 合作,泛科學企劃執行。

提到台灣令人焦慮的交通,多數人會想到都市裡的壅塞車潮,但真正致命的「塞車」,其實正悄悄發生在我們體內的動脈之中。

這場無聲的危機,主角是被稱為「壞膽固醇」的低密度脂蛋白( Low-Density Lipoprotein,簡稱 LDL )。它原本是血液中運送膽固醇的貨車角色,但當 LDL 顆粒數量失控,卻會開始在血管壁上「違規堆積」,讓「生命幹道」的血管日益狹窄,進而引發心肌梗塞或腦中風等嚴重後果。

科學家們還發現一個令人困惑的現象:即使 LDL 數值「看起來很漂亮」,心血管疾病卻依然找上門來!這究竟是怎麼一回事?沿用數十年的健康標準是否早已不敷使用?

膽固醇的「好壞」之分:一場體內的攻防戰

膽固醇是否越少越好?答案是否定的。事實上,我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(High-Density Lipoprotein,簡稱 HDL)和低密度脂蛋白( LDL )。

-----廣告,請繼續往下閱讀-----

想像一下您的血管是一條高速公路。HDL 就像是「清潔車隊」,負責將壞膽固醇( LDL )運來的多餘油脂垃圾清走。而 LDL 則像是在血管裡亂丟垃圾的「破壞者」。如果您的 HDL 清潔車隊數量太少,清不過來,垃圾便會堆積如山,最終導致血管堵塞,甚至引發心臟病或中風。

我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(HDL)和低密度脂蛋白(LDL)/ 圖片來源:shutterstock

因此,過去數十年來,醫生建議男性 HDL 數值至少應達到 40 mg/dL,女性則需更高,達到 50 mg/dL( mg/dL 是健檢報告上的標準單位,代表每 100 毫升血液中膽固醇的毫克數)。女性的標準較嚴格,是因為更年期後]pacg心血管保護力會大幅下降,需要更多的「清道夫」來維持血管健康。

相對地,LDL 則建議控制在 130 mg/dL 以下,以減緩垃圾堆積的速度。總膽固醇的理想數值則應控制在 200 mg/dL 以內。這些看似枯燥的數字,實則反映了體內一場血管清潔隊與垃圾山之間的攻防戰。

那麼,為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。我們吃下肚或肝臟製造的脂肪,會透過血液運送到全身,這些在血液中流動的脂肪即為「血脂」,主要成分包含三酸甘油酯和膽固醇。三酸甘油酯是身體儲存能量的重要形式,而膽固醇更是細胞膜、荷爾蒙、維生素D和膽汁不可或缺的原料。

-----廣告,請繼續往下閱讀-----

這些血脂對身體運作至關重要,本身並非有害物質。然而,由於脂質是油溶性的,無法直接在血液裡自由流動。因此,在血管或淋巴管裡,脂質需要跟「載脂蛋白」這種特殊的蛋白質結合,變成可以親近水的「脂蛋白」,才能順利在全身循環運輸。

肝臟是生產這些「運輸用蛋白質」的主要工廠,製造出多種蛋白質來運載脂肪。其中,低密度脂蛋白載運大量膽固醇,將其精準送往各組織器官。這也是為什麼低密度脂蛋白膽固醇的縮寫是 LDL-C (全稱是 Low-Density Lipoprotein Cholesterol )。

當血液中 LDL-C 過高時,部分 LDL 可能會被「氧化」變質。這些變質或過量的 LDL 容易在血管壁上引發一連串發炎反應,最終形成粥狀硬化斑塊,導致血管阻塞。因此,LDL-C 被冠上「壞膽固醇」的稱號,因為它與心腦血管疾病的風險密切相關。

高密度脂蛋白(HDL) 則恰好相反。其組成近半為蛋白質,膽固醇比例較少,因此有許多「空位」可供載運。HDL-C 就像血管裡的「清道夫」,負責清除血管壁上多餘的膽固醇,並將其運回肝臟代謝處理。正因為如此,HDL-C 被視為「好膽固醇」。

-----廣告,請繼續往下閱讀-----
為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。/ 圖片來源:shutterstock

過去數十年來,醫學界主流觀點認為 LDL-C 越低越好。許多降血脂藥物,如史他汀類(Statins)以及近年發展的 PCSK9 抑制劑,其主要目標皆是降低血液中的 LDL-C 濃度。

然而,科學家們在臨床上發現,儘管許多人的 LDL-C 數值控制得很好,甚至很低,卻仍舊發生中風或心肌梗塞!難道我們對膽固醇的認知,一開始就抓錯了重點?

傳統判讀失準?LDL-C 達標仍難逃心血管危機

早在 2009 年,美國心臟協會與加州大學洛杉磯分校(UCLA)進行了一項大型的回溯性研究。研究團隊分析了 2000 年至 2006 年間,全美超過 13 萬名心臟病住院患者的數據,並記錄了他們入院時的血脂數值。

結果發現,在那些沒有心血管疾病或糖尿病史的患者中,竟有高達 72.1% 的人,其入院時的 LDL-C 數值低於當時建議的 130 mg/dL「安全標準」!即使對於已有心臟病史的患者,也有半數人的 LDL-C 數值低於 100 mg/dL。

-----廣告,請繼續往下閱讀-----

這項研究明確指出,依照當時的指引標準,絕大多數首次心臟病發作的患者,其 LDL-C 數值其實都在「可接受範圍」內。這意味著,單純依賴 LDL-C 數值,並無法有效預防心臟病發作。

科學家們為此感到相當棘手。傳統僅檢測 LDL-C 總量的方式,可能就像只計算路上有多少貨車,卻沒有注意到有些貨車的「駕駛行為」其實非常危險一樣,沒辦法完全揪出真正的問題根源!因此,科學家們決定進一步深入檢視這些「駕駛」,找出誰才是真正的麻煩製造者。

LDL 家族的「頭號戰犯」:L5 型低密度脂蛋白

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。他們發現,LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷,如同各式型號的貨車與脾性各異的「駕駛」。

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。發現 LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷。/ 圖片來源:shutterstock

早在 1979 年,已有科學家提出某些帶有較強「負電性」的 LDL 分子可能與動脈粥狀硬化有關。這些帶負電的 LDL 就像特別容易「黏」在血管壁上的頑固污漬。

-----廣告,請繼續往下閱讀-----

台灣留美科學家陳珠璜教授、楊朝諭教授及其團隊在這方面取得突破性的貢獻。他們利用一種叫做「陰離子交換層析法」的精密技術,像是用一個特殊的「電荷篩子」,依照 LDL 粒子所帶負電荷的多寡,成功將 LDL 分離成 L1 到 L5 五個主要的亞群。其中 L1 帶負電荷最少,相對溫和;而 L5 則帶有最多負電荷,電負性最強,最容易在血管中暴衝的「路怒症駕駛」。

2003 年,陳教授團隊首次從心肌梗塞患者血液中,分離並確認了 L5 的存在。他們後續多年的研究進一步證實,在急性心肌梗塞或糖尿病等高風險族群的血液中,L5 的濃度會顯著升高。

L5 的蛋白質結構很不一樣,不僅天生帶有超強負電性,還可能與其他不同的蛋白質結合,或經過「醣基化」修飾,就像在自己外面額外裝上了一些醣類分子。這些特殊的結構和性質,使 L5 成為血管中的「頭號戰犯」。

當 L5 出現時,它並非僅僅路過,而是會直接「搞破壞」:首先,L5 會直接損傷內皮細胞,讓細胞凋亡,甚至讓血管壁的通透性增加,如同在血管壁上鑿洞。接著,L5 會刺激血管壁產生發炎反應。血管壁受傷、發炎後,血液中的免疫細胞便會前來「救災」。

-----廣告,請繼續往下閱讀-----

然而,這些免疫細胞在吞噬過多包括 L5 在內的壞東西後,會堆積在血管壁上,逐漸形成硬化斑塊,使血管日益狹窄,這便是我們常聽到的「動脈粥狀硬化」。若這些不穩定的斑塊破裂,可能引發急性血栓,直接堵死血管!若發生在供應心臟血液的冠狀動脈,就會造成心肌梗塞;若發生在腦部血管,則會導致腦中風。

L5:心血管風險評估新指標

現在,我們已明確指出 L5 才是 LDL 家族中真正的「破壞之王」。因此,是時候調整我們對膽固醇數值的看法了。現在,除了關注 LDL-C 的「總量」,我們更應該留意血液中 L5 佔所有 LDL 的「百分比」,即 L5%。

陳珠璜教授也將這項 L5 檢測觀念,從世界知名的德州心臟中心帶回台灣,並創辦了美商德州博藝社科技(HEART)。HEART 在台灣研發出嶄新科技,並在美國、歐盟、英國、加拿大、台灣取得專利許可,日本也正在申請中,希望能讓更多台灣民眾受惠於這項更精準的檢測服務。

一般來說,如果您的 L5% 數值小於 2%,通常代表心血管風險較低。但若 L5% 大於 5%,您就屬於高風險族群,建議進一步進行影像學檢查。特別是當 L5% 大於 8% 時,務必提高警覺,這可能預示著心血管疾病即將發作,或已在悄悄進展中。

-----廣告,請繼續往下閱讀-----

對於已有心肌梗塞或中風病史的患者,定期監測 L5% 更是評估疾病復發風險的重要指標。此外,糖尿病、高血壓、高血脂、代謝症候群,以及長期吸菸者,L5% 檢測也能提供額外且有價值的風險評估參考。

隨著醫療科技逐步邁向「精準醫療」的時代,無論是癌症還是心血管疾病的防治,都不再只是單純依賴傳統的身高、體重等指標,而是進一步透過更精密的生物標記,例如特定的蛋白質或代謝物,來更準確地捕捉疾病發生前的徵兆。

您是否曾檢測過 L5% 數值,或是對這項新興的健康指標感到好奇呢?

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

2
0

文字

分享

0
2
0
肥料、炸藥和香蕉裡都有它!對人體超級重要的「鉀」——《原子有話要說》
azothbooks_96
・2023/05/25 ・1052字 ・閱讀時間約 2 分鐘

植物灰燼中含有鉀,自古以來一直為人們所利用,因此草木灰燼就成了鉀的命名來源。鉀也是製造肥皂、玻璃、火藥等的原料。

可是,鉀遇到水會產生激烈的反應,具有容易產生化學反應的另一面。

維持神經及肌肉活性 人體中重要的微量營養素

再者,鉀也是人體每日所需的營養素之一,是維持神經及肌肉活性不可或缺的重要物質。當腎臟功能降低的時候,會造成體內的鉀囤積過量,恐導致身體產生機能障礙。但是一旦鉀不足,有時也會造成肌耐力低下或疲勞,出現高血壓等症狀,嚴重時可能連身體都法動彈。由於偏食或飲酒過量也是導致鉀離子不足的原因之一,單身的年輕男性要特別小心。

缺乏鉀離子的人要補充鉀,最簡單的方法就是吃幾根香蕉。香蕉除了含維他命和食物纖維之外,還有豐富的鉀離子,好處是攝取方式十分方便,即使香蕉加熱,營養也不會流失。

-----廣告,請繼續往下閱讀-----
圖/原子有話要說!元素週期表
圖/原子有話要說!元素週期表

化學性質活潑 容易發生化學反應

鉀對人體來說是不可或缺的礦物質,對植物也十分重要,因為鉀和氮、磷為肥料的三大要素。可是,鉀與鈉一樣,必須保存在石油之中(編按:鉀碰到水會爆炸)。

也可當做火藥使用(編按:因為鉀的化學性質非常活潑,容易和其他化學物質產生激烈的反應,有爆炸性且易燃),可做為火柴、煙火或是炸彈的材料。此外,氰化鉀雖然含有劇毒而小有名氣,但是也能用於金屬電鍍,在工業領域是很重要的物質。

【常溫狀態】固體 

【原子量】39.0983

【熔點】63.38˚C

【沸點】759˚C

【密度】0.89 g/cm3

【發現】1807 年,英國化學家戴維

【語源】阿拉伯文 al-quali,意思是草木灰燼,也是鹼的語源。英文名稱的語源也是草鹼(potash)。

——本文摘自《原子有話要說!元素週期表》,2023 年 4 月,漫遊者文化出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
azothbooks_96
55 篇文章 ・ 21 位粉絲
漫遊也許有原因,卻沒有目的。 漫遊者的原因就是自由。文學、人文、藝術、商業、學習、生活雜學,以及問題解決的實用學,這些都是「漫遊者」的範疇,「漫遊者」希望在其中找到未來的閱讀形式,尋找新的面貌,為出版文化找尋新風景。

0

16
4

文字

分享

0
16
4
隱藏在大氣裡的神祕訊息!用氣象衛星監測火山爆發產生的氣象波動與環境汙染
Ciao True_96
・2022/01/30 ・4193字 ・閱讀時間約 8 分鐘

  • 作者/邱麒豪(國立中央大學大氣物理研究所博士候選人)、劉千義(中央研究院環境變遷研究中心副研究員)

咦!地球彼端的火山爆發和我們有什麼關係?

距離臺灣八千多公里的東加王國發生了前所未有的火山爆發,當太平洋周遭國家開始擔心海底火山噴發引起海嘯的同時,卻有更多不為人知的事情正悄然發生。到底火山噴發的同時除了引發海嘯還造成什麼樣影響呢?讓我們一同來瞭解!


看不見也摸不著的氣象波動——大氣重力波

大氣的重力波現象並不罕見,通常是垂直方向上的氣塊受到擾動,在浮力(作為恢復力)與重力的雙重影響下而在水平面上形成振盪式的波動。

常見的氣流流經山峰並在背風處產生圓盤狀的雲系(莢狀高積雲),以及晴朗穩定天氣下出現的波狀高積雲即為大氣重力波在自然這張畫布下最好的圖繪。而火山爆發,同樣有機會引起大氣重力波。

西元 2022 年 1 月 15 日,臺灣時間下午 12 時 20 分(事發當地時間下午 5 時 20 分)左右,位於西南太平洋島國——東加王國首都努瓜婁發(Nuku’alofa)北方65公里的洪加湯加-洪加哈派(Hunga Tonga-Hunga Ha’apai)海底火山大規模爆發,伴隨而來的地震與引起的海嘯引發世界的關注。

這場可能是 21 世紀以來最大規模的火山噴發,其一連串的後續效應不僅被地震儀及海象儀器記錄下來,當天下午 8 時左右,臺灣的氣象站也陸續觀測到海底火山噴發造成的氣壓變化,根據觀測資料顯示,這次的海底火山噴發事件在臺灣造成的氣壓變化量約 1 至 2 百帕(hPa),這大約是日常標準大氣壓力的千分之一至千分之二的變動(圖一)。

-----廣告,請繼續往下閱讀-----
【圖一】中央氣象局 222 個自動氣象站氣壓擾動動畫。
圖/中央氣象局第二組;資料來源:中央氣象局

若將地面氣壓資料的解析度提高到每分鐘,並將中央氣象局109個局屬測站由東南向西北排列,繪製成臺灣高密度測站氣壓擾動的二維時間序列圖(圖二),火山噴發由東南向西北傳遞的能量作用於大氣中最先於臺灣東南方的蘭嶼測站測量到,時間上和最晚被觀測到的馬祖測站相差約 25 分鐘。其次,火山噴發造成的大氣波動除了氣壓變化最為劇烈的主波外,尚有前導波與數次的餘波產生。

【圖二】中央氣象局 109 個局屬測站氣壓擾動二維時間序列圖。
圖/黃椿喜博士;資料來源:中央氣象局

綜觀全球的大眼睛——從氣象衛星看見大氣重力波

從上圖可以觀察到,這些波動的週期約為 10 到 15 分鐘,不容易從 10 分鐘的觀測資料中發現。目前在西太平洋與東太平洋地區監測的地球同步衛星向日葵八號(Himawari-8)與 GOES-17,可分別提供 2.5 分鐘與 1 分鐘高解析度的衛星觀測,對於高頻的大氣波動將有比過往更好的解析能力。

不只是地面氣象觀測站,位於地球上空 3 萬 6 千公里的地球同步衛星同樣也捕捉到火山噴發的證據。日本氣象衛星 Himawari-8 觀測到火山噴發後產生的陣陣漣漪(圖三),以火山噴發口為中心產生的漣漪即為大氣的重力波現象。

【圖三】火山噴發造成雲頂高度變化的重力波振盪。
圖/邱麒豪;資料來源:Himawari-8

東加王國所在的區域不僅位於向日葵八號的觀測網內,也涵蓋在美國的地球同步衛星 GOES-17 監測之中。下圖(圖四)為 GOES-17 氣象衛星紅外線水氣頻道每 10 分鐘的亮度溫度差,藉由對流層中層的水氣頻道雲圖可以明顯看到火山爆發產生的內重力波由火山口為圓心向外傳遞。

【圖四】火山噴發造成的重力波振盪。
圖/CIMSS / UW-Madison;資料來源:GOES-17

火山噴發引起快速上升的氣流與火山灰造成的重力波現象在學理上是可行的,但在觀測上實屬少見,特別是海底火山能將大量的火山灰與氣體穿過海洋快速釋放至大氣中,並造成如此壯觀的大氣波動並不是件容易的事。

-----廣告,請繼續往下閱讀-----

這場大氣波動產生的雲系高度深,範圍廣,觀測到的雲頂紅外線亮度溫度達 -105.18ºC 可能打破了自 20 世紀末有雲頂溫度的監測以降,最低溫的紀錄(圖五)。

【圖五】火山噴發產生的重力波雲,雲頂亮度溫度達 -105.18ºC。
圖/CIMSS / UW-Madison;資料來源:GOES-17

除了上述的兩顆地球同步衛星,搭載於美國國家航空暨太空總署(NASA)之 Aqua 衛星上的大氣紅外探空儀(Atmospheric Infrared Sounder,AIRS)也同時發現了此一現象(圖六)。德國尤利希超級運算中心的大氣科學家——霍夫曼博士(Dr. Lars Hoffmann)說:「AIRS 自 2002 年 5 月開始觀測以來,從未在過往的火山噴發個案中發現過類似的情況」,這也意味著這次的海底火山噴發事件是前所未有的劇烈。

【圖六】AIRS/Terra 觀測到數量極為龐大的同心圓狀重力波雲。
圖/Dr. Lars Hoffmann;資料來源:AIRS/Terra

英國牛津大學物理系大氣、海洋與行星物理組的氣候科學家 Scott Osprey 博士也表示:「這次噴發可能會干擾熱帶地區風向週期性的逆轉,長遠看來或許會造成歐洲地區天氣型態的改變,必須非常小心地關注它造成的變化」,可見整個地球系統都可能因為這次的火山爆發造成巨大的影響。

雲圖之外——衛星於汙染物探勘之應用

衛星不僅僅能夠監測雲層的移動與大氣中的水氣分佈,近年來較為廣泛的應用是使用衛星針對大氣中的汙染因子做大範圍的遙測。舉凡工業污染排放之氣溶膠、交通源排放之二氧化氮,以及生質燃燒產生之煙塵與黑碳微粒,均可藉由衛星的觀測進而推估汙染程度,並搭配氣象模式的模擬進行短期的預警。

下圖(圖七)為 NASA 的 Suomi-NPP 衛星觀測到的氣膠垂直剖面分佈與雲頂高度,可以清楚看到伴隨火山噴發的氣膠粒子衝破對流層進入平流層,高度可達 30 公里。這些氣膠粒子在平流層中不易沉降至地表,長期下來可能會對氣候造成重大影響。舉例而言,氣膠依照光學特性的不同可粗略分為散射能力較強與吸收能力較強的兩大群體,散射能力較強的氣膠進到平流層中將造成更多的太陽短波輻射被反射回外太空,進而降低地球平均溫度(氣膠直接效應);反之吸收能力好的氣膠則是會讓地球溫度上升。

【圖七】Suomi-NPP 探測到火山噴發的氣膠粒子可衝破對流層進入平流層。
圖/Dr. Ghassan Taha;資料來源:Suomi-NPP

而對流層中的氣膠對氣候的影響更為複雜,會進一步改變雲的微物理狀態,在特定條件下吸濕性高的氣膠容易成為雲的凝結核,若大氣中的水氣含量不變,這些新形成的雲凝結核有可能與大氣中既有的雲滴競爭原先的水氣,進而致使雲滴數目增加且雲滴平均的粒徑降低,進而散射截面積增加,反射更多太陽光而達到降溫的效果。但也因為雲滴粒徑變小後,變得不利於雲滴粒子間的碰撞合併過程而形成為雨滴,使得地表降水減少與雲的生命週期增加,此謂氣膠間接效應。

-----廣告,請繼續往下閱讀-----

不管是氣膠的直接效應或是間接效應都非常複雜,會受到氣膠種類、氣膠數量、氣膠粒徑分佈、大氣條件等影響,也正因為充滿了各種不確定性,氣膠的氣候效應預測非常困難,目前還需要更多的觀測,特別是用大範圍的衛星觀測加以驗證與評估。

火山噴發除了氣膠粒子的污染以外,對環境造成的另一個衝擊是大量的氣體被釋放到大氣中。常見的火山氣體有:水氣(H2O)、二氧化碳(CO2)、二氧化硫(SO2)、硫化氫(H2S)與氮氧化物(NOx)等。

以二氧化硫為例,評估大氣中微量氣體多寡的單位為杜布森(Dubson, DU),指的是一大氣壓的空氣柱中,該氣體分子累積起來的厚度(垂直積分)多寡。若將氣柱中的二氧化硫全部累積在一起相當於 10 微米厚,稱為 1 DU 的二氧化硫。SO2 氣候平均值約略低為 0.5 DU,歐洲氣象衛星開發組織(EUMETSAT)的 MetOP-B 與 MetOP-C 觀測到的峰值高達 50 DU 以上,高於氣候平均值 100 倍。(圖八)

【圖八】MetOP-B 與 MetOP-C 發現火山噴發的二氧化硫濃度超過氣候平均值 100 倍。
圖/Dr. Simon Carn;資料來源:MetOP-B & MetOP-C

氣象與環境衛星遙測之展望

近年隨著科技的發展與遙測技術的精進,氣象衛星能提供的不僅僅是精美的天氣雲圖,還有許多從雲圖看不出來的科學議題可加以探討。這些科學議題不單只存在於象牙塔內,更多且更重要的是生活上的應用。社會大眾關心的是:下午的聚會會不會下雨?明天空氣汙染有多糟?或是下禮拜一晚上會多冷?

衛星掩星觀測技術的發展(如:福衛三號、福衛七號、Sentinel-6 等)補足了廣大洋面探空資料的缺失以及人力施放的不足,蒐集偏折角資訊與折射率變化推估出的大氣垂直溫溼度剖面,藉由數值預報模式的資料同化系統改善天氣預報的誤差

汙染物濃度的監測也可以藉由衛星的觀測進行評估,不論是民眾在乎的近地表懸浮微粒濃度抑或是工業燃燒造成的空氣汙染,皆可藉由衛星的探測第一手掌握(如文章提到的 MetOP-B、MetOP-C 以及 Sentinel-5P)。

-----廣告,請繼續往下閱讀-----

降雨來自天空中的雲,若能對雨的前驅物—雲有更深的瞭解,降雨的推估也能做得更準確。以我們所處的東亞地區而言,像是以 Himawari-8 觀測而開發的雲微物理科學資料,或是國際上整合多重衛星觀測的日本 GSMaP 、美國 NASA IMERG 等衛星推估的地面降水資料就是很好的例子

當然,科學的發展並不是單純為民生服務,但在發展科學的同時能兼顧民眾的福祉相信也是社會大眾所樂見的。

延伸閱讀

  1. Liu, C.-Y., C.-H. Chiu, P.-H. Lin, and M. Min (2020), Comparison of Cloud‐Top Property Retrievals from Advanced Himawari Imager, MODIS, CloudSat/CPR, CALIPSO/CALIOP, and radiosonde, J. Geophys. Res., Vol 125.
  2. Lin, C.-A., Y.-C. Chen, C.-Y. Liu, W.-T. Chen, J. H. Seinfeld, C.-K. Chou (2019), Satellite-Derived Correlation of SO2, NO2, and Aerosol Optical Depth with Meteorological Conditions over East Asia from 2005 to 2015. Remote Sens., Vol 11, 1738.
  3. Explosive eruption of the Hunga Tonga volcano” in CIMSS Satellite Blog.
  4. Tonga volcano eruption created puzzling ripples in Earth’s atmosphere” in nature’s news article.
  5. 中央氣象局預報中心副主任黃椿喜博士臉書
  6. 報天氣-中央氣象局」臉書粉絲專頁
-----廣告,請繼續往下閱讀-----
Ciao True_96
1 篇文章 ・ 3 位粉絲
主修大氣科學,參加天文社。 年輕的外表下住著古老的靈魂,喜歡看老電影,也喜歡拿著底片相機記錄生活中的點點滴滴。 是個科學工作者但對藝術、音樂、歷史與文化也稍有涉略,畢竟「什麼都略懂一點,生活就多采一些!」