Loading [MathJax]/extensions/tex2jax.js

0

10
0

文字

分享

0
10
0

戰爭的遺毒該如何排除?基轉植物或可分解 RDX 炸藥的有毒物質

科技大觀園_96
・2021/11/27 ・2647字 ・閱讀時間約 5 分鐘

一般說到炸藥,大家可能都會想到化學課聽過的「黃色炸藥 TNT 」,而同樣有硝基的常見爆炸物 RDX(Research Department explosive),爆炸強度是 TNT 的 1.5 倍,是目前美國軍事上製造炸藥必須的化學藥品,然而,這些爆炸物容易造成令人頭痛的環境污染,目前許多研究試圖尋找降解此種污染的方法,但一直沒有找到有效經濟又可以持續使用的辦法。今年發表於《Nature Biotechology》的一篇新研究發現,一種在北美草原上常見的植物,透過基因轉殖後可以吸收和分解 RDX!

第二次世界大戰中使用的空襲炸彈,鋼瓶上印有RDX/TNT的字樣,為RDX與TNT混合物。圖/wikipedia

到底是怎麼做到的呢?在了解這個新穎的解決方案之前,我們先來聊聊 RDX 到底是什麼?又是怎麼造成環境污染的?

RDX 的化學式是 (CH2NNO2)3 ,環三亞甲基三硝胺,中文別稱黑索金、海掃更、T4炸藥、炫風炸藥等。如前面所說,RDX 廣用於軍事用途,是二次世界大戰時最常被使用的爆炸物,目前軍用市場上有超過 4000 種彈藥都含有 RDX,通常和其他物質混合作為軍事彈藥,但事實上,RDX 在一開始並不是被用來作為武器,西元 1899 年德國化學家首次合成 RDX 並申請專利,當時主要描述的是 RDX 的醫藥用途,後來,隨著二次大戰開打,由於 RDX 的爆炸力比第一次世界大戰的 TNT 還強,RDX 被雙方軍隊注意到,便被廣泛作為炸藥的材料。

RDX分子模型。圖/wikipedia

那 RDX 會對我們造成什麼影響呢?

事實上,在彈藥發射、丟棄槍械,或是製造彈藥的過程中都可能會釋放 RDX 至周圍環境,例如軍事基地、手榴彈丟擲場、彈藥工廠等場所,受污染較嚴重的以土壤和地下水為主,當 RDX 被釋放到土壤後,會進一步滲透至地下水系統,也就是說,RDX 的影響可能會蔓延到日常飲用水,而且因為 RDX 流動性高又不易降解,不僅會對土壤生態造成影響,若人類攝入過量會有暈眩、嘔吐等症狀,也可能會引起癲癇發作。

-----廣告,請繼續往下閱讀-----

此外,RDX 也是一種可能的致癌物,在美國大約有一萬公頃的射擊場用地已經被 RDX 滲透,因此被美國環境保護署 (Environmental Protection Agency,EPA) 列為飲用水污染物之一,並設立飲用水中的含量標準。

在西元 2012 年時,台灣也增修了環境標準管制草案,因火炸藥屬於管制用品,通常只有軍事用地能夠生產及銷毀,而根據環保署過去的調查計畫也顯示,台灣多處軍事場址內確實有火炸藥類物質的污染,若未來軍事用地轉為公共用途後,使用者受到危害的可能性將會提高。環保署逐年檢測國有地、軍事用地土壤與地下水的相關污染。為了避免 RDX 污染造成環境及健康的威脅,探討 RDX 在土壤及地下水中的特性、機制,並找到整治的方法,便成為研究的一大重點,例如,國內曾有研究利用表面改質奈米零價鐵顆粒,處理受 TNT、RDX 的污染地下水體。

而這次由美國約克大學研究團隊發表的研究,是利用基因轉殖,讓植物能夠降解並吸收 RDX,前面有提過,美國受 RDX 的土地面積非常大,若利用傳統方法,像是填埋、焚燒、氧化等,較適合用於高污染但面積小的土地,根據美國國防部的估計,成本效益不符比例。

事實上,研究團隊在先前就已經分離出一種具有降解 RDX 能力的細菌 Rhodococcus rhodochrous 11Y,能夠在有氧及無氧條件下催化 RDX 還原脫硝,然而,細菌分解的速度不夠快,沒辦法防止 RDX 滲入地下水層。因此,科學家將清除污染的責任放到植物身上,使用植物有許多好處,例如破壞性較小、能幫助土地恢復生機,社會層面上則是具有美感、大眾接受程度也較高,且長期而言,維護植物的生長所需成本較低。

-----廣告,請繼續往下閱讀-----
Rhodococcus 屬細菌於光學顯微鏡(左)與電子顯微鏡(右)下的成像。圖/microbewiki

但是,植物並不具備降解 RDX 的能力,因此,科學家便將與降解能力有關的細菌基因,轉殖至植物的基因裡。在之前的實驗中,他們發現被轉殖過的阿拉伯芥 Arabidopsis thaliana 能夠將 RDX 分解,然後被植物吸收並代謝,不需要收割植物便可以清除污染物。

在實驗室裡成功後,能否在真實環境實行這個方法才是接下來的重頭戲,但這並不是一件容易的事,首先,只有少數幾種適合的植物可以進行基因轉殖,再來,種植基因轉殖作物需要申請大量的文件許可,並且,大面積種植可能需要花上好幾年的時間,而且野外實驗容易受到天氣因素影響,大規模的實驗可能會耗費昂貴的成本及時間,最可怕的是,仍然無法保證會有明確的結果。

後來研究團隊選用一種叫做「柳枝稷」(學名 Panicum virgatum )的植物進行基因轉殖,這是北美洲原生種、多年生的草本植物,接著團隊在紐約洲的一個軍事訓練場進行野外實驗。他們將 27 塊含有 RDX的土地分成三組不同的種植條件,分別為:沒有植物、未轉殖基因的柳枝稷、已轉殖基因的柳枝稷,三年之後,結果顯示,種植轉殖基因柳枝稷的土地流出的水有較低濃度的 RDX,此外,和未轉殖基因的柳枝稷相比,已進行基因轉殖的植物組織內幾乎沒有 RDX,代表這些植物正在吸收和代謝這種化學物質。

柳枝稷 Panicum virgatum 。圖/wikipedia

研究者表示,受較高污染的土地可能需要花幾年種植,但污染較少的地方可以恢復的比較快,與先前的方法相比,使用基因轉殖作物整治的方式經濟實惠許多。當然,在將這個方法運用在土地之前,需要先進行生物安全檢測,確認基因轉殖作物會如何影響當地的植物。最近,研究團隊試著將基因轉殖到另一種原產於美國許多地區的小麥草 Pascopyrum smithii ,希望未來這項技術能用於更多不同地區的受污染土地。

-----廣告,請繼續往下閱讀-----

參考文獻

  • Cary, T. J., Rylott, E. L., Zhang, L., Routsong, R. M., Palazzo, A. J., Strand, S. E., & Bruce, N. C. (2021). Field trial demonstrating phytoremediation of the military explosive RDX by XplA/XplB-expressing switchgrass. Nature Biotechnology, 1-4.
  • Urbanski, T., Laverton, S., & Ornaf, W. (1964). Chemistry and technology of explosives (Vol. 1, p. 635). New York, NY: pergamon press.
  • 國家環境毒物研究中心
  • USEPA. (2014). Technical Fact Sheet–Hexahydro‐1, 3, 5‐trinitro‐1, 3, 5‐triazine (RDX).
  • 軍事爆炸物在土壤及底泥之宿命及生態毒理研究
  • 黃昱恆, 郭驊, 曾逸洲, & 林錕松. (2015). 利用表面改質奈米零價鐵還原降解高能火炸藥 TNT, RDX 及 HMX 污染地下水整治工程技術之研發及評估. 土壤及地下水污染整治, 2(4), 253-270.
  • Rylott, E. L. & Bruce, N. C. Right on target: using plants and microbes to remediate explosives. Int. J. Phytoremediation 21, 1051–1064 (2019).
-----廣告,請繼續往下閱讀-----
文章難易度
科技大觀園_96
82 篇文章 ・ 1126 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。

0

1
0

文字

分享

0
1
0
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

2
0

文字

分享

0
2
0
肥料、炸藥和香蕉裡都有它!對人體超級重要的「鉀」——《原子有話要說》
azothbooks_96
・2023/05/25 ・1052字 ・閱讀時間約 2 分鐘

植物灰燼中含有鉀,自古以來一直為人們所利用,因此草木灰燼就成了鉀的命名來源。鉀也是製造肥皂、玻璃、火藥等的原料。

可是,鉀遇到水會產生激烈的反應,具有容易產生化學反應的另一面。

維持神經及肌肉活性 人體中重要的微量營養素

再者,鉀也是人體每日所需的營養素之一,是維持神經及肌肉活性不可或缺的重要物質。當腎臟功能降低的時候,會造成體內的鉀囤積過量,恐導致身體產生機能障礙。但是一旦鉀不足,有時也會造成肌耐力低下或疲勞,出現高血壓等症狀,嚴重時可能連身體都法動彈。由於偏食或飲酒過量也是導致鉀離子不足的原因之一,單身的年輕男性要特別小心。

缺乏鉀離子的人要補充鉀,最簡單的方法就是吃幾根香蕉。香蕉除了含維他命和食物纖維之外,還有豐富的鉀離子,好處是攝取方式十分方便,即使香蕉加熱,營養也不會流失。

-----廣告,請繼續往下閱讀-----
圖/原子有話要說!元素週期表
圖/原子有話要說!元素週期表

化學性質活潑 容易發生化學反應

鉀對人體來說是不可或缺的礦物質,對植物也十分重要,因為鉀和氮、磷為肥料的三大要素。可是,鉀與鈉一樣,必須保存在石油之中(編按:鉀碰到水會爆炸)。

也可當做火藥使用(編按:因為鉀的化學性質非常活潑,容易和其他化學物質產生激烈的反應,有爆炸性且易燃),可做為火柴、煙火或是炸彈的材料。此外,氰化鉀雖然含有劇毒而小有名氣,但是也能用於金屬電鍍,在工業領域是很重要的物質。

【常溫狀態】固體 

【原子量】39.0983

【熔點】63.38˚C

【沸點】759˚C

【密度】0.89 g/cm3

【發現】1807 年,英國化學家戴維

【語源】阿拉伯文 al-quali,意思是草木灰燼,也是鹼的語源。英文名稱的語源也是草鹼(potash)。

——本文摘自《原子有話要說!元素週期表》,2023 年 4 月,漫遊者文化出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
azothbooks_96
55 篇文章 ・ 21 位粉絲
漫遊也許有原因,卻沒有目的。 漫遊者的原因就是自由。文學、人文、藝術、商業、學習、生活雜學,以及問題解決的實用學,這些都是「漫遊者」的範疇,「漫遊者」希望在其中找到未來的閱讀形式,尋找新的面貌,為出版文化找尋新風景。

0

16
4

文字

分享

0
16
4
隱藏在大氣裡的神祕訊息!用氣象衛星監測火山爆發產生的氣象波動與環境汙染
Ciao True_96
・2022/01/30 ・4193字 ・閱讀時間約 8 分鐘

  • 作者/邱麒豪(國立中央大學大氣物理研究所博士候選人)、劉千義(中央研究院環境變遷研究中心副研究員)

咦!地球彼端的火山爆發和我們有什麼關係?

距離臺灣八千多公里的東加王國發生了前所未有的火山爆發,當太平洋周遭國家開始擔心海底火山噴發引起海嘯的同時,卻有更多不為人知的事情正悄然發生。到底火山噴發的同時除了引發海嘯還造成什麼樣影響呢?讓我們一同來瞭解!


看不見也摸不著的氣象波動——大氣重力波

大氣的重力波現象並不罕見,通常是垂直方向上的氣塊受到擾動,在浮力(作為恢復力)與重力的雙重影響下而在水平面上形成振盪式的波動。

常見的氣流流經山峰並在背風處產生圓盤狀的雲系(莢狀高積雲),以及晴朗穩定天氣下出現的波狀高積雲即為大氣重力波在自然這張畫布下最好的圖繪。而火山爆發,同樣有機會引起大氣重力波。

西元 2022 年 1 月 15 日,臺灣時間下午 12 時 20 分(事發當地時間下午 5 時 20 分)左右,位於西南太平洋島國——東加王國首都努瓜婁發(Nuku’alofa)北方65公里的洪加湯加-洪加哈派(Hunga Tonga-Hunga Ha’apai)海底火山大規模爆發,伴隨而來的地震與引起的海嘯引發世界的關注。

這場可能是 21 世紀以來最大規模的火山噴發,其一連串的後續效應不僅被地震儀及海象儀器記錄下來,當天下午 8 時左右,臺灣的氣象站也陸續觀測到海底火山噴發造成的氣壓變化,根據觀測資料顯示,這次的海底火山噴發事件在臺灣造成的氣壓變化量約 1 至 2 百帕(hPa),這大約是日常標準大氣壓力的千分之一至千分之二的變動(圖一)。

-----廣告,請繼續往下閱讀-----
【圖一】中央氣象局 222 個自動氣象站氣壓擾動動畫。
圖/中央氣象局第二組;資料來源:中央氣象局

若將地面氣壓資料的解析度提高到每分鐘,並將中央氣象局109個局屬測站由東南向西北排列,繪製成臺灣高密度測站氣壓擾動的二維時間序列圖(圖二),火山噴發由東南向西北傳遞的能量作用於大氣中最先於臺灣東南方的蘭嶼測站測量到,時間上和最晚被觀測到的馬祖測站相差約 25 分鐘。其次,火山噴發造成的大氣波動除了氣壓變化最為劇烈的主波外,尚有前導波與數次的餘波產生。

【圖二】中央氣象局 109 個局屬測站氣壓擾動二維時間序列圖。
圖/黃椿喜博士;資料來源:中央氣象局

綜觀全球的大眼睛——從氣象衛星看見大氣重力波

從上圖可以觀察到,這些波動的週期約為 10 到 15 分鐘,不容易從 10 分鐘的觀測資料中發現。目前在西太平洋與東太平洋地區監測的地球同步衛星向日葵八號(Himawari-8)與 GOES-17,可分別提供 2.5 分鐘與 1 分鐘高解析度的衛星觀測,對於高頻的大氣波動將有比過往更好的解析能力。

不只是地面氣象觀測站,位於地球上空 3 萬 6 千公里的地球同步衛星同樣也捕捉到火山噴發的證據。日本氣象衛星 Himawari-8 觀測到火山噴發後產生的陣陣漣漪(圖三),以火山噴發口為中心產生的漣漪即為大氣的重力波現象。

【圖三】火山噴發造成雲頂高度變化的重力波振盪。
圖/邱麒豪;資料來源:Himawari-8

東加王國所在的區域不僅位於向日葵八號的觀測網內,也涵蓋在美國的地球同步衛星 GOES-17 監測之中。下圖(圖四)為 GOES-17 氣象衛星紅外線水氣頻道每 10 分鐘的亮度溫度差,藉由對流層中層的水氣頻道雲圖可以明顯看到火山爆發產生的內重力波由火山口為圓心向外傳遞。

【圖四】火山噴發造成的重力波振盪。
圖/CIMSS / UW-Madison;資料來源:GOES-17

火山噴發引起快速上升的氣流與火山灰造成的重力波現象在學理上是可行的,但在觀測上實屬少見,特別是海底火山能將大量的火山灰與氣體穿過海洋快速釋放至大氣中,並造成如此壯觀的大氣波動並不是件容易的事。

-----廣告,請繼續往下閱讀-----

這場大氣波動產生的雲系高度深,範圍廣,觀測到的雲頂紅外線亮度溫度達 -105.18ºC 可能打破了自 20 世紀末有雲頂溫度的監測以降,最低溫的紀錄(圖五)。

【圖五】火山噴發產生的重力波雲,雲頂亮度溫度達 -105.18ºC。
圖/CIMSS / UW-Madison;資料來源:GOES-17

除了上述的兩顆地球同步衛星,搭載於美國國家航空暨太空總署(NASA)之 Aqua 衛星上的大氣紅外探空儀(Atmospheric Infrared Sounder,AIRS)也同時發現了此一現象(圖六)。德國尤利希超級運算中心的大氣科學家——霍夫曼博士(Dr. Lars Hoffmann)說:「AIRS 自 2002 年 5 月開始觀測以來,從未在過往的火山噴發個案中發現過類似的情況」,這也意味著這次的海底火山噴發事件是前所未有的劇烈。

【圖六】AIRS/Terra 觀測到數量極為龐大的同心圓狀重力波雲。
圖/Dr. Lars Hoffmann;資料來源:AIRS/Terra

英國牛津大學物理系大氣、海洋與行星物理組的氣候科學家 Scott Osprey 博士也表示:「這次噴發可能會干擾熱帶地區風向週期性的逆轉,長遠看來或許會造成歐洲地區天氣型態的改變,必須非常小心地關注它造成的變化」,可見整個地球系統都可能因為這次的火山爆發造成巨大的影響。

雲圖之外——衛星於汙染物探勘之應用

衛星不僅僅能夠監測雲層的移動與大氣中的水氣分佈,近年來較為廣泛的應用是使用衛星針對大氣中的汙染因子做大範圍的遙測。舉凡工業污染排放之氣溶膠、交通源排放之二氧化氮,以及生質燃燒產生之煙塵與黑碳微粒,均可藉由衛星的觀測進而推估汙染程度,並搭配氣象模式的模擬進行短期的預警。

下圖(圖七)為 NASA 的 Suomi-NPP 衛星觀測到的氣膠垂直剖面分佈與雲頂高度,可以清楚看到伴隨火山噴發的氣膠粒子衝破對流層進入平流層,高度可達 30 公里。這些氣膠粒子在平流層中不易沉降至地表,長期下來可能會對氣候造成重大影響。舉例而言,氣膠依照光學特性的不同可粗略分為散射能力較強與吸收能力較強的兩大群體,散射能力較強的氣膠進到平流層中將造成更多的太陽短波輻射被反射回外太空,進而降低地球平均溫度(氣膠直接效應);反之吸收能力好的氣膠則是會讓地球溫度上升。

【圖七】Suomi-NPP 探測到火山噴發的氣膠粒子可衝破對流層進入平流層。
圖/Dr. Ghassan Taha;資料來源:Suomi-NPP

而對流層中的氣膠對氣候的影響更為複雜,會進一步改變雲的微物理狀態,在特定條件下吸濕性高的氣膠容易成為雲的凝結核,若大氣中的水氣含量不變,這些新形成的雲凝結核有可能與大氣中既有的雲滴競爭原先的水氣,進而致使雲滴數目增加且雲滴平均的粒徑降低,進而散射截面積增加,反射更多太陽光而達到降溫的效果。但也因為雲滴粒徑變小後,變得不利於雲滴粒子間的碰撞合併過程而形成為雨滴,使得地表降水減少與雲的生命週期增加,此謂氣膠間接效應。

-----廣告,請繼續往下閱讀-----

不管是氣膠的直接效應或是間接效應都非常複雜,會受到氣膠種類、氣膠數量、氣膠粒徑分佈、大氣條件等影響,也正因為充滿了各種不確定性,氣膠的氣候效應預測非常困難,目前還需要更多的觀測,特別是用大範圍的衛星觀測加以驗證與評估。

火山噴發除了氣膠粒子的污染以外,對環境造成的另一個衝擊是大量的氣體被釋放到大氣中。常見的火山氣體有:水氣(H2O)、二氧化碳(CO2)、二氧化硫(SO2)、硫化氫(H2S)與氮氧化物(NOx)等。

以二氧化硫為例,評估大氣中微量氣體多寡的單位為杜布森(Dubson, DU),指的是一大氣壓的空氣柱中,該氣體分子累積起來的厚度(垂直積分)多寡。若將氣柱中的二氧化硫全部累積在一起相當於 10 微米厚,稱為 1 DU 的二氧化硫。SO2 氣候平均值約略低為 0.5 DU,歐洲氣象衛星開發組織(EUMETSAT)的 MetOP-B 與 MetOP-C 觀測到的峰值高達 50 DU 以上,高於氣候平均值 100 倍。(圖八)

【圖八】MetOP-B 與 MetOP-C 發現火山噴發的二氧化硫濃度超過氣候平均值 100 倍。
圖/Dr. Simon Carn;資料來源:MetOP-B & MetOP-C

氣象與環境衛星遙測之展望

近年隨著科技的發展與遙測技術的精進,氣象衛星能提供的不僅僅是精美的天氣雲圖,還有許多從雲圖看不出來的科學議題可加以探討。這些科學議題不單只存在於象牙塔內,更多且更重要的是生活上的應用。社會大眾關心的是:下午的聚會會不會下雨?明天空氣汙染有多糟?或是下禮拜一晚上會多冷?

衛星掩星觀測技術的發展(如:福衛三號、福衛七號、Sentinel-6 等)補足了廣大洋面探空資料的缺失以及人力施放的不足,蒐集偏折角資訊與折射率變化推估出的大氣垂直溫溼度剖面,藉由數值預報模式的資料同化系統改善天氣預報的誤差

汙染物濃度的監測也可以藉由衛星的觀測進行評估,不論是民眾在乎的近地表懸浮微粒濃度抑或是工業燃燒造成的空氣汙染,皆可藉由衛星的探測第一手掌握(如文章提到的 MetOP-B、MetOP-C 以及 Sentinel-5P)。

-----廣告,請繼續往下閱讀-----

降雨來自天空中的雲,若能對雨的前驅物—雲有更深的瞭解,降雨的推估也能做得更準確。以我們所處的東亞地區而言,像是以 Himawari-8 觀測而開發的雲微物理科學資料,或是國際上整合多重衛星觀測的日本 GSMaP 、美國 NASA IMERG 等衛星推估的地面降水資料就是很好的例子

當然,科學的發展並不是單純為民生服務,但在發展科學的同時能兼顧民眾的福祉相信也是社會大眾所樂見的。

延伸閱讀

  1. Liu, C.-Y., C.-H. Chiu, P.-H. Lin, and M. Min (2020), Comparison of Cloud‐Top Property Retrievals from Advanced Himawari Imager, MODIS, CloudSat/CPR, CALIPSO/CALIOP, and radiosonde, J. Geophys. Res., Vol 125.
  2. Lin, C.-A., Y.-C. Chen, C.-Y. Liu, W.-T. Chen, J. H. Seinfeld, C.-K. Chou (2019), Satellite-Derived Correlation of SO2, NO2, and Aerosol Optical Depth with Meteorological Conditions over East Asia from 2005 to 2015. Remote Sens., Vol 11, 1738.
  3. Explosive eruption of the Hunga Tonga volcano” in CIMSS Satellite Blog.
  4. Tonga volcano eruption created puzzling ripples in Earth’s atmosphere” in nature’s news article.
  5. 中央氣象局預報中心副主任黃椿喜博士臉書
  6. 報天氣-中央氣象局」臉書粉絲專頁
-----廣告,請繼續往下閱讀-----
Ciao True_96
1 篇文章 ・ 3 位粉絲
主修大氣科學,參加天文社。 年輕的外表下住著古老的靈魂,喜歡看老電影,也喜歡拿著底片相機記錄生活中的點點滴滴。 是個科學工作者但對藝術、音樂、歷史與文化也稍有涉略,畢竟「什麼都略懂一點,生活就多采一些!」

0

10
0

文字

分享

0
10
0
戰爭的遺毒該如何排除?基轉植物或可分解 RDX 炸藥的有毒物質
科技大觀園_96
・2021/11/27 ・2647字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

一般說到炸藥,大家可能都會想到化學課聽過的「黃色炸藥 TNT 」,而同樣有硝基的常見爆炸物 RDX(Research Department explosive),爆炸強度是 TNT 的 1.5 倍,是目前美國軍事上製造炸藥必須的化學藥品,然而,這些爆炸物容易造成令人頭痛的環境污染,目前許多研究試圖尋找降解此種污染的方法,但一直沒有找到有效經濟又可以持續使用的辦法。今年發表於《Nature Biotechology》的一篇新研究發現,一種在北美草原上常見的植物,透過基因轉殖後可以吸收和分解 RDX!

第二次世界大戰中使用的空襲炸彈,鋼瓶上印有RDX/TNT的字樣,為RDX與TNT混合物。圖/wikipedia

到底是怎麼做到的呢?在了解這個新穎的解決方案之前,我們先來聊聊 RDX 到底是什麼?又是怎麼造成環境污染的?

RDX 的化學式是 (CH2NNO2)3 ,環三亞甲基三硝胺,中文別稱黑索金、海掃更、T4炸藥、炫風炸藥等。如前面所說,RDX 廣用於軍事用途,是二次世界大戰時最常被使用的爆炸物,目前軍用市場上有超過 4000 種彈藥都含有 RDX,通常和其他物質混合作為軍事彈藥,但事實上,RDX 在一開始並不是被用來作為武器,西元 1899 年德國化學家首次合成 RDX 並申請專利,當時主要描述的是 RDX 的醫藥用途,後來,隨著二次大戰開打,由於 RDX 的爆炸力比第一次世界大戰的 TNT 還強,RDX 被雙方軍隊注意到,便被廣泛作為炸藥的材料。

RDX分子模型。圖/wikipedia

那 RDX 會對我們造成什麼影響呢?

事實上,在彈藥發射、丟棄槍械,或是製造彈藥的過程中都可能會釋放 RDX 至周圍環境,例如軍事基地、手榴彈丟擲場、彈藥工廠等場所,受污染較嚴重的以土壤和地下水為主,當 RDX 被釋放到土壤後,會進一步滲透至地下水系統,也就是說,RDX 的影響可能會蔓延到日常飲用水,而且因為 RDX 流動性高又不易降解,不僅會對土壤生態造成影響,若人類攝入過量會有暈眩、嘔吐等症狀,也可能會引起癲癇發作。

-----廣告,請繼續往下閱讀-----

此外,RDX 也是一種可能的致癌物,在美國大約有一萬公頃的射擊場用地已經被 RDX 滲透,因此被美國環境保護署 (Environmental Protection Agency,EPA) 列為飲用水污染物之一,並設立飲用水中的含量標準。

在西元 2012 年時,台灣也增修了環境標準管制草案,因火炸藥屬於管制用品,通常只有軍事用地能夠生產及銷毀,而根據環保署過去的調查計畫也顯示,台灣多處軍事場址內確實有火炸藥類物質的污染,若未來軍事用地轉為公共用途後,使用者受到危害的可能性將會提高。環保署逐年檢測國有地、軍事用地土壤與地下水的相關污染。為了避免 RDX 污染造成環境及健康的威脅,探討 RDX 在土壤及地下水中的特性、機制,並找到整治的方法,便成為研究的一大重點,例如,國內曾有研究利用表面改質奈米零價鐵顆粒,處理受 TNT、RDX 的污染地下水體。

而這次由美國約克大學研究團隊發表的研究,是利用基因轉殖,讓植物能夠降解並吸收 RDX,前面有提過,美國受 RDX 的土地面積非常大,若利用傳統方法,像是填埋、焚燒、氧化等,較適合用於高污染但面積小的土地,根據美國國防部的估計,成本效益不符比例。

事實上,研究團隊在先前就已經分離出一種具有降解 RDX 能力的細菌 Rhodococcus rhodochrous 11Y,能夠在有氧及無氧條件下催化 RDX 還原脫硝,然而,細菌分解的速度不夠快,沒辦法防止 RDX 滲入地下水層。因此,科學家將清除污染的責任放到植物身上,使用植物有許多好處,例如破壞性較小、能幫助土地恢復生機,社會層面上則是具有美感、大眾接受程度也較高,且長期而言,維護植物的生長所需成本較低。

-----廣告,請繼續往下閱讀-----
Rhodococcus 屬細菌於光學顯微鏡(左)與電子顯微鏡(右)下的成像。圖/microbewiki

但是,植物並不具備降解 RDX 的能力,因此,科學家便將與降解能力有關的細菌基因,轉殖至植物的基因裡。在之前的實驗中,他們發現被轉殖過的阿拉伯芥 Arabidopsis thaliana 能夠將 RDX 分解,然後被植物吸收並代謝,不需要收割植物便可以清除污染物。

在實驗室裡成功後,能否在真實環境實行這個方法才是接下來的重頭戲,但這並不是一件容易的事,首先,只有少數幾種適合的植物可以進行基因轉殖,再來,種植基因轉殖作物需要申請大量的文件許可,並且,大面積種植可能需要花上好幾年的時間,而且野外實驗容易受到天氣因素影響,大規模的實驗可能會耗費昂貴的成本及時間,最可怕的是,仍然無法保證會有明確的結果。

後來研究團隊選用一種叫做「柳枝稷」(學名 Panicum virgatum )的植物進行基因轉殖,這是北美洲原生種、多年生的草本植物,接著團隊在紐約洲的一個軍事訓練場進行野外實驗。他們將 27 塊含有 RDX的土地分成三組不同的種植條件,分別為:沒有植物、未轉殖基因的柳枝稷、已轉殖基因的柳枝稷,三年之後,結果顯示,種植轉殖基因柳枝稷的土地流出的水有較低濃度的 RDX,此外,和未轉殖基因的柳枝稷相比,已進行基因轉殖的植物組織內幾乎沒有 RDX,代表這些植物正在吸收和代謝這種化學物質。

柳枝稷 Panicum virgatum 。圖/wikipedia

研究者表示,受較高污染的土地可能需要花幾年種植,但污染較少的地方可以恢復的比較快,與先前的方法相比,使用基因轉殖作物整治的方式經濟實惠許多。當然,在將這個方法運用在土地之前,需要先進行生物安全檢測,確認基因轉殖作物會如何影響當地的植物。最近,研究團隊試著將基因轉殖到另一種原產於美國許多地區的小麥草 Pascopyrum smithii ,希望未來這項技術能用於更多不同地區的受污染土地。

-----廣告,請繼續往下閱讀-----

參考文獻

  • Cary, T. J., Rylott, E. L., Zhang, L., Routsong, R. M., Palazzo, A. J., Strand, S. E., & Bruce, N. C. (2021). Field trial demonstrating phytoremediation of the military explosive RDX by XplA/XplB-expressing switchgrass. Nature Biotechnology, 1-4.
  • Urbanski, T., Laverton, S., & Ornaf, W. (1964). Chemistry and technology of explosives (Vol. 1, p. 635). New York, NY: pergamon press.
  • 國家環境毒物研究中心
  • USEPA. (2014). Technical Fact Sheet–Hexahydro‐1, 3, 5‐trinitro‐1, 3, 5‐triazine (RDX).
  • 軍事爆炸物在土壤及底泥之宿命及生態毒理研究
  • 黃昱恆, 郭驊, 曾逸洲, & 林錕松. (2015). 利用表面改質奈米零價鐵還原降解高能火炸藥 TNT, RDX 及 HMX 污染地下水整治工程技術之研發及評估. 土壤及地下水污染整治, 2(4), 253-270.
  • Rylott, E. L. & Bruce, N. C. Right on target: using plants and microbes to remediate explosives. Int. J. Phytoremediation 21, 1051–1064 (2019).
-----廣告,請繼續往下閱讀-----
文章難易度
科技大觀園_96
82 篇文章 ・ 1126 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。