Loading [MathJax]/extensions/tex2jax.js

0

6
3

文字

分享

0
6
3

機械水鐘——時鐘與自動機器的濫觴│《電腦簡史》 齒輪時代(三)

張瑞棋_96
・2020/03/09 ・3282字 ・閱讀時間約 6 分鐘 ・SR值 513 ・六年級

-----廣告,請繼續往下閱讀-----

古埃及有個名為亞歷山卓的城市,孕育出許多知名的希臘學者,阿基米德便是其中之一。有一位較不為世人所知的機械天才,當時也在亞歷山卓;他發明的機械水鐘影響深遠,不但此後千年的各式水鐘皆不脫其架構,齒輪裝置更因此另闢出自動機器之路。為什麼希臘學術竟是在埃及發揚光大?這位機械天才究竟是誰?他的發明又如何帶來如此深遠的影響?

本文為系列文章,上一篇請見:「安提基瑟拉儀」橫空出世,史上第一台計算機?(下)│《電腦簡史》》 齒輪時代

希臘文化開枝散葉

前面提到的阿基米德、希帕庫斯與托勒密等人都被視為希臘學者,但實際上他們都不住在希臘;阿基米德的家鄉敘拉古城在義大利的西西里島,希帕庫斯的故鄉在現今的土耳其境內,而托勒密則是生長於埃及。那為什麼他們都算是希臘學者?這是因為當時這些地區所使用的都是希臘語文,文化上也完全希臘化了,因此都被歸屬於希臘文明的區域。。

為什麼希臘文化會從希臘城邦擴散到這麼廣的區域?這得從西元前四世紀講起。當時以雅典為首的希臘城邦在歷經與斯巴達的戰爭後已元氣大傷,反而位於希臘北部邊陲地區的馬其頓王國(Macedonia)勵精圖治、擴充軍事,終於在西元前 338 年統一希臘城邦。

兩年後,才二十歲的亞歷山大繼承王位,開始率軍南征北討,建立了橫跨歐、亞、非的龐大帝國。不過亞歷山大大帝三十三歲就因感染瘧疾而英年早逝,死前來不及安排王位的繼承,原本駐守在各地的將領誰也不服誰,紛紛自立為王,帝國因此走上崩解之路。

-----廣告,請繼續往下閱讀-----

經過二十餘年的紛亂,終於在進入西元前三世紀前大局底定,形成三個王國鼎立之勢。原來希臘本土的馬其頓王國由安提柯王朝(Antigonid dynasty)接管,盤據亞洲領土的是塞琉古帝國(Seleucid Empire),埃及地區則是托勒密王國(Ptolemaic Kingdom) 。

帝國雖已解體,但這三個王國仍然延續原來的希臘文化,因此不只希臘本土,從北非的埃及到地中海東岸,乃至美索不達平原一帶,都仍屬希臘文明。

其中在埃及建立托勒密王國的托勒密一世(Ptolemy I),更是一心想將首都打造成像雅典那樣人文薈萃的城市。他不但找來建築師重新規劃亞歷山卓(Alexandria,又稱亞歷山大港),還建造亞歷山大博物館,希望它成為另一個柏拉圖學院,或亞里斯多德的雅典學園。他的兒子托勒密二世於西元前283年繼任王位後,更是全力蒐集各地圖書,將它們集中在亞歷山大博物館內的圖書館,使得亞歷山大圖書館躍為世上藏書最豐富的地方。亞歷山卓成功繼承雅典的地位,成為西方的學術中心,也孕育出許多繼往開來的頂尖學者。

新亞歷山大圖書館。原埃及托勒密王朝的國王托勒密一世在公元前 3 世紀所建造的亞歷山大圖書館後續慘遭火災吞噬,西元 2002 年於原址附近重新建立新亞歷山大圖書館,規模極大,藏書量大約有800萬本。圖\wikipedia

媲美阿基米德的機械天才

阿基米德正是其中之一。雖然他是回到故鄉敘拉古之後,才打造各種機械裝置,但據史書記載,他年輕時也曾來到亞歷山卓就學,之後才返回敘拉古。而在阿基米德尚未返鄉前,亞歷山卓也出現一位年紀與他相近的機械天才克特西比烏斯(Ctesibius),他也運用齒輪發明了許多前所未有的機械裝置。雖然史書並未記載,但他與阿基米德同一時期都在亞歷山卓城內,令人不禁猜想他們兩人是否曾經互相切磋,分享齒輪的相關知識?。

-----廣告,請繼續往下閱讀-----

克特西比烏斯原本在父親開的理髮店裡幫忙,當時年紀輕輕的他就已經展現出機械天份,發明一個簡單的裝置讓父親可輕易地調整銅鏡高度。原來他發現砝碼在管子中落下時,墜落速度會因管內空氣受到擠壓而減緩,於是想到可以接上銅鏡,便能減輕升降銅鏡所需的力道。據說他在實驗的過程中,發現管子會發出高低不一的聲調,靈機一動而發明出類似管風琴的樂器。克特西比烏斯後來受到托勒密二世的賞識,成為亞歷山大博物館的館長,發明出更多機械裝置,其中又以一款「水鐘」最具開創性。。

水鐘歷史悠久,至少西元前一千五百年的埃及就已經有了。最早的水鐘只是在容器底部鑽個小孔,讓水緩慢地涓滴流出,然後看水面降到容器內壁哪個刻度,而得知目前經過多少時間。這種計時方式當然並不準確,因為水流出的快慢會隨著水量減少而改變,流失的速度並不穩定,無法做為可靠的計時裝置。直到西元前三世紀,克特西比烏斯運用齒輪將水鐘徹底改造成全新的機械水鐘,人類才終於真正有了所謂的時鐘。

克特西比烏斯是亞歷山大城極負盛名的發明家,對於氣體力學及機械裝置極有興趣,也是最早做出精準水鐘的始祖。圖\wikipedia

第一具真正的時鐘

克特西比烏斯設計的水鐘有三個水箱。第一個是大儲水槽,裏頭的水不斷流進第二個水箱。第二個水箱的頂端開了個排水孔,就像現在浴缸或洗手台的設計,超過排水孔的水便會流出,好讓水面一直維持在固定高度。如此一來,從第二個水箱底部的閥口流出的水,就會以固定的速率慢慢滴落到第三個水箱,解決了過往水鐘不準的問題。

第三個水箱有個浮球,上面立著一尊手持長矛的人像。長矛的作用相當於時鐘的指針,尖端指著一個畫有刻度的圓筒;刻度表最底下是日出之時,由下往上共有二十四格,代表一天二十四小時。當浮球隨著水面不斷上升,長矛所指的位置也從圓筒底部逐漸往上,直到刻度最頂端時,也就是過了二十四小時後,第三個水箱的水便會因為虹吸原理,而從倒 U 型的細管一瀉而盡。於是浮球又降到底部,長矛尖端也回到刻度最底下的位置,再從頭開始另一個二十四小時的計時,如此周而復始。

-----廣告,請繼續往下閱讀-----

不僅如此,從倒 U 型細管流出的水會暫留在一個類似水車的轉輪,水的重量使得轉輪轉動一格後,暫留的水也跟著被倒光,轉輪隨即停止不再轉動。因此與輪軸嚙合的另一個齒輪也只轉動一齒,進而帶動刻度圓筒轉 1/365 圈,好讓長矛第二天指向新的刻度。原來圓筒上的刻度並非單一不變,而是高低起伏如波浪般的線條環繞圓筒一圈。

克特西比烏斯設計的水鐘能夠自動計時,且具有校正晝夜長短功能。圖\wikipedia

這是因為當時並不是將一天等分為二十四小時,每個小時長度都一樣,而是將白天(日出至日落)與黑夜各均分為十二小時。結果夏季晝長夜短,白天的一小時就比夜晚的一小時來得長;冬天剛好相反,變成夜晚一小時比白天一小時來得長。所以圓筒上的刻度也得跟著調整:夏季時白天的格子寬一點、夜晚的格子窄一點;冬天就反過來,白天的格子窄、夜晚的格子寬。這樣圓筒每隔一天自動轉 1/365 圈,刻度才符合當日實際的晝夜長度,長矛指針也就能一年三百六十五天,每天都指出正確的時刻。

機械水鐘為自動機器揭開序幕

克特西比烏斯將計時裝置的準確度提升到前所未有的程度,這款機械水鐘也成為史上第一具不分日夜、室內室外都可持續顯示正確時間的時鐘。而且他的設計影響極為深遠,雖然後來東西方陸續都有更加精進改良的水鐘,但基本架構仍不脫這個最初的原型。此後一千多年,水鐘一直是最準確的計時裝置,直到十四世紀才被改用砝碼搭配擒縱輪的機械鐘取而代之。。

克特西比烏斯的水鐘不僅是計時裝置的重大革新,更是機械裝置的一大突破。不像其它機械裝置一定要有人操作,一旦停手就會立即停止;這具水鐘只需要有人適時補充儲水槽的水,確保水流源源不絕涓滴而下,裡面的水車、齒輪等元件就會環環相扣地自行運轉,告訴人們目前時刻,過程中完全不需人力介入。這具機械水鐘因此成為自動機器的濫觴,為後世示範將一些簡單的機械元件加以組合,竟然就能造出一部自動機器,會自己按部就班地完成被賦予的任務。

-----廣告,請繼續往下閱讀-----

自動機器對日後計算機的發明有深遠的影響。雖然直到十九世紀,齒輪裝置才出現所謂的「通用型計算機」,可以做各種加減乘除的計算,不過回顧這條兩千年崎嶇而漫長的道路,自動機器一直是重要的推手。這是因為水鐘,乃至後來結合天體運行的天文鐘,原本就牽涉到加法與進位的計算。

另一方面,自動機器裡的元件按照預先所設定的程序,自行一步一步地運作,更是計算機的基本精神。因此,除了水鐘與天文鐘這類實用裝置之外,無關乎計算的自動機器,仍間接地造就未來計算機的發明。

-----廣告,請繼續往下閱讀-----
文章難易度
張瑞棋_96
423 篇文章 ・ 1026 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

1
1

文字

分享

0
1
1
伺服器過熱危機!液冷與 3D VC 技術如何拯救高效運算?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/11 ・3194字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 高柏科技 合作,泛科學企劃執行。

當我們談論能擊敗輝達(NVIDIA)、Google、微軟,甚至是 Meta 的存在,究竟是什麼?答案或許並非更強大的 AI,也不是更高速的晶片,而是你看不見、卻能瞬間讓伺服器崩潰的「熱」。

 2024 年底至 2025 年初,搭載 Blackwell 晶片的輝達伺服器接連遭遇過熱危機,傳聞 Meta、Google、微軟的訂單也因此受到影響。儘管輝達已經透過調整機櫃設計來解決問題,但這場「科技 vs. 熱」的對決,才剛剛開始。 

不僅僅是輝達,微軟甚至嘗試將伺服器完全埋入海水中,希望藉由洋流降溫;而更激進的做法,則是直接將伺服器浸泡在冷卻液中,來一場「浸沒式冷卻」的實驗。

-----廣告,請繼續往下閱讀-----

但這些方法真的有效嗎?安全嗎?從大型數據中心到你手上的手機,散熱已經成為科技業最棘手的難題。本文將帶各位跟著全球散熱專家 高柏科技,一同看看如何用科學破解這場高溫危機!

運算=發熱?為何電腦必然會發熱?

為什麼電腦在運算時溫度會升高呢? 圖/unsplash

這並非新問題,1961年物理學家蘭道爾在任職於IBM時,就提出了「蘭道爾原理」(Landauer Principle),他根據熱力學提出,當進行計算或訊息處理時,即便是理論上最有效率的電腦,還是會產生某些形式的能量損耗。因為在計算時只要有訊息流失,系統的熵就會上升,而隨著熵的增加,也會產生熱能。

換句話說,當計算是不可逆的時候,就像產品無法回收再利用,而是進到垃圾場燒掉一樣,會產生許多廢熱。

要解決問題,得用科學方法。在一個系統中,我們通常以「熱設計功耗」(TDP,Thermal Design Power)來衡量電子元件在正常運行條件下產生的熱量。一般來說,TDP 指的是一個處理器或晶片運作時可能會產生的最大熱量,通常以瓦特(W)為單位。也就是說,TDP 應該作為這個系統散熱的最低標準。每個廠商都會公布自家產品的 TDP,例如AMD的CPU 9950X,TDP是170W,GeForce RTX 5090則高達575W,伺服器用的晶片,則可能動輒千瓦以上。

-----廣告,請繼續往下閱讀-----

散熱不僅是AI伺服器的問題,電動車、儲能設備、甚至低軌衛星,都需要高效散熱技術,這正是高柏科技的專長。

「導熱介面材料(TIM)」:提升散熱效率的關鍵角色

在電腦世界裡,散熱的關鍵就是把熱量「交給」導熱效率高的材料,而這個角色通常是金屬散熱片。但散熱並不是簡單地把金屬片貼在晶片上就能搞定。

現實中,晶片表面和散熱片之間並不會完美貼合,表面多少會有細微間隙,而這些縫隙如果藏了空氣,就會變成「隔熱層」,阻礙熱傳導。

為了解決這個問題,需要一種關鍵材料,導熱介面材料(TIM,Thermal Interface Material)。它的任務就是填補這些縫隙,讓熱可以更加順暢傳遞出去。可以把TIM想像成散熱高速公路的「匝道」,即使主線有再多車道,如果匝道堵住了,車流還是無法順利進入高速公路。同樣地,如果 TIM 的導熱效果不好,熱量就會卡在晶片與散熱片之間,導致散熱效率下降。

-----廣告,請繼續往下閱讀-----

那麼,要怎麼提升 TIM 的效能呢?很直覺的做法是增加導熱金屬粉的比例。目前最常見且穩定的選擇是氧化鋅或氧化鋁,若要更高效的散熱材料,則有氮化鋁、六方氮化硼、立方氮化硼等更高級的選項。

典型的 TIM 是由兩個成分組成:高導熱粉末(如金屬或陶瓷粉末)與聚合物基質。大部分散熱膏的特點是流動性好,盡可能地貼合表面、填補縫隙。但也因為太「軟」了,受熱受力後容易向外「溢流」。或是造成基質和熱源過分接觸,高分子在高溫下發生熱裂解。這也是為什麼有些導熱膏使用一段時間後,會出現乾裂或表面變硬。

為了解決這個問題,高柏科技推出了凝膠狀的「導熱凝膠」,說是凝膠,但感覺起來更像黏土。保留了可塑性、但更有彈性、更像固體。因此不容易被擠壓成超薄,比較不會熱裂解、壽命也比較長。

OK,到這裡,「匝道」的問題解決了,接下來的問題是:這條散熱高速公路該怎麼設計?你會選擇氣冷、水冷,還是更先進的浸沒式散熱呢?

-----廣告,請繼續往下閱讀-----

液冷與 3D VC 散熱技術:未來高效散熱方案解析

除了風扇之外,目前還有哪些方法可以幫助電腦快速散熱呢?圖/unsplash

傳統的散熱方式是透過風扇帶動空氣經過散熱片來移除熱量,也就是所謂的「氣冷」。但單純的氣冷已經達到散熱效率的極限,因此現在的散熱技術有兩大發展方向。

其中一個方向是液冷,熱量在經過 TIM 後進入水冷頭,水冷頭內的不斷流動的液體能迅速帶走熱量。這種散熱方式效率好,且增加的體積不大。唯一需要注意的是,萬一元件損壞,可能會因為漏液而損害其他元件,且系統的成本較高。如果你對成本有顧慮,可以考慮另一種方案,「3D VC」。

3D VC 的原理很像是氣冷加液冷的結合。3D VC 顧名思義,就是把均溫板層層疊起來,變成3D結構。雖然均溫板長得也像是一塊金屬板,原理其實跟散熱片不太一樣。如果看英文原文的「Vapor Chamber」,直接翻譯是「蒸氣腔室」。

在均溫板中,會放入容易汽化的工作流體,當流體在熱源處吸收熱量後就會汽化,當熱量被帶走,汽化的流體會被冷卻成液體並回流。這種利用液體、氣體兩種不同狀態進行熱交換的方法,最大的特點是:導熱速度甚至比金屬的熱傳導還要更快、熱量的分配也更均勻,不會有熱都聚集在入口(熱源處)的情況,能更有效降溫。

-----廣告,請繼續往下閱讀-----

整個 3DVC 的設計,是包含垂直的熱導管和水平均溫板的 3D 結構。熱導管和均溫板都是採用氣、液兩向轉換的方式傳遞熱量。導熱管是電梯,能快速把散熱工作帶到每一層。均溫板再接手將所有熱量消化掉。最後當空氣通過 3DVC,就能用最高的效率帶走熱量。3DVC 跟水冷最大的差異是,工作流體移動的過程經過設計,因此不用插電,成本僅有水冷的十分之一。但相對的,因為是被動式散熱,其散熱模組的體積相對水冷會更大。

從 TIM 到 3D VC,高柏科技一直致力於不斷創新,並多次獲得國際專利。為了進一步提升 3D VC 的散熱效率並縮小模組體積,高柏科技開發了6項專利技術,涵蓋系統設計、材料改良及結構技術等方面。經過設計強化後,均溫板不僅保有高導熱性,還增強了結構強度,顯著提升均溫速度及耐用性。

隨著散熱技術不斷進步,有人提出將整個晶片組或伺服器浸泡在冷卻液中的「浸沒式冷卻」技術,將主機板和零件完全泡在不導電的特殊液體中,許多冷卻液會選擇沸點較低的物質,因此就像均溫板一樣,可以透過汽化來吸收掉大量的熱,形成泡泡向上浮,達到快速散熱的效果。

然而,因為水會導電,因此替代方案之一是氟化物。雖然效率差了一些,但至少可以用。然而氟化物的生產或廢棄時,很容易產生全氟/多氟烷基物質 PFAS,這是一種永久污染物,會對環境產生長時間影響。目前各家廠商都還在試驗新的冷卻液,例如礦物油、其他油品,又或是在既有的液體中添加奈米碳管等特殊材質。

-----廣告,請繼續往下閱讀-----

另外,把整個主機都泡在液體裡面的散熱邏輯也與原本的方式大相逕庭。如何重新設計液體對流的路線、如何讓氣泡可以順利上浮、甚至是研究氣泡的出現會不會影響元件壽命等等,都還需要時間來驗證。

高柏科技目前已將自家產品提供給各大廠商進行相容性驗證,相信很快就能推出更強大的散熱模組。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

11
7

文字

分享

0
11
7
改變在一「矽」之間——半導體的誕生│《電腦簡史》數位時代(十六)
張瑞棋_96
・2021/04/05 ・6669字 ・閱讀時間約 13 分鐘 ・SR值 542 ・八年級

-----廣告,請繼續往下閱讀-----

本文為系列文章,上一篇請見:邁向商用化——電腦產業的形成│《電腦簡史》數位時代(十五)

真空管的先天缺陷:易報銷

二次大戰後,電腦全面使用真空管後,速度大幅提升,隨著需要大量計算的企業越來越多,電腦前景看似一片光明。不過當電腦上線運作後,真空管的先天缺陷終於曝露出來,嚴重阻礙電腦產業的發展。

真空管是靠加熱極細的燈絲而產生游離電子,電子被吸引至做為正極的金屬片而產生單向電流。由於燈絲與電極都會逐漸耗損,真空管的壽命原本就不長;即使是特別為電腦生產的真空管,在正常狀況下也不過能用兩千個小時。更何況在進行高速運算時,真空管不斷開開關關,燈絲很容易因此燒斷而提早報銷。

真空管二極體的構造。圖:Wikipedia

一部電腦至少有幾千個真空管,只要有一、二個壞掉,就會影響整體電路的運作。以 UNIVAC 為例,平均故障間隔 (MTBF, Mean Time Between Failures) 的時間不超過 24 小時;美軍的 ENIAC 用的真空管超過一萬七千個,MTBF 更是只有 12 小時。而一旦發生問題,要排除故障也相當耗費時間,平均得花幾個小時才能找出損壞的真空管,予以更換。

電腦如果動不動就得停機檢修,不僅效益大打折扣,還會影響正常作業,誰想花大錢購置電腦卻惹來內部抱怨連連。可靠性的問題沒有解決,電腦就難以獲得全面採用,只是真空管的物理特性就是如此,能再改善的空間有限,只能期待全新的電子元件出現。

-----廣告,請繼續往下閱讀-----

如今我們知道,這革命性的電子元件就是電晶體。它不僅解決了可靠性的問題,而且大幅降低成本、縮小體積、提升速度,讓電腦改頭換面,並催生出各種電子產品,人類文明從此邁入新紀元。電晶體之所以能帶來革命性的改變,乃因它是奠基於一種革命性的材料——半導體。要知道電晶體如何發明,得先知道什麼是半導體。

半導電性:導體與絕緣體之間

顧名思義,半導體就是具有半導電性的物體。但何謂半導電性?

我們知道不同元素有不同電子數,以原子核為核心,由內而外分布於不同殼層。越外層的電子能量越高,其中最外層的電子稱為「價電子」,所處的能階稱為「價帶」。價電子仍被束縛在原子內,所以無法導電,必須獲得能量躍遷到「傳導帶」才能導電。傳導帶與價帶的能量差距稱為「能隙」,導電性便取決於能隙的大小。

金屬的能隙非常小,甚至傳導帶與價帶有部分重疊,所以導電性很高;反之,絕緣體的能隙很大,價電子無法跨越,因此無法導電。半導電的能隙則介於金屬與絕緣體之間。

-----廣告,請繼續往下閱讀-----
三種不同導電性。圖:Wikipedia

能隙的大小與價電子的個數有關。每個殼層可容納的電子數都有上限,當價電子殼層越接近填滿狀態,就越穩定,需要越多能量才能激發價電子跳到傳導帶;當價電子越少,就越容易脫離束縛,跑到傳導帶。

金屬的價電子通常不超過 3 個(過渡金屬除外),很容易形成自由電子,到處移動。絕緣體通常有 5 個或以上的價電子。碳、矽、鍺、錫、鉛等 IV 族元素有 4 個價電子,剛好是半滿狀態,導電性介於導體與絕緣體之間,屬於半導體。

IV 族元素如果摻雜其它元素,導電性也會跟著改變。例如把磷摻到矽裡面,因為磷有 5 個價電子,其中 4 個與矽共用後,還多一個價電子,就更容易跑到傳導帶成為自由電子,這種半導體稱為 n 型 (n 代表 negative)。

矽如果摻的是有三個價電子的硼,只差一個價電子就是最穩定的狀態,猶如有個「電洞」讓經過的電子落入陷阱。旁邊的電子掉進這個電洞後又產生一個新的電洞,形成骨牌效應,從另一個角度看,就像是帶正電的電洞會移動一樣,因此稱為 p 型半導體 (p 代表 positive)。

-----廣告,請繼續往下閱讀-----

偶然發現半導體

除了摻雜,化合物也可能形成半導體。半導體最早被發現,就是與 IV 族元素無關的化合物。1833 年,法拉第有一次在做電力實驗時,無意間將燈火靠近硫化銀,結果發現導電能力竟然大增;一旦移走燈火,導電性又隨著溫度下降而降低。一般金屬在高溫時,導電性會變差,硫化銀卻剛好相反,令法拉第大感訝異。

硫化銀就是一種半導體。高溫之所以增加半導體的導電性,是因為熱能會讓更多價電子躍遷到傳導帶,因此增加了導電性。一般金屬原本僅需一點能量就能產生自由電子,集體往正極方向移動。但電子如果吸收太多熱能,反而四處亂竄,原本的定向性受到破壞,導電能力也就隨之下降了。

法拉第雖然發現半導體這個特性,卻無法了解其中原理。畢竟當時距離道爾吞提出原子說還不到 30 年,是否有所謂的基本粒子仍頗受質疑,更無從想像原子內部還有電子與原子核。因此法拉第發表這個奇特的現象後,就不了了之,也沒有人想到在導體與絕緣體之外,還有一種半導體。下次半導體再度躍上檯面,已是四十年之後。

1874 年,才 24 歲的德國物理學家布勞恩 (Ferdinand Braun) 在研究各種硫化物的導電性時,將硫化鉛接上電,卻發現檢流計的指針紋風不動。他試著調換正負極,結果指針馬上就有反應。這實在太奇怪了,一個物體的導電性應該是一致的,怎麼會因為正負極不同接法,一下是絕緣體,一下又是導體?

-----廣告,請繼續往下閱讀-----
發現半導體具有單向導電性的布勞恩。圖:Wikipedia

單向導電性是半導體另一項重要特性。硫有 6 個價電子,所以硫化鉛是 n 型半導體,一般情況下,電子只能從硫化鉛往正極移動,才會從另一個方向測不到電流。同樣地,由於當時仍然不清楚原子的構造(湯姆森於 1897 年才發現電子),不知如何解釋這個奇特現象。

大家毫無頭緒,單向導電性又看不出有何用途,因此布勞恩發表實驗結果後,並沒有激起任何漣漪。半導體再次受到忽視,要等到赫茲於 1888 年發表無線電波的實驗後,硫化鉛這類的半導體礦石才引起大家的興趣。

接收無線電波

赫茲的實驗吸引很多人投入無線電波的研究,印度科學家博斯 (Jagadish Chandra Bose) 也是其中之一。他發現 IV 族元素的礦石不但有單向導電性,而且不遵守歐姆定律:電流與電壓成正比。當施予礦石的電壓小於某個臨界值時,電流微乎其微;一但超過臨界電壓,電流便突然大幅增加。

博斯想到可以利用這個特性偵測微弱的無線電波。只要先對接收裝置施以適當電壓,讓無線電波所產生的感應電壓恰好超過臨界電壓,電流便會出現明顯變化,就能如實呈現無線電波。

-----廣告,請繼續往下閱讀-----

1894 年,博斯將金屬天線的一端與硫化鉛的表面接觸,做成無線電偵測器(也稱「檢波器」),成功接收到一英哩之外的無線電波,這中間還隔了三道磚牆。

博斯發明的無線電收發器。圖:Wikipedia

馬可尼 (Guglielmo Marconi) 也在這一年發明無線電報系統,兩年後他和博斯在倫敦會面,不過博斯對商業應用不感興趣,並未與馬可尼合作。馬可尼也沒有採用博斯這個技術,而是利用感應電流產生的磁場變化,來吸引金屬屑或發出聲響,作為判斷電波的依據。

事實上,博斯自己後來也改用別種技術設計檢波器,因為礦石檢波器的確不是很靈光。礦石中的雜質分布並不均勻,不是每次用金屬線接觸硫化鉛表面都能形成迴路,往往得嘗試很多次才能找到「熱點」,得到訊號。

儘管如此,AT&T 的工程師匹卡德 (Greenleaf Pickard) 仍看好礦石檢波器的潛力,試圖找出收訊效果更好的礦石。

-----廣告,請繼續往下閱讀-----

1902 年,匹卡德檢測一塊礦石的熱點時,懷疑施加的電流造成背景雜訊太大,於是伸手拿掉部分電池,結果雜訊果然馬上消失,無線電的訊號變得清楚許多。這時他看了一眼器材,才發現他剛剛不小心把電池的接線弄掉了,也就是礦石檢波器竟然不需要電,就可以接收無線電。

這個奇妙的現象完全違背過去的認知,於是匹卡德更加專心研究還有哪些礦石不用電就可以當檢波器。他花了三、四年的時間測試上千種礦石,發現有 250 種可以做為天然檢波器,其中又以熔融後的矽(原本用來製造石英玻璃)收訊效果最佳。

礦石收音機

匹卡德進行實驗的這段期間,無線電也正在發展另一項應用:傳送聲音。當時電話已是成熟的技術,可以將聲音轉換為音頻訊號,但音頻是連續波形,無線電波卻是脈衝電波,因此只能靠長/短、有/無來代表摩斯密碼,無法傳送音頻訊號。

1900 年,加拿大發明家范信達 (Reginald Fessenden) 發明一種高速交流發電機,終於能產生連續波形的無線電波(稱為「載波」,波形為規律的正弦波)。

-----廣告,請繼續往下閱讀-----

原本規律的載波與音頻疊加後,變成起伏變化的無線電波,電波的振幅大小便代表音訊的變化。這種調變電波振幅的技術便稱為「調幅」(Amplitude Modulation, 簡稱AM),就是現在 AM 廣播所用的技術。

調幅示意圖。圖:Wikipedia

調幅無線電到了接收端,還得經過「解調」才能還原成原來的音訊。首先,由於天線接收無線電波後,所產生的感應電流也是交流電,因此必須先把反方向的電流去掉,成為單一方向的直流電;這個步驟便稱為「整流」。接著再濾掉其中的載波,留下的就是原來的音頻訊號。

范信達直到 1904 年才成功做出有整流功能的檢波器,並於 1906 年的聖誕夜成功發送 AM 廣播到大西洋上的美國軍艦。不過范信達所發明的檢波器不易製造,又常需要調校,只適合專業人士使用。而半導體的單向導電性恰好可以將交流電整流為直流電,這類礦石便可直接做為無線廣播的檢波器。

1906 年,匹卡德獲得矽石檢波器的專利,並在隔年創立公司,製造用耳機收聽的礦石收音機,銷售給一般大眾。由於價格低廉、體積小巧又不需要電,因此頗受歡迎。礦石收音機成為史上第一個半導體商品;誰會想到如今半導體與各種電子產品密不可分,但最早卻是以不用電為訴求。

匹卡德於1916年發明的矽石檢波器。圖:Wikipedia

三極真空管橫空出世

就在匹卡德於 1906 年申請專利這一年,美國專利局也收到另一項影響更深遠的專利申請,那就是由德佛瑞斯特 (Lee De Forest) 改良的新型真空管。

原本弗萊明 (John A. Fleming) 於1904 年發明的真空管只有正負兩極,德佛瑞斯特用金屬柵格擋在金屬片與燈絲之間,變成除了正、負極,還多了「柵極」(Grid) 的三極管

柵極用來控制電流大小。當柵極施以負電壓,產生的電場與電子相斥,部分電子便被擋下,無法抵達正極金屬片,電流也就變小了。負電壓越大,被擋下的電子越多,電流也就越小;柵極就像家裡的水龍頭,不用動到水管的閥門,就可以各自調節水流大小。

三極管在金屬片與燈絲之間多了金屬柵格。圖:Wikipedia

德佛瑞斯特原本設計三極管只是為了調節電流,他沒想到六年之後,這項設計竟被發掘出放大訊號的功能。

原本只有二極管時,若要調整電流大小,正極電壓就要有相對幅度的改變,就如前面水管的比喻,沒有水龍頭的話,只能從源頭閥門控制水量。例如要讓電流從 12 mA 減半降為 6 mA,電壓要從 110 V 降到 60 V;但若使用三極管,則無須改變正極電壓,只要對柵極施以 -2 V 的電壓就可以了。

三級管的電壓變化只需二級管的 1/25 ,便能達到同樣的效果(若搭配適當的阻抗,相差還能到百倍以上),就像水龍頭那樣,轉動一點點,出水量就差很多。如果讓柵極做為訊號的輸入端,正極做為輸出端,那麼原本微弱的訊號,就會放大成強烈的訊號。

有了三極管做為訊號放大器,無線電可以傳得更遠,收訊效果也更好,而且收音機還可以配上喇叭。隨著廣播電台自 1920 年代開始快速發展,真空管收音機也進入一般家庭,成為民眾重要的休閒娛樂與資訊來源。相對地,礦石收音機的收訊效果與方便性都遠遠不如,自然不受青睞,逐漸沒落。好不容易找到舞台的半導體於是又被棄置一旁,沒想到十幾年後,同樣是由來自 AT&T 的工程師,再度讓半導體起死回生。

德佛瑞斯特於1914年用三極管打造的訊號放大器。圖:Wikipedia

真空管搞不定短波

三極真空管有助於無線廣播,當然也有助於電話傳得更遠。 AT&T 利用真空管擴大電話網路,於 1915 年開通橫跨東西兩岸的長途電話。1927 年 1 月 7 日, AT&T 總裁進一步透過無線電波,從紐約打電話到倫敦,完成史上第一通越洋電話。不過這通電話只是試驗性質,真要提供越洋電話服務,還有項技術問題須要克服。

紐約與倫敦相隔甚遠,無線電波無法橫越地表弧度直接送達,必須經大氣的電離層反射到地面。然而一年四季、晴雨晨昏,大氣條件都不一樣,對電波的影響也大不相同。因此若要維持越洋電話全年暢通,通訊設備須要能夠收發不同波長的無線電波。不過真空管在高頻(也就是短波)的表現不是很好,如何克服這個問題便成為貝爾實驗室的首要任務。

貝爾實驗室於 1925 年成立,初期的工程師大多從 AT&T 陸續轉調過來,歐偉 (Russell Ohl) 也是其中之一,他對無線電的興趣始自大學時期。1914 年第一次世界大戰爆發,當時大學二年級的歐偉,在課堂上第一次聽到礦石收音機發出聲音,而且竟然是遠在大西洋的英國船隻,遭到德國潛艇攻擊所發出的求救訊號,從此他便對無線電深深著迷。

歐偉原本在 AT&T 就是負責短波的研發,1927 年轉到貝爾實驗室後仍繼續這個項目。他們不斷將無線電電波推向更高的頻率,但最終遇到瓶頸難以跨越。當其他同事仍執著於真空管時,歐偉於 1935 年決定從頭開始,一一檢視過去無線電的各種實驗與論文,從中發掘可行方案。最後他把目標瞄準礦石收音機的矽石,相信這才是解答。

歐偉 (Russell Ohl) 在他的實驗室裡。圖:Engineering and Technology History Wiki

一道裂痕開啟「矽」的半導體時代

礦石收音機不是才被真空管淘汰嗎?同事與主管都認為歐偉異想天開,但他認為只要去除矽石中的雜質,就能收發頻率更高的無線電波。歐偉自己多次嘗試用矽粉製造,卻不得其果,最後終於在 1939 年找到具有冶金專長的同事,用高溫熔製的方法精煉出高純度的矽。

1940 年 2 月 23 日,歐偉決定檢測一塊去年製出的矽石,據他的同事說,這塊矽石相當奇特,每次測的導電性都不一樣。歐偉仔細檢查這塊矽石,發現中間有條裂痕,他猜想這就是導電性不一致的原因,原本不以為意。但他接上示波器,赫然發現矽石在檯燈的照射下,竟然會產生電流。

光電效應是會產生電流,但那是以紫外線照射金屬,而這顆 40 W 的燈泡發出的是可見光,矽的導電性也遠遠不如金屬。雖然美國發明家弗里茲 (Charles Fritts) 曾於 1884 年將硒鍍上金箔,做成太陽能電池,但這樣的光伏效應 (Photovoltaic effect,也稱「光生伏特效應」) 轉換效率非常低,只有 1% 左右。歐偉所測到的電壓,超過當時所知的光電效應與光伏效應十倍以上,絕對是項前所未有的發現。

歐偉趕緊找主管來看,同時和同事繼續深入研究這塊矽石。他們發現電流總是由裂痕的上半部流往下半部,而不會反向而行。經過進一步分析發現,裂痕兩邊含有不同的雜質,上半部含有少許的硼,而下半部的雜質則是磷。

他們推測應該是這塊矽石經過高溫熔化,在自然冷卻的過程中,較重的磷下沉得比較快,較輕的硼下沉得比較慢,裂痕出現的地方剛好將這兩種元素阻隔開,以致矽石的上、下半部各有不同的雜質。

歐偉推測電流就是兩邊不同的雜質所致。磷有 5 個價電子,而硼有 3 個價電子,在白熾燈泡的照射下,磷的多餘電子被激發而越過裂痕,填補含硼那一邊矽石的電洞,而產生電流。這就類似電池的負極提供電子給正極,於是歐偉也用「n型」、「p型」來稱呼這兩種矽石,然後把劃分兩邊的裂痕——也就是這兩種半導體的接觸面——叫做「p-n 接面」(p-n junction)。這幾個名稱便一直沿用到現今的半導體。

半體體的基本名稱不但源自歐偉的命名,如今我們懂得利用摻雜來改變半導體的導電性,也是始自他這次的發現。不過對歐偉而言,他一心只想研究無線電波,發現半導體的光伏效應只是偶然,他無意也沒有能力再深究其中原理。

半導體的後續研究隨即由貝爾實驗室另一個團隊接手,這群有量子力學背景的物理學家將釐清 p-n 接面的奧秘,進而發明改變世界的電晶體。

-----廣告,請繼續往下閱讀-----
張瑞棋_96
423 篇文章 ・ 1026 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

11
4

文字

分享

0
11
4
邁向商用化——電腦產業的形成│《電腦簡史》數位時代(十五)
張瑞棋_96
・2021/02/01 ・4303字 ・閱讀時間約 8 分鐘 ・SR值 521 ・七年級

-----廣告,請繼續往下閱讀-----

本文為系列文章,上一篇請見:破解密碼到模仿遊戲——圖靈那些不可說或無人識的貢獻│《電腦簡史》數位時代(十四)

全世界只需要五台電腦?

「我想電腦的全球市場大概五台吧。」 ——IBM 總裁華生 (Thomas Watson),1943 年。

這句話現在看起來相當荒謬可笑,尤其竟然出自 IBM 總裁口中,更令人覺得匪夷所思。當然,用現今個人電腦的市場規模來評判華生這句話並不公平,畢竟當時根本無法想像家家戶戶有電腦。

不過再怎麼樣,中大型電腦的市場規模也絕對不只個位數吧?IBM 自己是靠製表機起家,為政府部門、鐵道公司、壽險公司等大型機構做資料統計都超過三十年了,為什麼仍會如此低估電腦的需求?

IBM 首任總裁華生。圖:Wikipedia

其實華生才於 1939 年親自拍板定案,與哈佛大學共同開發電腦,他絕對有想到其它大學肯定也有電腦的需求。同時他也應該知道軍方為了二次大戰,正在積極打造電腦,用來計算彈道、製作射表。

只不過對華生而言,這些電腦都是為了特定用途打造,而且是採合作開發的模式,在他眼中並不是可商品化的產品,他要的是可以直接採用標準產品的商用市場。然而當時需要大量計算的企業本來就寥寥可數,況且那些計算工作也多是簡單的統計分析,用 IBM 的製表機就綽綽有餘了。所以華生當時看衰電腦市場也是有其道理。

-----廣告,請繼續往下閱讀-----

華生的觀點恰恰反映了電腦在那個時代所扮演的角色:計算高深複雜的數學方程式。而這顯然只有學者才會用到,要不是為了本身的科學研究,就是幫軍方計算彈道、空氣動力學之類的。

事實上,當時也的確都是大學與軍方這兩個單位在推動電腦的開發(貝爾實驗室雖然一開始是自己主動打造複數計算機,但後來就中止電腦研發,直到戰爭爆發,才接受軍方委託繼續開發)。如果電腦用途只侷限於此,華生的預言恐怕就八九不離十。所幸二次大戰結束後,商用市場興起,電腦產業才有今日的榮景。不過你大概想不到,第一家打造商用電腦的竟不是 IBM 之類的電腦公司,而是英國一家餐飲企業。

餅乾工廠與劍橋大學

萊昂企業 (J. Lyons and Co.) 於 1884 年成立時只是一間小茶館,後來不但發展為遍布英國的連鎖茶館,還拓展出甜點、餐廳等不同連鎖店,並且自己設廠生產各種餅乾、糕點。二次大戰後,管理階層鑒於組織越來越龐大,想要從美國購置事務機器來提升管理效率。

萊昂企業旗下的連鎖餐廳,攝於 1942 年。圖:Wikipedia

結果他們蒐集各方資料後,發現美國陸軍於 1946 年 2月公開發表了第一台通用型電子計算機 ENIAC。萊昂企業高層對此極感興趣,於是派人於 1947 年 5 月前往美國參訪考察。

-----廣告,請繼續往下閱讀-----

他們拜訪了高士汀(前情提要:他在戰時代表陸軍派駐在摩爾電機學院,負責協調 ENIAC 的設計與建造。就是他主動把馮紐曼撰寫的〈EDVAC 報告初稿〉分送給美、英兩國的相關機構,促成了許多部馮紐曼架構的電腦誕生),表明想要建置一台電腦。高士汀好心的告訴他們不用捨近求遠,離他們公司總部不遠的劍橋大學就有團隊正在打造電腦。

原來劍橋大學的物理學家威爾克斯 (Maurice Wilkes) 也拿到一份〈EDVAC 報告初稿〉,而且比圖靈幸運的是,他有位研究生二次大戰時曾在海軍服役,負責設計雷達所用的延遲線記憶體,因此知道如何打造水銀延遲線。

雖然技術上的障礙克服了,但劍橋大學校方對開發電腦興趣不大,不願給予經費,威爾克斯只好一邊著手設計,一邊尋找經費來源。沒想到幸運之神再次眷顧,萊昂企業竟然主動找上門來,願意贊助開發經費,以換取威爾克斯協助他們打造商用電腦。

威爾克斯設計的「電子延遲存儲自動計算機」(Electronic Delay Storage Automatic Calculator,簡稱 EDSAC)  不到兩年就完工,於 1949 年 5 月 6 日成功執行了計算平方數的程式,成為繼曼徹斯特寶寶之後,第二台可存取程式的數位電腦。

-----廣告,請繼續往下閱讀-----

EDSAC 創下的諸多第一

不過嚴格來說,曼徹斯特寶寶原本就是為了打造曼徹斯特一號而試做的先導機型,只能做簡單的計算,輸入/輸出裝置也相當克難,功能相當有限。因此若以真正具有完整功能的電腦而言,第一台可存取程式的電腦應該是 EDSAC;曼徹斯特一號則以 40 天的差距屈居第二。

完工後的 EDSAC,左方即設計者威爾克斯。圖:Wikipedia

還有幾項電腦史上的第一也與 EDSAC 有關。在機器剛開機時,會先有基本程序讓相關元件就緒,這是靠一連串的電子訊號控制電磁開關來完成。負責程式設計的研究生惠勒 (David Wheeler) 將開機程序改用一組初階指令 (initial orders) 控制,這組指令用英文代碼描述,方便程式設計師以更直觀的方式設定機器。

惠勒所設計的初階指令就是最早的組合語言 (assembly language),他因此被視為「組譯器」(assembler,將組合語言轉換成機器碼的系統) 的發明人。1951 年,惠勒以〈用 EDSAC 做自動計算〉這篇論文取得博士學位,成為史上第一位電腦科學博士

EDSAC 完工後,威爾克斯並沒有敝帚自珍,反而很快地自 1950 年開始開放給外界使用,他為此與惠勒編寫了史上第一本電腦程式的教科書,讓有意使用 EDSAC 的學者知道如何撰寫程式。這其中有四位後來獲得諾貝爾獎(兩位合得 1962 年化學獎、一位獲 1963 年醫學獎,還有一位是 1974 年物理獎得主),他們還特別在頒獎典禮上,致辭感謝 EDSAC 對他們的研究有很大的幫助。

-----廣告,請繼續往下閱讀-----

順帶一提,史上第一個視覺化的電腦遊戲也是出現在 EDSAC 上。EDSAC 原本配有監測電路用的陰極射線管;1952 年,一位研究生寫了井字遊戲的程式,讓人與電腦對弈,井字與 ”O”、”X” 符號就直接呈現在陰極射線管上。

世上首部商用電腦誕生

威爾克斯如願完成 EDSAC 後,當然要履行對幕後金主萊昂企業的承諾。萊昂企業高層對電腦的冀望極高,特地設置了一個專責部門「萊昂電子辦公室」(Lyons electronic office,簡稱 LEO),而且並非採購現成的機種,而是要自己打造量身訂做的電腦;名稱就取為「里歐一號」(LEO 1)。

第一部商用電腦「里歐一號」。圖:Wikipedia

里歐一號完全參考 EDSAC 的設計,惟記憶容量擴增為兩倍,很快就於 1951 年 2 月竣工。11 月,萊昂企業開始將訂單、配銷、庫存等管理系統電腦化,首度實現今日通稱的「管理資訊系統」(Management Information System),里歐一號也因此成為世上第一部商用電腦。

到目前為止,英國在電腦發展上仍然領先美國。儘管曼徹斯特大學與劍橋大學都是取得〈EDVAC 報告初稿〉後,才開始設計馮紐曼架構的電腦;其中幾人還特地飛到美國,參加摩爾電機學院的暑期課程,才習得相關的電腦知識,但英國團隊卻比美國更早打造出機器。

-----廣告,請繼續往下閱讀-----

英國除了率先達成好幾項技術上的里程碑,在軟體應用上也更勇於嘗試。當萊昂企業開始導入管理資訊系統時,美國的電腦主要仍用於科學計算或為政府部門解決特定問題。至於掌握商用市場的 IBM,仍然用機電式的製表機,為客戶處理簡單的加減乘除。

英美兩國電腦實力的消長

不過美國的落後純屬偶然。EDVAC 是因為核心成員紛紛離去,以致延宕到 1952 年 2 月才完工。悻悻然自行創業的莫奇利與艾科特因為從頭開始,所以 1949 年 3 月才完成美國第一部可存取程式的電腦「二進位自動計算機」(Binary Automatic Computer,簡稱 BINAC),比英國的曼徹斯特寶寶晚了近一年。回到普林斯頓高等研究院的馮紐曼畢竟是學者而非工程師,直到 1952 年 1 月才所打造出 IAS 機器。

沉睡的 IBM 也即將甦醒。由於韓戰爆發,美國國防部須要進行核彈的計算,IBM 終於在 1952 年 4 月推出高速運算的「國防計算機」(The Defense Calculator),這是 IBM 第一部馮紐曼架構的真空管電腦。既然都已經開發了,這又是通用型計算機,可以執行各種程式,那就更名為 701,推到商用市場試試看吧。於是 IBM 自 1953 年開始向企業用戶推銷 701,從此開啟了 IBM 主宰中大型電腦市場的時代,也標誌了美國後來居上的開始。

IBM 701 的運算單元。圖:Wikipedia

順帶一提,文章一開頭引述 IBM 總裁華生所說的那句話,據信其實就是出自他在 1953 年的股東大會上,報告 701 的銷售成果時所說的:「我們巡迴拜訪客戶前,原本預期訂單頂多 5 台,結果拿了 18 張訂單回來。」後來以訛傳訛,才演變成他在 1943 年說了那句名言。

-----廣告,請繼續往下閱讀-----

華生那次巡迴其實只拜訪了 20 家客戶,結果高達九成願意購置電腦,證明了商用電腦確實有相當的市場需求。IBM 光是隔年推出的平價機型 650,就在八年內賣出兩千部,其它七家規模較小的電腦公司也都頗有斬獲;市場上還幫他們取了「白雪公主與七矮人」的暱稱。

美國電腦產業風起雲湧,迅速地把原本領先的英國拋在腦後,實乃大時代下的必然結果。歐洲國家歷經二次大戰的蹂躪,國力嚴重耗損,相對地,美國本土則完全未受戰火波及,加上為盟國生產大量武器軍需,帶動經濟大幅成長,因而促進商用電腦的需求。而且如之前在介紹凡納爾.布希時提到的,在他的大力推動下,美國政府將研究經費下放給大學或民間的實驗室,不僅促進產業發展,也讓技術在民間扎根,科技實力因而大幅領先全世界。

磁性記憶體

電腦相關的技術也是如此。以記憶體來說,水銀延遲線與威廉斯管這兩種裝置都過於昂貴,使得電腦造價讓企業用戶望之卻步。雖然早在十九世紀末,就有人利用電磁感應錄下聲音,但記錄資料卻始終難以實現。

直到 1947 年,美國一家「工程研究公司」(Engineering Research Associates) 才在海軍的委託下,開發出「磁鼓記憶體」(Magnetic Drum Memory)。它的原理類似硬碟,只不過磁性材料是噴塗在圓筒表面。

-----廣告,請繼續往下閱讀-----
1958年的磁鼓記憶體。圖:Wikipedia

雖然磁鼓記憶體因為有轉動的機械動作,資料存取速度比不上水銀延遲線與威廉斯管,卻因為容量大、可靠性高、無揮發性(意思是不插電時,資料也不會消失),成本又低,成為實現平價電腦的一大關鍵。IBM 650 就是用了磁鼓記憶體,才得以降低售價。

1949 年,磁性記憶體又往前推進一步。時任艾肯研究助理的華裔物理博士王安,在參與打造「哈佛四號」電腦時,發明了「磁芯記憶體」(Magnetic Core Memory)。這是將電線穿過許多磁環構成的陣列,沒有任何機械動作,只有電流穿梭其中,所以速度飛快。但因為造價高昂,只用於高階機種或是核心記憶體。

就在記憶體的技術取得新的進展之際,有一項革命性的發明也在貝爾實驗室悄悄展開,這項發明將徹底改變電腦的樣貌,將電腦帶向另一個新世紀。那就是——電晶體。

-----廣告,請繼續往下閱讀-----
張瑞棋_96
423 篇文章 ・ 1026 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。