Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

以後月底不吃土,吃蟲?——以蟲為食(上)

Sophia
・2020/01/06 ・4530字 ・閱讀時間約 9 分鐘 ・SR值 582 ・九年級

-----廣告,請繼續往下閱讀-----

世界糧食存量拉警報,畜牧產品價格漸漸上漲,同時你的錢包君仍然過瘦的現在……農作物大敵秋行軍蟲還來「trick and treat」!

該怎麼辦呢?

何不試試吃蟲?順便消滅秋行軍蟲?!

能吃的東西這麼多,吃蟲是個好選擇嗎?

聯合國糧食及農業組織(FAO)報告指出,地球需要再增加目前糧食產量的 70%,才能供給 2050 年全球的 90 億人口。其中肉類年產量需增長 億噸以上,糧食安全存量才能達標。但是全球碳排過量的現在,我們已沒有餘力承受畜牧產生的碳足跡與環境影響了。
(2006 年出版的《畜牧業的巨大陰影》刊物提及,光西半球的養殖業就要消耗全球 85% 的大豆來製作飼料(Stamer 2015)。)

人越來越多,肉可能會因此而不夠吃,所以我們開始找尋其他蛋白質來源。圖/libreshot

為了提供未來十年預計增長的 2~3 百萬人口足量的蛋白質,科學家早已開始找尋不同蛋白質的來源:

  1. 黃豆、豌豆與花生等植物性蛋白:市面常見,發展成熟,但營養價值稍遜動物性蛋白。
  2. 微藻、螺旋藻:近幾年替代蛋白不錯的選擇。這兩種藻類除了成長快速;養殖方式對環境友善,還含有機能性成分。不過細胞壁較難消化,且種植過程容易受到重金屬汙染。
  3. 蕈類:方便種植、收成,消費者接受度高,但是蛋白質含量相對較低。
  4. 人造肉:近年興起,來自培養皿的人造肉則是訴求乾淨無汙染,不用施打抗生素,且沒有動物因此死亡,但是目前生產成本高,外觀與口感也因沒有脂肪散佈而與真肉有差異,影響消費者觀感與接受度。

那麼食用昆蟲呢?

昆蟲蛋白屬於動物性蛋白,含有完整的人類必需胺基酸,2013 年 FAO 的《可食用昆蟲》報告指出全球有約 28% 人口以各生長階段的昆蟲為食,其中有些地區將之當作飢荒食物(famine foods)——在糧食短缺的時候或雨季及時提供蛋白質,熱量,微量元素與維生素等營養。

-----廣告,請繼續往下閱讀-----
常見的食用昆蟲種類與比例如圖。昆蟲種類多,可供食用的就超過1900種,來源豐富;應用廣泛,並且人類食蟲歷史早在聖經文獻中便可找到紀錄,因此部分蟲類被認為是傳統食品原料,甚至作為傳統醫學藥材。(Laura, R.. 2016)

再從養殖面來看,由於冷血動物需要的熱量較少,昆蟲「飼料換肉」的效益很高。養成一公斤雞肉需要 2.5 公斤飼料;豬肉要 5 公斤;牛肉則要 10 公斤,而一公斤的可食活蟋蟀,只要 1.7 公斤飼料,更甚者,部分昆蟲可以農產品廢棄物為食,不僅成本低,還可以減少剩食問題。此外,飼養過程中養殖場使用面積;水與殺蟲劑用量都較現行畜牧業少。

吃蟲可是好處多多,要不要來點蟲蟲啊。圖/wiki

綜上所述,食蟲符合了環境可持續性(sustainable),健康營養(healthy),經濟實惠(affordable),供應穩定(reliable),美味(palatable)五個要點(SHARP),因此,昆蟲被認為是傳統畜牧業的良好未來替代品。(Laura, R.. 2016)

你我都聽過的都市傳說:「吃到蟲就當作補充蛋白質!」所以昆蟲真的營養嗎?

圖 / 作者整理自食品營養成分資料庫與 Attila et al, 2017

上圖比較了常見的食用昆蟲與傳統肉品中的營養素。傳統肉品營養素比例相近,無論豬、牛、雞、魚肉,蛋白質都約占 20%,脂肪也都在 7 至 15% 之間。但是昆蟲的營養素比例變異卻相當大。若以營養價值指標(Nutrient Value Score)3比較蟋蟀、棕櫚幼蟲、黃粉蟲與常見肉類牛、雞肉,結果發現前三者更為健康,其他昆蟲則沒有顯著差異(Payne, et. al., 2016)。

德國科學家 Rumpold 與 Schlüter 曾在 2013 年整理了 236 種昆蟲的營養分析,並比較了各種昆蟲之間及昆蟲與傳統肉類的蛋白質、脂肪、纖維、碳水化合物與灰分含量佔比。以下根據是次研究成果分為蛋白質、脂肪與熱量、纖維三大類討論:

-----廣告,請繼續往下閱讀-----
圖 / 作者整理自Rumpold, B. A., & Schlüter, O. K. (2013)

1. 蛋白質

如前文所述,昆蟲有高品質蛋白,不過含量變異大。以囊括各種甲蟲的鞘翅目為例,平均蛋白質含量在 41%,範圍在 8.85~71.10% 之間。而昆蟲蛋白質與植物蛋白的品質相比,昆蟲蛋白質包含所有種類的必須氨基酸,且胺基酸組成完整,符合人體需求。此外,它的消化率約在 76~96% 之間,比植物性來源蛋白高,更只比牛肉(98%)、雞蛋(95%)低一些。

除了食用價值,以昆蟲飼養動物研究結果顯示,昆蟲蛋白質不存在限制生長的抗營養因子,且昆蟲蛋白可提高礦物質的生物利用率。而昆蟲蛋白衍生的機能性胜肽展現的抗高血壓、免疫調節、抗菌與抗氧化效果也開始受到注目,期望後續能應用在人體與動物營養、食品保存等領域。

2. 脂肪與熱量

-----廣告,請繼續往下閱讀-----

昆蟲的熱量與傳統肉品相比,有過之而無不及,其中幼蟲與蛹的階段熱量又比成蟲高,範圍約在 217~777 kcal / 100g。脂肪含量範圍則從 7~77% 不等,並含有豐富的單元與多元不飽和脂肪酸。其中包含的亞麻油酸與次亞麻油酸,為人體合成 DHA 之前驅物質。1有一些昆蟲脂肪還有功能特性,例如黑水虻幼蟲含有的月桂酸和月桂三甘油酯具有的抗菌,病毒效果,也有機會應用於食品保鮮或製作機能性成分。

3. 纖維

昆蟲纖維含量在 0.1~29% 不等,最常見的形式是存在於昆蟲外骨骼中的不溶性幾丁質,在人體腸道中難以消化,可當作膳食纖維。鐵、鋅與鈣的含量較牛、豬或雞肉多,也含有維生素 B 群,A、D、E、K 與維生素 C,很適合當作日常營養補給的營養來源(Kouřimská, et. al.,2016)。2

現今昆蟲食品所面臨的障礙:食蟲百利,法律規範、大眾知識卻還沒跟上

許多國家現在仍有食蟲習慣,但是不少已開發國家並不樂見昆蟲出現在食物裡,且將蟲類視為病菌傳染媒介,立法限制食物中昆蟲殘骸和蟲卵汙染量。如美國食品藥物管理局規定每 100 公克巧克力中不得含有超過 60 片昆蟲碎片;咖啡豆所含的昆蟲量不得超過 10%;果汁飲料中不得含有超過 5 顆蒼蠅卵等,讓昆蟲食品上市面臨限制。

-----廣告,請繼續往下閱讀-----

也有國家認為昆蟲是新穎性食品或食品添加物,要進一步變成能上市販售的普遍食品材料,要配合微生物,化學與環境等多方面研究,進行風險評估核可與制定相關的法規作規範管理。

想嘗試食用昆蟲?蜜蜂相關產品可以是你的第一步。圖/pxfuel

近期美國已准許販售整隻昆蟲,但是新型昆蟲衍生產品則被視為食品添加劑,需進行成分安全評估。歐盟雖較嚴苛地將食用昆蟲視為新穎性食品規範,但是盟內各國步調不一,不少接受度高的國家皆放寬處理,如比利時、德國與荷蘭已有昆蟲食品於市面上販售。台灣雖然批准 11 項昆蟲及其來源製取之原料可做食品原料使用(包括花粉、紅蚯蚓、蜂王乳、蜂王漿、蜂蛹、蜂蜜、蜂膠、蜂膠樹脂、蜂蠟、擬黑多刺蟻及蠶絲蛋白)但對昆蟲蟲體相關產品尚無法規規範,未來也不排除歸類於新穎性食品。

除了分類管理問題,產業經營也有許多要注意的地方:

  1. 昆蟲來源:若是採野外捕捉方式,就必須考慮永續經營;人工飼養則要有相關技術與配套的隔離方法,避免以昆蟲為媒介的傳染病,並控制蟲子熟成步調一致,穩定品質,才能形成大規模產業。而且無論以哪種方式取得昆蟲,都得注意環境中可能產生的重金屬污染與藥劑殘留。此外,來源與產地都將牽動全球的昆蟲貿易與產業鏈發展,不可輕忽。
  2. 飼料:應避免同種加工蛋白質餵養的風險,以免類似普利昂蛋白引發狂牛症,或是儲存不當的有機廢棄物產生質變等問題。
  3. 加工製造:得了解食用昆蟲的鑑定與食用方法等知識,預防攝入部分昆蟲含有的天然毒素;未去除足部的蚱蜢或蝗蟲引起的腸胃不適等風險。不同蟲體的物化特性直接影響到加工方式,還有萃取與濃縮後須了解食用安全性。
    另外,昆蟲蛋白可能還摻假問題,如額外使用皮革粉、羽毛粉等,蛋白含量高不等於動物源蛋白含量高。
  4. 產品推廣與食用注意事項:畢竟多數人沒有食蟲習慣,甚至對昆蟲充滿陌生與恐懼,因此上市前的感官品評與營養價值分析很重要,食品規範、包裝規範也需建立準則。尤其要注意昆蟲與許多其他節肢動物(如蟎蟲、甲殼類動物及軟體動物等)為類似過敏原,應標示可能產生過敏的訊息。才能減少風險並博得消費者信賴。
    近年生命福祉意識抬頭,收成前讓蟲子挨餓的清腸步驟,或密集飼養等道德福祉議題,也都可能影響消費者對昆蟲食品的接受度。

本文討論了食蟲的各種優點;分析了昆蟲的營養價值;也提出了目前推動食用昆蟲面臨的問題,下篇〈吃蟲進行式:昆蟲食品的新奇之路——昆蟲會成為未來糧食革命的主力嗎?(下)〉將正式帶你了解為了讓昆蟲好吃,世界各地做了多少努力,現在世界各國又有哪些已上市的「含蟲食品」,也許你也曾吃過喔!

-----廣告,請繼續往下閱讀-----

注解:

  1. 熱量多寡取決於脂肪的比例,脂肪酸組成的比例則受到種類、生長階段、飲食、環境溫度、休眠或遷徙有關。
  2. 除了測定方法與品種會影響到各項數值外,由於昆蟲的生命週期短,不同發育階段的同種昆蟲的營養組成都可能不一樣,飼料與產地造成的差異也較顯著。
  3. 營養價值指標(Nutrient Value Score):聯合國世界糧食計劃署開發,根據各種食物含有的營養素組成與微量元素含量為依據,以互相比較何種食用起來比較有益健康的一種評分工具(請參考附表,不同國家也會使用不同的評比標準)。

參考資料:

論文:

  1. Elhassan, M., Wendin, K., Olsson, V., & Langton, M. (2019). Quality aspects of insects as food—Nutritional, sensory, and related concepts. Foods, 8(3), 95.
  2. Kouřimská, L., & Adámková, A. (2016). Nutritional and sensory quality of edible insects. NFS journal, 4, 22-26.
  3. Laura, R.. (2016). Taste: The infographic book of food. Great Britain: Aurum Press.
  4. Jansson, A., & Berggren, Å. (2015). Insects as food-something for the future?.
  5. Musundire, R. (2014). Bio-active compounds composition in edible stinkbugs consumed in South-Eastern districts of Zimbabwe.
  6. Payne, C. L. R., Scarborough, P., Rayner, M., & Nonaka, K. (2016). Are edible insects more or less ‘healthy’than commonly consumed meats? A comparison using two nutrient profiling models developed to combat over-and undernutrition. European journal of clinical nutrition, 70(3), 285.
  7. Rumpold, B. A., & Schlüter, O. K. (2013). Nutritional composition and safety aspects of edible insects. Molecular nutrition & food research, 57(5), 802-823.
  8. Stamer, A. (2015). Insect proteins—a new source for animal feed: The use of insect larvae to recycle food waste in high‐quality protein for livestock and aquaculture feeds is held back largely owing to regulatory hurdles. EMBO reports, 16(6), 676-680.

報導:

  1. 吃蟲救地球?歐盟從食安、飼料管理、戴奧辛殘留到動物福利,都需規範〉,上下游
  2. The connoisseur’s guide to edible insects,Western
  3. Cricket Protein: the New Food Frontier Is Here Already, CRICKSTER
  4. 未來新食機——食用昆蟲發展的 4 項觀察〉,經濟部技術處
  5. 全世界有 20 億人口把昆蟲當食物的一種,他們會是未來食物新趨勢嗎?〉,關鍵評論網
  6. 蠶蛹作為動物性蛋白質飼料原料之安全性評估〉,苗栗區農業專訊第 83 期
  7. 251 萬噸的豬料市場空間,昆蟲蛋白為何難以進入?〉,南方農村報
  8. Insects as a more sustainable protein source, By
  • 文字編輯/翁郁涵

___________
你是國中生或家有國中生或正在教國中生?
科學生跟著課程進度每週更新科學文章並搭配測驗。來科學生陪你一起唸科學!

-----廣告,請繼續往下閱讀-----
文章難易度
Sophia
6 篇文章 ・ 4 位粉絲
與許多食品人一樣誤打誤撞,只因為愛吃進入了這個領域,一腳踏入後發現這坑太大,不多拉些人進來那怎麼可以!

0

1
0

文字

分享

0
1
0
任意添加光學元件 為研究打開大門的無限遠光學系統
顯微觀點_96
・2025/01/30 ・1763字 ・閱讀時間約 3 分鐘

本文轉載自顯微觀點

圖 / 顯微觀點

顯微鏡在科學發展中扮演關鍵的角色,讓人們得以突破肉眼的限制,深入微觀的世界探索。而隨著時間推進,顯微技術也日新月異,其中現代顯微鏡設計了所謂的「無限遠光學系統」(Infinity Optical Systems),更是提升了顯微鏡性能和突破過去的觀察瓶頸。因此主要的顯微鏡製造商現在都改為無限遠校正物鏡,成為顯微鏡的技術「標配」。

1930 年代,相位差顯微技術出現,利用光線在穿過透明的樣品時產生的微小的相位差造成對比,使透明樣本需染色就能更容易被觀察。1950 年左右,則出現使用兩個 Nomarski 稜鏡,將光路分割再合併產生 干涉效應的 DIC 顯微技術,讓透明樣本立體呈現、便於觀察。

在傳統「有限遠系統」中,單純的物鏡凸透鏡構造,會直接將光線聚焦到一個固定距離處,再經過目鏡放大成像。也因此過去顯微鏡的物鏡上通常會標示適用的鏡筒長度,通常以毫米數(160、170、210 等)表示。

-----廣告,請繼續往下閱讀-----

而在過渡到無限遠校正光學元件之前,選用的物鏡和鏡筒長度必須匹配才能獲得最佳影像,且大多數物鏡專門設計為與一組稱為補償目鏡的目鏡一起使用,來幫助消除橫向色差。

但是問題來了!當這些光學配件要添加到固定鏡筒長度的顯微鏡光路中,原本已完美校正的光學系統的有效鏡筒長度大於原先設定,顯微鏡製造商必須增加管長,但可能導致放大倍率增加和光線減少。因此廠商以「無限遠」光學系統來解決這樣的困境。

德國顯微鏡製造商 Reichert 在 1930 年代開始嘗試所謂的無限遠校正光學系統,這項技術隨後被徠卡、蔡司等其他顯微鏡公司採用,但直到 1980 年代才變得普遍。

無限遠系統的核心在於其物鏡光路設計。穿透樣本或是樣本反射的光線透過無限遠校正物鏡,從每個方位角以平行射線的方式射出,將影像投射到無限遠。

-----廣告,請繼續往下閱讀-----
有限遠(上)和無限遠(下)光學系統的光路差別
有限遠(上)和無限遠(下)光學系統的光路差別。圖 / 擷自 Optical microscopy

透過這種方法,當使用者將 DIC 稜鏡等光學配件添加到物鏡、目鏡間鏡筒的「無限空間」中,影像的位置和焦點便不會被改變,也就不會改變成像比例和產生像差,而影響影像品質。

但也因為無限遠系統物鏡將光線平行化,因此這些光線必須再經過套筒透鏡在目鏡前聚焦。有些顯微鏡的鏡筒透鏡是固定的,有些則設計為可更換的光學元件,以根據不同實驗需求更換不同焦距或特性的透鏡。

除了可以安插不同的光學元件到光路中而不影響成像品質外,大多數顯微鏡都有物鏡鼻輪,使用者可以根據所需的放大倍率安裝和旋轉更換不同的物鏡。

傳統上一旦更換物鏡,樣本可能就偏離焦點,而須重新對焦。但在無限遠光學系統的設計中,物鏡到套筒透鏡的光路長度固定,也就意味著無論更換哪個物鏡,只要物鏡設計遵循無限遠系統的標準,光路長度和光學路徑的一致性得以保持。

-----廣告,請繼續往下閱讀-----

因此無限遠光學系統也有助於保持齊焦性,減少焦距偏移。這對需要頻繁切換倍率的實驗操作來說,變得更為便利和具有效率。

不過使用上需要注意的是,每個顯微鏡製造商的無限遠概念都有其專利,混合使用不同製造商的無限遠物鏡可能導致不正確的放大倍率和色差。

改良顯微技術,使研究人員能夠看到更精確的目標;以及如何讓更多光學配件進入無限遠光學系統中的可能性仍然在不斷發展中。但無限遠光學系統的出現已為研究人員打開了大門,可以在不犧牲影像品質的情況下輕鬆連接其他光學設備,獲得更精密的顯微影像。

  1. M. W. Davidson and M. Abramowitz, “Optical microscopy”, Encyclopedia Imag. Sci. Technol., vol. 2, no. 1106, pp. 120, 2002.
  2. C. Greb, “Infinity Optical Systems: From infinity optics to the infinity port,” Opt. Photonik 11(1), 34–37 (2016).
  3. Infinity Optical Systems: From infinity optics to the infinity port
  4. Basic Principle of Infinity Optical Systems
  5. Infinity Optical Systems

延伸閱讀選擇適合物鏡 解析鏡頭上的密碼

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

0
0

文字

分享

0
0
0
螃蟹有痛感嗎?我們是怎麼知道的?
F 編_96
・2025/01/16 ・1669字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

F 編按:本文編譯自 Live science

螃蟹一直是海鮮美食中的明星,從油炸軟殼蟹到清蒸螃蟹,餐桌上經常見到牠們的身影。有地方也習慣直接將活螃蟹丟沸水煮熟,認為這能保留最多的鮮味。過去人們認為甲殼類缺乏複雜神經結構,不會感受到痛苦,因此不必過度憂心道德問題。但近年來,越來越多研究開始挑戰此一想法,指出螃蟹與龍蝦等甲殼動物可能具備類似疼痛的神經機制。

以前大家相信甲殼類缺乏複雜神經結構,但近期這一認知逐漸受到質疑。 圖 / unsplash

甲殼類是否能感覺到痛?

人類長期習慣以哺乳類的神經構造作為痛覺判斷依據,由於螃蟹沒有哺乳動物那樣的大腦腦區,便被認為只憑簡單反射行動,談不上真正「痛」。然而,新興科學證據顯示包括螃蟹、龍蝦在內的甲殼類,除了可能存在被稱為「nociceptors」的神經末梢,更在行為上展現自我防禦模式。這些研究結果顯示,螃蟹對強烈刺激不僅是本能抽搐,還有可能進行風險評估或逃避策略,暗示牠們的認知或感受方式比我們想像更精緻。

關鍵證據:nociceptors 與自我保護行為

近期實驗在歐洲岸蟹(Carcinus maenas)中觀察到,當研究人員以刺針或醋等刺激手段測量神經反應,牠們顯示與痛覺反應類似的神經興奮;若只是海水或無害操作,則無此現象。此外,透過行為實驗也可看出,寄居蟹在受到電擊時,會毅然捨棄原本的殼子逃離電源,但若同時存在掠食者味道,牠們會猶豫要不要冒著風險離開殼子。這些結果使科學家認為,螃蟹並非單純反射,而可能有對於痛感的判斷。若只是「低等反射」,牠們不會考慮掠食風險等外在因素。

痛覺與保護:實驗結果引發的道德思考

以上發現已在科學界引發廣泛關注,因為餐飲業與漁業中常見「活煮」或「刺穿」處理螃蟹方式,如今看來很可能讓牠們承受相當程度的不適或疼痛。瑞士、挪威與紐西蘭等國已開始禁止活煮龍蝦或螃蟹,要求先以電擊或機械方法使其失去意識,試圖減少痛苦。英國也曾討論是否將甲殼類納入動物福利法保護範圍,最後暫時擱置,但此爭議仍在延燒。

-----廣告,請繼續往下閱讀-----
英國對於是否將甲殼類列入動物福利法的保護範圍,有所爭議。 圖 / unsplash

部分學者保持保留態度,認為雖然甲殼類展現疑似痛覺的行為與神經反應,但與哺乳類相同的「主觀痛感」仍需更多研究證明。大腦與神經系統結構畢竟存在很大差異,有些反射也可能是進化而來的自衛機制,而非真正意義上的感受。然而,科學家普遍同意,既然相關證據已經累積到一定程度,毋寧先採取更謹慎與人道的處理模式,而非輕易推卸為「牠們不會痛」。

海洋生物福利:未來的規範與影響

如果螃蟹被證實擁有痛覺,將牽動更廣泛的海洋生物福利議題,包括鎖管、章魚或多種貝類也可能具有類似神經機制。人類一直以來習慣將無脊椎動物視為「低等生物」,未必給予與哺乳類相同的法律或倫理關注。但若更多實驗持續指出,牠們同樣對嚴重刺激展開避痛行為,社會或終將呼籲修訂漁業與餐飲相關法規。未來可能要求業者在捕撈與宰殺前使用電擊或麻醉,並限制活煮等方式。這勢必對漁業流程與餐廳文化造成衝擊,也引發經濟與文化折衷的爭議。

龐大的實驗數據雖已暗示螃蟹「會痛」,但確鑿的最終定論仍需更多嚴謹研究支持,包括更深入的大腦活動成像與突觸路徑分析。同時,落實到實際操作也需追問:是否存在更快、更人道的宰殺或料理方式?能否維持食材鮮度同時保障動物福利?這種思維轉變既考驗科學進程,也考驗人類對自然資源的態度。也許未來,既然我們仍會食用海產,就該以最小痛苦的方式對待那些可能感受痛苦的生物,為牠們提供基本尊重。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

F 編_96
20 篇文章 ・ 1 位粉絲
一個不小心闖入霍格華茲(科普)的麻瓜(文組).原泛科學編輯.現任家庭小精靈,至今仍潛伏在魔法世界中💃

0

2
0

文字

分享

0
2
0
一年有幾週?背後竟隱藏著宗教、政治與天文觀測的紛爭?為何決定一年有幾週如此大費周章?
F 編_96
・2025/01/06 ・3256字 ・閱讀時間約 6 分鐘

F 編按:本文編譯自 Live Science

每到歲末或年初時,大家常會打開新的行事曆,做新一年的計畫。從直覺來看,我們常以「一年有 365 天」或「閏年 366 天」的概念衡量時間。如果將 365 天除以 7(每週 7 天),得到的答案約是 52 週又 1 天;若遇到閏年(366 天),則是 52 週又 2 天。換句話說,無論是一般年還是閏年,一年都不可能整除,剛好 52 週,總要多出 1 或 2 天。

對多數人而言,這種「約 52 週加 1 天」似乎是再自然不過的事。然而,實際上人類在訂定「一年幾天」與「多久閏一次」的規則上,一路走來經歷了漫長探索與爭議。自古以來,不同文明先後採用依太陽或月亮運行週期為基準的曆法;儘管最終各國大多轉而採行以太陽週期為主的格里高利曆(Gregorian calendar),但並非一蹴可幾,而是一段包含宗教、政治、天文觀測的故事。

一年感覺很長,其實也就 52 週(+1 或 +2 天)。 圖/unsplash

從洪荒到曆法:人類如何決定時間單位

追溯人類對時間的測量,可遠至一萬多年前:考古發現顯示,澳洲原住民或新石器時代的部落,便會根據太陽、星象的移動,來推算季節變遷與祭典進行。後來,隨著農業興起,區分一年四季並掌握耕作節氣成了首要需求,日曆的概念亦逐漸成型。

  • 宗教推力:古埃及與蘇美等文明常需要在特定時刻進行祭祀或儀式,故對晝夜長短、月相週期乃至每年太陽位置頗為講究。
  • 日月曆法之爭:有些文明依月亮週期(約 29.5 天)為月數基礎,稱「陰曆」;也有採納太陽年度(約 365 日)稱「陽曆」,或折衷稱「陰陽合曆」。

就週數而言,古人或許更關注「每個月有幾天」與「一年有幾個月」,而非「一年到底可以分成幾週」。然而,週的概念在很多宗教與文化裡同樣重要,如猶太教及後來的基督宗教都強調「七天」一週之體系,用於安息日或祈禱輪替。因此,當今的一年分成「52 週多幾天」,也綜合了宗教傳統與太陽年的計算。

-----廣告,請繼續往下閱讀-----

朱利安曆失準?教宗格里高利的關鍵校正

現行國際普及的格里高利曆,最早源自於古羅馬朱利安曆(Julian calendar)。公元前 46 年,凱撒大帝(Julius Caesar)在天文學家蘇西根尼斯(Sosigenes)建議下,設定一年 365.25 天,並每四年加一天作閏年。看似精妙,但實際上太陽年長度約是 365.2422 天,每年多出的 0.0078 天、也就是大約 11 分鐘,雖然聽來微乎其微,卻在一段世紀之後累積成巨大的誤差。

對天主教而言,耶穌受難與復活日期影響了整年眾多教會節日。若曆法逐漸偏移,像復活節等慶典便逐年脫節了季節原意。至 16 世紀末時,朱利安曆已誤差累積多達 10 天。教宗格里高利十三世遂在 1582 年宣佈大刀闊斧改革:10 月 4 日的次日直接跳到 10 月 15 日,並規定「百年年份如若非 400 整除,則不列為閏年」。如此,將一年的平均時長微調至更貼近 365.2422 天。

一些國家如法國、西班牙和義大利等迅速採納「新曆」,但英國則因宗教立場等因素拖延至 1752 年才肯切換。中國雖在 1912 年起算是「正式認可」,但廣泛實施延至 1929 年。這樣因曆制修整所產生的「失落日子」,在各國各時期都曾引發不小民眾抗議與混亂,但如今我們所熟知的「一年 365(或 366)天、每週 7 天」全球大體一致,正是拜此改革所賜。

教宗格里高利十三世的改革,成了日後我們熟知的「一年 365(或 366)天、每週 7 天」。圖/unsplash

一年是 52 週又幾天?

回到主題:基於現在格里高利曆的「年」長度,一般年 365 天,閏年 366 天。因此只要把 365 ÷ 7 = 52 餘 1,或 366 ÷ 7 = 52 餘 2。這樣看來,52 週是某種近似值,再加上 1 或 2 天則填補了週數的縫隙。有趣的是,人們日常生活中往往不深究這些「多一天」會落在哪裡,反而透過各國法定假期、節日分布或企業排班,來靈活因應。

-----廣告,請繼續往下閱讀-----

不管日曆如何安排,七天一週與太陽一年的 365.2422 天本質上不會整除。因而實際執行層面,才衍生「一月有 4 週多幾天」或「一年 52 週多幾天」。而根據格里高利曆規範,每 4 年遇到 2、6 結尾者時通常加閏日;再以百年刪除閏日,唯獨 400 年倍數的百年不刪。如此 400 年中有 97 個閏年,非 100 次,年均值約 365.2425 天,與真實太陽年極為貼近。

再度修正:米蘭科維奇曆與東正教的調整

與此同時,一些東正教教會或科學家,仍曾嘗試做更精準的校調。例如 1923 年出現的「米蘭科維奇曆」,由塞爾維亞天文學家米蘭科維奇(Milutin Milanković)提出:

  • 改進閏年規則:如果該年不是 100 的倍數,則正常計算;若是 100 的倍數,就得看除以 900 所餘下的數是否為 200 或 600,若是,則跳過閏年。
  • 應用範圍:此一方案被視為更貼近天文年,但只有部分東正教教會接納實施,對全球世俗時間並未產生重大影響。

有趣的是,若米蘭科維奇曆被大規模推廣,平均一年長度會更符合真實太陽年,但世界各國基礎已扎根於格里高利曆,也不太可能再冒然重新改革。畢竟,每次曆改都會使官方紀錄、民間活動和宗教節慶產生協調難題,且大眾的社會慣性早已落實在現行制度裡。

時間計算背後宗教、政治與科學的糾纏

我們眼中的「一年 52 週又 1~2 天」其實是長期政治、宗教、科學交互影響的產物。數世紀以來,不同文明為祭祀、政令或貿易往來而反覆調整曆制;伴隨天文觀測與數學演算的精進,人們才一步步從古老的朱利安曆轉到格里高利曆,避免每年多出一些看似微不足道的分鐘數量,卻逐漸累積成整天的時差。在這些爭論、改革中,週數雖非爭議焦點,但它一同被帶入今日世界,最終定型為「一年 = 52 週 +1(或 2)天」。

-----廣告,請繼續往下閱讀-----
儘管目前的曆法存在些許時差,但已是目前全球通用的計日方式。圖/unsplash

另一方面,有些文化或地區在現代仍維持傳統的陰曆、陰陽曆搭配格里高利曆,如中國農曆可見節氣和月相紀錄;穆斯林世界則使用純陰曆,並以其方法計算齋戒月、開齋節等。全球一體化雖使格里高利曆成為主流,但不代表其他紀年方式就此消失。在各種曆法交錯下,「一週幾天,一年多少週」或許並非普世絕對,卻是人類根植於宗教、科學與經濟行為下逐漸形成的共識。

踏入 21 世紀,隨著全球高度互聯與商業活動頻繁,幾乎所有國際公約、金融市場、交通規劃都以格里高利曆為基準。此種高度一致有利經貿往來與跨國協作,但究其根源,私底下仍有一種「不完美但通用」的妥協性質。時至今日,要再度大規模推行新的曆制(比如米蘭科維奇曆)的機率微乎其微。

也許未來某天?

不管你是否每天翻開行事曆查看日期,或是習慣智慧型手機提醒,在全球主流價值裡,「一年 52 週又 1 或 2 天」已成幾乎不容置疑的常識。

也許未來仍有理論家建議以更精準的曆法取代格里高利曆,讓一年日數更貼合天文常數。然而,歷史經驗告訴我們,此種改革勢必付出巨大社會成本,還要面對全球龐雜的政治協調。最終,我們大概仍會安於現在這個略有瑕疵卻普及度最高的制度,繼續說著「一年有 52 週」,並在每年最後那 1 或 2 天裡,慶祝跨年、增添慶典。

-----廣告,請繼續往下閱讀-----

不論如何,時間的運行永不止息;地球仍舊繞著太陽旋轉,帶給我們四季遞嬗與新的挑戰。或許最重要的並非究竟一年「整除」了多少週,而是我們如何在這既定框架下規劃生活,在有限的時間裡,拓展出新的生活軌跡。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。