Loading [MathJax]/extensions/tex2jax.js

0

49
6

文字

分享

0
49
6

打斷蚊子從登陸到吸血的SOP,跟惱人的嗡嗡聲說掰掰!【物理防禦篇】

波留先生 M. Beaulieu_96
・2021/02/08 ・3202字 ・閱讀時間約 6 分鐘 ・SR值 489 ・五年級

-----廣告,請繼續往下閱讀-----

A 編按:過去的租屋處在水溝旁的一樓,蚊子特多,牆壁上全是被我用「物理方法」擊斃的蚊子,由於蚊子屍體太多,還被房東要求刷完油漆後,才能拿回訂金。

 

《用科學拯救怦然崩潰的髒亂,這樣的掃除你洗翻嗎?》專題為你介紹驅趕蚊子的各種方法,【物理防禦篇】將介紹如何用物理機制阻止擾人的蚊子,讓我們不再用「物理方法」解決煩人蚊子!

每到蚊蟲漫天飛舞的季節(講是這樣講,但這畫面似乎不是很浪漫 XD),許多困擾也隨之而來;撇開登革熱等傳染病不說,光是那惱人的嗡嗡聲與一個個叮咬傷痕,就足以讓人吃盡苦頭。

有些人會選擇以防蚊液、蚊香、防蚊貼片,甚至是殺蟲劑來應對這個狀況,然而,也有人擔心這些成分可能對身體造成危害,尤其當家中又有小孩與寵物時,更是如此。這個時候,我們就可以考慮一些不涉及化學成分的方法,利用蚊蟲本身的生理條件與習性,來干擾他們的吸血進程。

蚊蟲叮咬的傷痕,讓人吃盡苦頭。圖/Pexels

會叮人的工具,就是不簡單——談蚊子的口器

首先,多數人應該都知道,雄蚊並不會吸食血液,而是採食植物的花蜜;然而,由於雌蚊需要血液中的蛋白質來滋養蚊蟲的卵,因此也只有雌蚊,才具有穿透人類皮膚及血管的口器。

基本上,雄蚊與雌蚊的口器 (proboscis),乍看之下都像一根針,其由上唇 (labrum) 、上顎 (mandible)、下顎 (maxilla)、下唇 (labium) 以及舌 (hypopharynx) 等部位組合而成,不過,由於雄蚊的上下顎不若雌性堅硬,因此無法穿透人體肌膚,我們就以一般雌蚊為討論對象。

-----廣告,請繼續往下閱讀-----
雌蚊的上下顎較堅硬,可以穿透人體肌膚。圖/Pexels

從顯微鏡來看,最外層的下唇包覆著其他部分,在接觸動物皮膚後,能讓裡面的器官穿刺皮膚到內部;其中,下顎末端較尖銳,能探到皮膚較深層的位置,而上顎末端則較為平坦。另外,這兩個構造周圍的齒狀結構,亦可幫助其他部分探索「更深的皮下世界」。最關鍵的舌與上唇,則可作為體液幫浦——舌可將唾液導到動物的血管中,好讓血液可以順利被吸上來。[1]

由於穿刺的核心——上下顎的口徑大小都是微米等級的,在這個生理特徵下,比較實際的策略是穿著比雌蚊上下顎長度還厚的衣服,至少不要讓那些針頭叮到皮膚。

讓蚊子滑倒,也可以是有效的防蚊策略!

雌蚊吸血行為的 SOP,基本不出「搜尋、定位、登陸以及離開」四大動作,從這裡阻撓蚊蟲大軍進攻,也不失是一個好策略。

一開始,雌蚊會透過二氧化碳、熱、光或其他氣味,搜尋接近皮膚表面的血管,假如一直找不到合適的穿刺點,牠們就會離開那個環境,果斷尋找下一個目標。在定位「獵物」後,雌蚊便會飛到該點,並以前腿穩固姿勢,再行採血;若在穩固姿勢期間受到干擾,蚊子就會放棄這個吸血的機會,直接飛走(真是容易放棄的生物欸)。 [2]

利用這項特點,日本花王公司於去 (2020) 年研發出一種新型態的防蚊液,該產品內含低黏度矽油 (silicone oil),能防止蚊子「扎穩馬步」進行吸血的動作。研究也提到,自然界中早有生物利用「讓蚊子滑倒」的策略避免蚊蟲叮咬,如河馬所分泌的紅汗 (red sweat),研究人員發現,這些物質能皆可有效減少蚊子的登陸行為。研究發表於《科學報告》(Scientific Reports) 期刊。[3]

-----廣告,請繼續往下閱讀-----
產品內含低黏度矽油,防止蚊子「扎穩馬步」吸血的防蚊方法。影/花王公司

傳統驅蚊裝置是真有其用,或只是噱頭而已?

如果你不想使用防蚊液、蚊香或其他化學物質來驅蚊,也不想為此穿上更多衣物,更沒有河馬皮膚的神力,或許可以考慮其他物理性的驅蚊與滅蚊工具。

常見的捕蚊燈 (bug zapper),便是利用蚊蟲喜歡的波長段——紫外光進行誘捕,光源外設有緻密的電網,被吸引到捕蚊燈裡的蚊子,會在飛行的過程中遭受電擊,直接上天堂。[4]另外,就結果論來說,電蚊拍的效果是差不多的,只是在沒有紫外線的幫助下,你可能得隨時留意蚊子的動態。

坊間亦有主打利用超音波來驅蚊的裝置,全球至少超過 30 家公司生產這類型的產品,然而美國匹茲堡驅蟲公司 Bug Lord 一篇文章指出,最近一次有關超音波對蚊蟲影響的研究,竟是停留在 2009 年,且該篇研究僅以 300 隻蚊子作為實驗對象(實驗還分三次,每次拆成各 50 隻做比較),文章更未針對所使用的科學方法做詳盡描述,實在可疑。反之,2007~2015年間,倒是有幾篇研究指出這個方法對蚊子並不管用,還可能造成聲音輻射的危害,更慘的是,這些裝置不僅無法驅蚊,還有可能吸引蚊子靠近⋯⋯[5]

有研究指出,坊間生產的超音波驅蚊裝置對於驅蚊無效,甚至可能反而會吸引蚊子。圖/Do Ultrasonic Mosquito Repellers Work? [Science Review] – Bug Lord

另類物理驅蚊——腿毛能讓蚊子知難而退嗎?

除了上述裝置,有些人天生就自帶物理防禦值極高的生理條件——腿毛。腿毛濃密的的朋友,肯定有把蚊子困住的經驗吧?事實上,腿毛的存在確實是蚊子大軍難以跨越的檻,畢竟,牠們真的不善於在如此複雜的「地形」上爬行,一不小心甚至會卡住翅膀,難以飛行。[6] 不過,擁有超多腿毛的朋友,卻也可能成為蚊子最愛的那種人。

-----廣告,請繼續往下閱讀-----

首先,由於蚊子仍以嗅覺資訊來尋找「獵物」,像是二氧化碳、汗液中的乳酸、體溫、濕度和皮膚裡的細菌代謝物等,都是牠們十分仰賴的訊號。人體可釋放的代謝化合物有近 400 多種,其中,皮脂、外分泌腺以及汗腺排泄的化合物中多含有乳酸、丙酮酸(pyruvic acid)與二甲基二硫(dimethyl disulfide),這些都是蚊子的最愛的物質。再者,由於蚊子喜歡躲藏於黑暗之中,過度濃密的腿毛,反而容易讓牠們不自覺地「墮入深淵」。聽到這裡,是不是突然不那麼想要這種困住蚊子的才華?

有些人相信腿毛可以把蚊子困住,但實際上卻是蚊子喜愛的藏身之處。圖/Wikipedia

帶著走的物理型防禦 遠離蚊蟲叨擾

無論在家或出遊,面對蚊蟲的叨擾,除了防蚊液,你也能選擇將「物理型防禦」點滿,以防止有害物質入侵體內。目前,捕蚊燈和電蚊拍等多項防蚊產品,皆主打「可攜」特性,如此一來,我們就能隨時隨地布下結界,阻斷蚊蟲害。

當然,我們也可以期待一下讓蚊子滑倒的產品誕生,在此之前⋯⋯就先多塗一些腿毛生長液吧(?)

  1. Kripena, K. (2020, May 13). How Do Mosquitoes Bite? INSECT COP
  2. Iikura, H., Takizawa, H., Ozawa, S., Nakagawa, T., Matsui, Y., & Nambu, H. (2020, Sep 2). Mosquito repellence induced by tarsal contact with hydrophobic liquids. Scientific Reports, (10).
  3. Kao Corporation. (2020, Sep 9). Technology for Preventing Mosquito Bites Developed by Creating a Skin Surface Mosquitoes Dislike —Protecting Against Mosquito-borne Infectious Disease—. Kao
  4. Steele, B. (2020, Jun 23). What is A Bug Zapper and How Does it Work – 2021 Guide. Insect Hobbyist
  5. Buckley, G. (2020, Oct). Do Ultrasonic Mosquito Repellers Work? [Science Review].BUGLORD
  6. Discover Fun LifeHacks. (2019, Sep 10). Is leg hair a mosquito repellent? Discover Fun LifeHacks
  7. 臺灣環境資訊協會. (2019, Sep 17). 天然的防蚊液沒效? 本土品牌 EARTH FRIEND 養蚊子實測!. 臺灣環境資訊協會
-----廣告,請繼續往下閱讀-----
文章難易度
波留先生 M. Beaulieu_96
8 篇文章 ・ 9 位粉絲
曾當過兩三年的職能治療師,在體力正式走下波前轉戰出版業,現為出版社圖文編輯,並斜槓各式聲音工作。

0

2
0

文字

分享

0
2
0
從門得列夫到 118 種元素:元素週期表是怎麼出現的?
F 編_96
・2025/01/04 ・2302字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

F 編按:本文編譯自 Live Science

「氫鋰鈉鉀銣銫砝、铍鎂鈣鍶鋇镭…」相信很多人離開高中很多年,都還朗朗上口。

列著 118 種已知化學元素的「元素週期表」(Periodic Table),雖然唸起來像咒文,但有了它之後便能夠快速查詢原子序(proton number)、價電子(valence electrons)數量,以及元素可能的化學性質,成為各領域科學家與工程師設計實驗、預測物質反應必不可少的工具。

有趣的是,元素週期表並非一蹴可及。縱觀歷史,化學家們歷經數世紀的摸索、爭論與資料整理,才在 19 世紀後半葉逐漸確立。

我們現在看到的元素週期表,是在 19 世紀後半才逐漸確定。 圖/unsplash

週期表之父:門得列夫的突破

19 世紀中葉,已知的化學元素約有 63 種,許多化學家嘗試找出元素間的共同點,卻苦無系統性整理。當時能區分「金屬」與「非金屬」,或利用價電子概念將一些元素歸類,但要涵蓋大多數元素仍顯不足。俄國化學家門得列夫在撰寫《化學原理》教科書時,因接觸各元素的資料而產生新思路。他索性把已知元素各種性質寫在紙卡上,再一一比對它們的原子量(類似當今的原子量或原子序概念)與化學性質。

-----廣告,請繼續往下閱讀-----

確切的靈光乍現時刻,如今已無從完全重現,但我們知道門得列夫最後觀察到:「如果按照原子量(或後來的原子序)由小到大排列,某些化學性質就會呈週期性重複。」進一步來看,元素的價電子數量通常也會對應到表格的「欄位」或「族群」。於是,在 1869 年,他將研究結果發表,提出了第一版週期表的雛形,更大膽預言了尚未被發現的元素「eka-aluminium」(後來證實即鎵 gallium)及其他四種元素的性質。

讀懂週期表:原子序、符號與原子量

今日的週期表之所以能快速讓人獲得豐富資訊,關鍵在於三個核心欄位:

  1. 原子序(Atomic Number)
    代表該元素核內所含質子數。如果一原子核有 6 顆質子,就必定是碳(C),無論其他中子或電子數如何。此序號由上而下、由左而右遞增,貫穿整張表格。
  2. 元素符號(Atomic Symbol)
    多為一至兩字母縮寫,如碳(C)、氫(H)、氧(O)。但也有如鎢(W,因「Wolfram」得名)或金(Au,取自拉丁文「Aurum」)等較不直覺的符號。
  3. 原子量(Atomic Mass)
    表示該元素在自然界中各同位素的加權平均值,故通常是帶小數的數字。對合成元素則標示最常見或最穩定同位素的質量,但由於這些元素壽命極短,數值往往會被不斷修正。

舉例來說,硒(Se)在週期表中顯示原子序 34,屬於第 4 週期、第 6A 族,表示它有四層電子軌域,其中最外層(價電子層)有 6 顆電子。有了這些資訊,科學家可快速判斷硒的化學傾向、可形成何種化合物,乃至於在生物或工業應用中可能扮演的角色。

週期表的內部結構:週期、族與軌域

門得列夫最初按照原子量遞增排列元素,現代則依靠原子序(即質子數)來分類。橫向稱為「週期」(Period),從第 1 週期到第 7 週期;縱向稱為「族」(Group),目前總共有 18 組。週期數量在於顯示該元素電子軌域有幾層;而同一族則代表外層價電子數相同,故有相似化學性質。

-----廣告,請繼續往下閱讀-----

例如,第 18 族常被稱作「貴氣體」或「惰性氣體」,如氦(He)、氖(Ne)、氬(Ar)等皆不易與其他元素起反應。另一個顯著群體是位於第一族的鹼金屬(Alkali Metals),如鋰(Li)、鈉(Na)等,因外層只有 1 顆電子,極容易失去該電子而形成帶 +1 價的陽離子,故與水猛烈反應。

此外,在表格中央有一塊「過渡元素」(Transition Metals)區域,包括鐵(Fe)、銅(Cu)、鎳(Ni)、金(Au)、銀(Ag)等。它們具有部分填充的 d 軌域,使得該區域的元素呈現多樣性質,例如具有金屬光澤、可塑性或導電性等,被廣泛應用於工業及工程領域。

同一族的外層價電子數相同,因此大多有著相似化學性質。圖/unsplash

再進化:從 63 種到 118 種

當門得列夫在 1869 年發表週期表時,已知元素只有 63 種,表格中甚至留有空白以預留「未來或存在尚未發現的元素」。他果然預測到了鎵(Ga)以及日後證實的日耳曼ium(Ge)等新元素性質,贏得舉世矚目。隨後,有越來越多元素透過科學發展,尤其是光譜分析與放射性研究而被發現,例如鐳(Ra)和氡(Rn)等。

到 20 世紀後期,隨著粒子加速器的誕生,人類可以合成更重的超鈾元素(Atomic Number > 92)。這些人工合成元素往往極度不穩定,壽命僅能以毫秒或微秒計,但仍證實存在、並填補週期表後段空白。如今,週期表已收錄到第 118 號元素「鿆(Og,Oganesson)」,但科學家預測或許還能繼續向上延伸;只要能合成更重、更穩定的原子核,我們就能拓展週期表的新邊境。

-----廣告,請繼續往下閱讀-----

一般認為,隨原子序遞增,原子核內部的質子數目激增,原子愈趨不穩,往往在極短時間內衰變成較輕元素。然而,一些理論物理學家提出「島狀穩定性」(Island of Stability)的概念:也許在某特定質子與中子數量組合下,能出現意外長壽的「穩定」重元素。

是否真能在表格上方再增添「第八週期」甚至更高週期的列,仍有待更多實驗來驗證。但無法否認的是,週期表一直是科學家檢驗自然規律的試驗場,也見證了人類探索未知的無盡熱情。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

F 編_96
22 篇文章 ・ 0 位粉絲
一個不小心闖入霍格華茲(科普)的麻瓜(文組).原泛科學編輯.現任家庭小精靈,至今仍潛伏在魔法世界中💃

0

1
0

文字

分享

0
1
0
人類的「長跑」很厲害?靠「跑」在荒野中脫穎而出
F 編_96
・2024/12/26 ・3048字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

F 編按:本文編譯自 Live Science

在美國加州死亡谷(Death Valley)「魔鬼鍋爐」般的炙熱溫度下,每年夏天都舉行一場被稱為「世上最極端越野賽」的經典賽事:Badwater 135。選手需在攝氏 49 度、下方為北美洲海拔最低的地帶上,跑步或走完 217 公里的山路,一路衝向位於美國本土最高峰(聖女峰)附近的終點。這聽來猶如天方夜譚,但每年仍有近百人勇敢挑戰。許多四足動物在此高溫下可能早已中暑倒地,為何人類卻能憑藉一雙腳在此環境中堅持下去?

事實上,速度上我們遠不及同等體型的動物,例如豹或馬,然而要比拼耐力,人類卻常能大放異彩。我們能在大草原中與野生動物「天荒地老」地消耗,即使我們在短程衝刺中會被輕易超越,仍可以憑藉馬拉松般的堅韌一路追趕,最終讓速度更快的對手因高溫與疲勞而甘拜下風。究竟人類為何會進化出這般特殊的耐久力?。

在跑步上,人類以耐力著稱,可透過拉長距離讓速度更快的動物因高溫與疲勞而屈服。圖/envato

人類長程奔跑的演化起源

人類的體質在遠古時期並非天生就能輕鬆長跑。據一種假說推測,大約 700 萬年前,類人猿的祖先於非洲開始「離開樹梢」,轉而在地面上覓食、移動。早期的兩足行走雖然看似笨拙,卻逐漸在持續的氣候變遷與草原化過程中展現優勢:

  1. 更廣闊視野:直立行走時,頭部位置提高,有利於觀察周遭環境,提早發現危險或獵物。
  2. 省力遷徙:兩足步態下,移動同樣距離所需能量相對降低,足以在開闊平原上長距離跋涉。

隨著數百萬年的進化,人科動物(hominids)在骨骼、肌肉與生理機制上更趨於適應長時間行走和奔跑。他們在廣袤的非洲大地上,並非以速度壓倒對手,而是依靠「耐力與持久追蹤」取得優勢。考古學家曾提出「持久狩獵」(Persistence Hunting) 的假設:古人類可能利用高溫時段在大草原上追趕羚羊或其他動物,待獵物體溫過熱而力竭之際,人類再上前制伏。一方面依靠長距離奔跑耐力,另一方面倚仗強大的散熱能力。

-----廣告,請繼續往下閱讀-----

足部與下肢結構:為奔跑而生的細節

哈佛大學的人類演化生物學家丹尼爾‧李伯曼(Daniel Lieberman)指出,人類的奔跑能力「從腳趾到頭頂」都有演化專門化的痕跡,稍加留意便能發現許多奧祕。

  1. 短腳趾與足弓結構
    • 人類的腳趾較短,是為了減少長距離奔跑時的折損機率。若腳趾過長,每次著地都更容易造成骨折或扭傷。
    • 足弓(包括足底肌腱與韌帶)則具備彈簧般的功能,可在踩踏地面時儲存彈性能量,接著釋放推力,減少肌肉能量消耗。
  2. 強力肌腱與韌帶
    • 跟腱(Achilles tendon)和髂脛束(IT band)都能吸收並釋放大量彈力,在跑步時有效節省體力。
    • 透過肌腱的彈性能量回饋,跑者在每一步落地與蹬地之間,都能減少額外的肌肉耗損。
  3. 臀部肌群的角色
    • 人類相較於猿類擁有更發達的臀大肌(gluteus maximus),能夠穩定軀幹,使身體不致向前傾斜或晃動得過於劇烈。
    • 這種「穩定性」非常關鍵,它能支撐直立姿勢,維持跑步時的協調和平衡。
人類發達的臀大肌穩定軀幹,得以支撐直立姿勢,提升跑步時協調與平衡的能力。圖/envato

軀幹與上肢:不容忽視的穩定器

奔跑並不只是腿部的事。上半身及頭部在跑動中也扮演著不可或缺的穩定與協調角色。

  1. 擺臂對頭部穩定的影響
    • 當我們在跑步時,雙臂自然擺動,有助於平衡腿部擺動帶來的轉動力矩;換言之,手臂的擺動能對沖下肢動量,讓我們在快速移動時仍保持穩定,頭部不至於過度搖晃。
    • 猿類上肢肌肉發達,卻沒有像人類一樣的大範圍肩關節「解耦」特性(能讓肩膀與骨盆分開晃動、頭部保持前方視線),這使得牠們在直立奔跑時更顯笨拙。
  2. 脊椎靈活度與呼吸節奏
    • 人類的脊椎與骨盆並非僵直連接,跑步時,骨盆能與肩部做出相對扭轉運動,使軀幹整體更靈活。
    • 這種結構也幫助人類在奔跑過程中匹配呼吸節奏:腳步落地的頻率能自然與肺部換氣形成同步節拍。

冷卻系統:靠「排汗」征服烈日

人類藉遍布全身的汗腺大量排汗散熱,透過蒸發有效降低體溫。人類藉遍布全身的汗腺大量排汗散熱,透過蒸發有效降低體溫。圖/envato

在非洲大草原上奔跑,面臨的最大挑戰之一便是高溫。人類為何可承受長時間高溫壓力,甚至能在午後與動物「耐力大戰」?

  1. 排汗與體溫調節
    • 大多數動物主要依賴氣喘(如狗的哈氣)或有限的汗腺冷卻。人類則擁有遍布全身、數量龐大的汗腺;這使我們可藉由大量流汗帶走熱量,再透過汗液蒸發達到降溫效果。
    • 雖然我們也會因此流失水分與電解質,但只要能適度補充,便能持續散熱。而某些大型哺乳動物,在持續奔跑一段時間後,往往因過熱而只能停下休息。
  2. 無毛皮膚與蒸發效率
    • 相較於其他哺乳類,人體毛髮主要集中在頭部與部分身體區域,大片皮膚裸露,有助於排汗時的蒸發散熱。
    • 這種「裸皮」極可能是長距離奔跑與日間活動的選擇性演化結果,確保人類能在炎熱的白天進行移動或狩獵,而不因過熱而必須在陰涼處長時間停留。

呼吸方式:維持長距離的關鍵

另外值得注意的是人類高效率的呼吸節奏。四足動物在奔跑時,呼吸通常與四肢步態高度耦合,比如馬或犬類在衝刺中必須配合四肢的震動節奏吸氣和吐氣,較難隨意變換節拍。而人類因直立姿態,使得呼吸與跑步步伐能保持更大程度的自主調控。

-----廣告,請繼續往下閱讀-----
  • 獨立呼吸調節
    • 能依跑者自主需求來決定吸氣與吐氣的頻率,不一定要剛好配合腿部的落地次數。
    • 這讓人類在長時間奔跑或耐力賽中,能以相對節能的方式調節氧氣和二氧化碳的交換量。
  • 嘴巴與鼻子的雙重進氣
    • 為支撐長時間有氧運動,跑者多半會同時用鼻子與嘴巴呼吸,以便快速補充氧氣並排出二氧化碳。
    • 相較之下,某些動物在喘氣散熱時犧牲了進氣效率,一旦體溫飆升,便難以同時維持高強度奔跑。

即使進入現代社會,大多數人不必再於烈日下持久追蹤獵物,我們仍可在馬拉松、越野超馬等各式比賽中看見古老遺傳「跑步基因」所迸發出的潛力。從波士頓馬拉松、超級鐵人三項,到極端氣候下的 Badwater 135,人類透過持續的鍛鍊與後勤補給,一次又一次突破極限。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

F 編_96
22 篇文章 ・ 0 位粉絲
一個不小心闖入霍格華茲(科普)的麻瓜(文組).原泛科學編輯.現任家庭小精靈,至今仍潛伏在魔法世界中💃

0

1
1

文字

分享

0
1
1
運動員的大腦跟一般人不一樣?從腦科學看體力之外的奪冠秘笈
F 編_96
・2024/12/17 ・2098字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

F 編按:本文編譯自 Live Science

是不是常聽人家講「運動天賦」?這種天賦到底是什麼?運動員哪裡跟我們不一樣?這個問題現在科學家或許可以給你一個答案。近年透過腦科學研究發現,運動員的大腦與普通人的大腦存在顯著差異,這些差異塑造了他們在比賽中的敏捷反應、精確動作及卓越判斷能力。

所以現在運動選手不只比體力,還要比腦力了嗎?這些差異具體差在哪裡?

快速反應:視覺處理能力

在團隊運動如足球或籃球中,快速處理視覺資訊並作出決策對勝負至關重要。一項 2013 年發表於《Scientific Reports》的研究發現,職業運動員比起業餘運動員或一般人更擅長處理動態視覺場景,例如追蹤快速移動的物體。這種能力能夠幫助運動員在瞬間解讀賽場上的複雜資訊,並迅速做出反應。

擁有快速的視覺處理能力,對團體運動來說至關重要。圖/envato

視覺處理能力的測試還可用於判斷運動員是否適合回歸賽場,例如在傷後復健階段,確保運動員在完全恢復判斷能力之前不會貿然上場。

-----廣告,請繼續往下閱讀-----

肌肉記憶:動作的自動化編程

對於體操選手或跳水運動員而言,肌肉記憶是完成複雜動作的關鍵。2023 年《Journal of Neuroscience》的一項研究表示,大腦如何通過訓練快速「壓縮」和「解壓縮」動作資訊,最終將動作序列整合成一個流暢的過程。這種訓練過程使運動員能夠無需刻意思考,便能完美執行複雜動作。

肌肉記憶的形成依賴於大腦皮層神經元的網絡活動,這種神經編程能力也同樣適用於訓練有素的音樂家或舞蹈家。

預測能力:球場上的決策利器

運動員擁有卓越的預測能力,例如棒球擊球手能根據投手的動作,快速判斷球的速度與方向。2022 年發表於《Cerebral Cortex》的研究發現,當擊球手預測投手的投球軌跡時,大腦左腹側顳葉皮質的神經元活動會根據預測結果而改變。

這種高效的預測能力源來於運動員在比賽中,學會透過關聯視覺線索與物體運動軌跡的技能。研究還發現,潛水選手等專業運動員的大腦中與動態運動解讀相關的區域,如上顳溝(STS),比普通人更厚,這也反映了運動訓練對大腦結構的塑造。

-----廣告,請繼續往下閱讀-----

平衡與空間感:身體控制的高峰

對體操選手來說,擁有非凡的平衡感與空間感知能力,兩者缺一不可,而這在科學上被稱為「本體感覺」(proprioception)。位於小腦的神經網絡讓運動員能迅速調整身體姿態,即使在空中失誤也能及時修正動作。

對體操選手來說,平衡感與空間感知能力非常重要。圖/envato

然而,當這套「安全網」失靈時,可能導致嚴重後果。如 2020 年東京奧運中,體操選手西蒙·拜爾斯(Simone Biles)因「扭轉失靈」而一度無法控制動作,凸顯了平衡能力在高風險運動中的重要性。

注意力與認知靈活性:多任務處理的關鍵

團隊運動要求運動員能快速在不同思維模式間切換,例如足球選手需在控球時預測對手動作並調整策略。2022 年《國際運動與運動心理學期刊》的一項研究顯示,運動員,特別是參與高強度間歇訓練的選手,擁有更強的認知靈活性和注意力分配能力。

研究也指出,這些能力的提升可能與長期訓練相關,但確切機制仍需進一步研究。

-----廣告,請繼續往下閱讀-----

抗衰老的秘密:運動對老年大腦的保護

這些運動訓練對大腦的影響,可不是只有相關區域的提升。運動對大腦健康的影響,可能會持續一生。一個典型例子是加拿大田徑選手奧爾加·科特爾科(Olga Kotelko),她在 95 歲時仍保持驚人的腦部健康,其白質結構完好程度甚至接近比她年輕三十多歲的普通人。科學家認為,持續的運動訓練可能是她保持記憶力與認知敏銳的原因之一。

運動不只是對身體的鍛鍊,對維持大腦健康也有影響。圖/envato

下一代的訓練策略:腦力與體力並重

隨著運動科學的不斷進步,科學家也開始呼籲教練更注重對年輕運動員的腦部訓練,例如提升記憶力與決策能力。西悉尼大學的運動科學家凱莉·斯蒂爾(Kylie Steel)指出,運動員的身體或許會訓練至極限,但在認知能力上仍擁有巨大的潛力提升。例如,足球訓練中可以鼓勵球員使用非慣用腳進行射門,以提升大腦靈活性,幫助他們在成年後更加出色地應對比賽挑戰。

近年研究讓我們重新認識了體育訓練對人體的深遠影響,運動改變的不僅是肌肉,還包括大腦。從視覺處理到肌肉記憶,再到抗衰老的腦部結構,透過運動與科學的結合,將為未來的運動員開啟全新可能性,也提醒我們,持續鍛煉不僅益於身體,也有助於大腦的健康。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

F 編_96
22 篇文章 ・ 0 位粉絲
一個不小心闖入霍格華茲(科普)的麻瓜(文組).原泛科學編輯.現任家庭小精靈,至今仍潛伏在魔法世界中💃