0

0
0

文字

分享

0
0
0

「黑死病」鼠疫為什麼不會經由網購傳播?讓跳蚤吃不飽的鼠疫二三事

miss9_96
・2019/11/26 ・2222字 ・閱讀時間約 4 分鐘 ・SR值 560 ・八年級

-----廣告,請繼續往下閱讀-----

中國大陸今 (2019) 年迄今累計確診 4 例鼠疫病例(詳見:疾管署新聞稿),這個許久未見的疾病也激起了一些謠言。其中最令人擔憂的傳言便是:小小的鼠蚤可以經由包裝傳播,讓你有機會經由網購也遭殃?關於這點,疾管署很快就提出了說明:「由於感染鼠疫的跳蚤會因鼠疫桿菌繁殖導致腸胃阻塞而一直處於極度飢餓須不停吸血的狀態……不可能停留在紙箱或衣服上……因此上述都非鼠疫的傳染途徑。」

嗯,這是真的嗎?背後的科學原理是什麼呢?

疾病管制署(以下稱疾管署)針對「鼠蚤是否會透過網購商品跨國傳播」之說明新聞稿。From: 疾管署

重創人類的疾病──鼠疫

鼠疫是少數曾重創人類,並在文化、宗教等劃下深刻印記的疾病。14 世紀時,十字軍的宗教戰爭將鼠疫帶入歐洲,殺死四分之一的歐洲人2、引起巨大的恐慌,更深刻地影響了歐洲人的藝術、文化等,「黑死病」一詞從此成為死神的代言人。

上圖:中世紀歐洲瘟疫流行時,當時的防疫衛生醫療人員的穿著;此造型現已成為一種文化、藝術象徵。下圖:日本動漫「炎炎消防隊-第3大隊長」造型。From: Wikipedia & 炎炎消防隊動畫官網

跳蚤得了鼠疫就永遠吃不飽的詛咒

而時至今日, 近期在中國確認的鼠疫病例3,在台灣引起了民眾的害怕和恐慌,網路上甚至出現了「鼠疫可透過網購商品跨國傳播」的流言,引起疾管署發文澄清1:「鼠疫桿菌會在蚤類的胃形成膠狀團塊,導致腸胃阻塞而一直處於極度飢餓,須不停尋找活生物吸血的狀態,因此不會停留在衣物或紙箱內…」

-----廣告,請繼續往下閱讀-----

這段敘述引起我的好奇,這是真的嗎?

東方鼠蚤 (Xenopsylla cheopis)。圖/commons wikimedia

1914 年,科學家透過解剖無數的跳蚤,首次明白地敘述了跳蚤體內的桿菌堵塞現象;而直到 1971 年,美國科學家提出了此現象的說明4-6 。鼠疫桿菌(Yersinia pestis)內有個質體 (9.5 kb) 能分泌凝結酶,與跳蚤腸道的消化酵素交互作用,進而在體內引發血塊、堵塞腸胃5,讓跳蚤再也吃不飽,成了瘋狂吸血、傳染疾病的機器。

正常的跳蚤消化道裡,具備防止食物逆流的結構/瓣膜,可阻止在胃裡的血逆流出食道4。跳蚤吸食了帶有鼠疫桿菌的血液,經過 1~2 天,胃裡會開始出現簇狀、褐色、帶黏性的斑點狀固體,且此固體充滿了鼠疫桿菌,為鼠疫桿菌形成的膠狀團塊4

堵塞跳蚤腸胃道的桿菌凝集物。上圖:1914 年的染色圖;中圖:1998 年的掃描式電子顯微鏡圖;下圖:2002 年的鼠疫桿菌螢光顯微鏡圖。from: 參考文獻4, 5、wikipedia

從此時開始,這跳蚤就步上了被詛咒的不歸路。桿菌的膠狀團塊越來越大,堵塞了食道、胃等器官,但又不妨礙跳蚤進食(吸吮血液)的動作。堵塞的消化道讓新鮮血液無法進入胃,因此跳蚤永遠感到飢渴難耐,只能盡力地張大食道並吸吮新鮮血液,而此時帶桿菌的舊血會隨著擴大的食道逆流、沾染到被吸血的動物傷口,進而達到細菌傳播的目的(如下圖)。

-----廣告,請繼續往下閱讀-----

註:根據參考文獻5,桿菌的阻塞似乎會提高跳蚤的死亡率,但並非完全的正相關。

1914 年的桿菌與跳蚤交互作用的手繪示意圖。From: 參考文獻4

 

人類在千年前就開始和鼠疫打交道,隨著科學、公衛的進步,鼠疫已不再是黑死病,臺灣在 1953 年後亦再無本土鼠疫2

根據疾管署的新聞稿,目前中國大陸之鼠疫自然疫源區包括西部旱獺疫源地、西南家鼠疫源地、華北沙鼠疫源地及喜馬拉雅旱獺鼠疫疫源地,歷年雲南、貴州、廣西、西藏、青海、甘肅、內蒙古等地區均有個案發生。如有相關當地的旅遊經歷,返國入境時如有不適症狀,應通知機場檢疫人員並儘速就醫,就醫時請告知旅遊接觸史,以利及早診斷治療。

換言之,現今科學家對鼠疫的傳播途徑、防疫措施、傳染特色等都已有充沛的研究。面對鼠疫,我們已不再如中世紀古人般地束手無策,應當相信防疫前線,提高自身對不明流言的判斷,才能將「心中的黑死病」根除、不再迷思在網路的謠言裡。

-----廣告,請繼續往下閱讀-----

筆者認為疾管署作為台灣防疫的最前線、認真且辛苦,懇請大家給予他們支持與讚美

參考文獻

  1. 疾管署澄清:感染鼠疫的跳蚤不會透過網購途徑附著於物體上帶入國內,請民眾放心。2019/11/23新聞稿。衛生福利部疾病管制署
  2. 鼠疫-疾病介紹。衛生福利部疾病管制署
  3. 2019/11/15中國大陸-鼠疫 國際重要疫情。衛生福利部疾病管制署
  4. A. W. Bacot and C. J. Martin (1914) Observations on the mechanism of the transmission of plague by fleas. Journal of Hygiene ( London , UK). 13 (Suppl). 423-439
  5. B. Joseph Hinnebusch, Elizabeth R. Fischer, and Tom G. Schwan (1998) Evaluation of the Role of the Yersinia pestis Plasminogen Activator and Other Plasmid-Encoded Factors in Temperature-Dependent Blockage of the Flea. The Journal of Infectious Diseases. 178. 1406-1415
  6. C. R. ESKEY, M.D. (1938) Fleas as Vectors of Plague. American Journal of Public Health. 28. 1305-1310
文章難易度
miss9_96
170 篇文章 ・ 1063 位粉絲
蔣維倫。很喜歡貓貓。曾意外地收集到台、清、交三間學校的畢業證書。泛科學作家、科學月刊作家、故事作家、udn鳴人堂作家、前國衛院衛生福利政策研究學者。 商業邀稿:miss9ch@gmail.com 文章作品:http://pansci.asia/archives/author/miss9

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

1

5
2

文字

分享

1
5
2
終結鼠疫!「臺灣醫學衛生之父」——高木友枝
PanSci_96
・2023/03/26 ・3213字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

1901 年,一場可怕的災難無聲無息地降臨到臺灣,無數看不見的細菌跟在老鼠身上,穿越過大街小巷,讓鼠疫在臺灣各地四散傳播,最終有 4 千多人染疫,3 千 6 百多人因此身亡,就連當時負責收治、隔離傳染病的「台北避病院」院長本田祐太郎也不幸殉職。

過街老鼠還能人人喊打,但看不見的鼠疫卻依然難以預防,於是,時任臺灣總督府民政長官的後藤新平特別請來了「鼠疫專家」高木友枝來臺灣。他一舉讓臺灣醫療升級成 2.0 版本,成功撲滅了令人頭痛的鼠疫,到了 1910 年,該年度臺灣因鼠疫死亡的人數一口氣降至僅僅 18 人。

究竟是多麼強大的存在,有如外掛般推動臺灣的公共衛生發展呢?高木友枝在臺灣醫療史上有重要的一席之地,被杜聰明譽為「臺灣醫學衛生之父」。

臺灣總督府衛生課長高木友枝。圖/國立臺灣圖書館

空前成功的霍亂防治經驗

雖說高木友枝是後藤新平在帝國大學唸書時認識的好友,但真正讓後藤新平延請高木來到臺灣的理由,還是著眼於他於傳染病防治本身的強大實力與經驗。

1894 年,中日之間爆發甲午戰爭,隨著戰爭而來的,除了硝煙戰火,更有無數傳染病趁虛而入,當時,高木友枝就曾深入香港進行鼠疫調查。

-----廣告,請繼續往下閱讀-----

隔年,日本的軍事用船上爆發霍亂,高木友枝被派往似島臨時陸軍檢疫所擔任事務官,最後製造出了霍亂血清、成功治療了霍亂患者,締造了史上首次用血清治療霍亂的成功案例。

這漂亮的第一仗,建立了高木友枝在公衛領域的名聲,接下來他擔任了各種公衛相關職位,更在 1897 年成為日本代表,前往莫斯科參加萬國醫事會議,以及柏林萬國癩(痲瘋)病會議。

而面對臺灣的鼠疫,高木友枝認真制定了兩大方針:撲滅鼠類、接種疫苗。

雙管齊下撲滅鼠疫

消滅老鼠說起來容易,做起來卻不簡單,高木友枝首先針對船舶、火車等處頒布了相關檢疫辦法,對外部來源進行控管。對內部原有的潛在病原呢,高木友枝則採用了軟硬兼施的方式,除了用獎勵的方式鼓勵大家捕鼠,也會請衛生警察加強規範清潔不合格、或沒有配合捕鼠的家戶,最後則透過重新規劃城市分區,來提升臺灣的衛生條件。

-----廣告,請繼續往下閱讀-----
1919 年臺北廳實施家戶大清潔。圖/中央研究院台灣史研究所檔案館

另一方面,高木友枝也全力支持鼠疫疫苗接種計畫,一步步降低感染率與死亡率,最終讓鼠疫逐漸絕跡。後來,高木友枝將這段時間內的研究與行政措施出版成德文著作《臺灣的衛生事情》,為這段歲月留下了光輝的紀錄。

鼠疫病死者與患者統計對照表。圖/國立台灣師範大學台灣史研究所范燕秋

然而,撲滅鼠疫並非高木友枝對臺灣醫療衛生唯一的貢獻,他還有許多影響更加深遠。

為醫之前必先學為人 高木友枝的醫療教育理念

1902 年,高木友枝開始擔任臺灣總督府醫學校的校長。

就任醫學校校長期間,他創立了「臺灣醫學會」,嘗試聯合當時的臺灣醫界力量,為公衛盡一份心力。同時,他還創辦《臺灣醫學會雜誌》,讓大家可以透過刊物去探討西方醫學研究的成果,同時對總督府的衛生政策提出建議。

-----廣告,請繼續往下閱讀-----

高木友枝在臺擔任教職時,從不會有種族偏見,也不禁止學生在學校使用母語,用一顆尊重臺灣文化的心,栽培新一代的醫生。同時,他也非常重視學生的品格教育,對每一屆畢業生都會給出同樣的勉勵:

為醫之前,必先學為人。

1912 年前後,臺灣總督府曾意圖逮捕當時從事抗日活動與學生運動的蔣渭水、杜聰明等人。當時他們尚在醫學院就讀,高木友枝身為校長,以「教育獨立」、「校園自治」的理念一肩扛下總督府的壓力,甚至對學生表達自己不反對相關運動的立場。

種種事蹟,都在這些學生心中留下了無法取代的重要形象。

為科學研究奠定基礎建設

除此之外,高木友枝對於當時的臺灣科學研究也奠定了重要的基礎。

-----廣告,請繼續往下閱讀-----

當時基礎建設並不發達,臺灣各處仍處於瓦斯與自來水缺乏的時代,要進行實驗可說是非常不便:加熱試管得用酒精燈、想要有壓力的水也得自己生,總之就是十分麻煩。於是乎,高木產生了設立基礎研究機關的念頭,並且拿著草案去找了後藤新平。

計畫很快就取得了共識。1907 年,日本特別撥下了一筆經費,準備成立「臺灣總督府中央研究所」,其下分別有化學部及衛生部,而首任所長正是高木友枝。

日治時期的臺灣總督府中央研究所(簡稱中央研究所)。圖/wiki

1939 年,中央研究所在幾經改制後撤廢,另成立農業試驗所林業試驗所工業研究所熱帶醫學研究所。雖然「中央研究所」不復存在,但其打下的基礎仍成為了臺灣早期學術研究發展最重要的支柱。而部分單位如林業試驗所、農業試驗所亦延續至今,繼續為臺灣做出貢獻。

1919 年高木接到一項令人意想不到的任務。時任臺灣總督的明石元二郎創立了「臺灣電力株式會社」,並制定了當時臺灣最大規模的電力建設案──日月潭水力發電計畫。

-----廣告,請繼續往下閱讀-----

這案子有多大,其中出現弊案的可能性就有多大。為了避免這些事情影響工程進度,明石元二郎特別找來了高木擔任社長(沒錯他又一次地空降了),而且,這個位子一做就是十年。

想見識高木友枝的廬山真面目?彰化高中就看得到!

高木友枝在臺灣的期間,充分發揮了一位知識份子的影響力,不僅推動了公共衛生發展、培育了無數重視德行的學生、促成了研究院的誕生、監督了水力發電的開發,更是用一顆溫暖而充滿人道精神的心,溫暖了無數學子。

在他過世後,杜聰明等人特別撰文表達自己對他的懷念,黃土水更特別為他雕塑了半身像,如果你想瞧瞧高木友枝這位一代宗師的真面目,可以去彰化高中的博物館看看這件國寶級作品喔!

參考文獻

  1. 張名榕。高木友枝典藏故事館落腳彰化高中,教者之愛打動人心。台電月刊,677 期。https://tpcjournal.taipower.com.tw/article/3203 
  2. 林炳炎。重塑台灣醫校長高木友枝博士的雕像。https://www.lib.ntu.edu.tw/CG/resources/U_His/academia/no2-ch3.htm
  3. 鈴木哲造(2007)。日治初年台灣衛生政策之展開——以「公醫報告」之分析為中心。臺大歷史學報,37,143-180。https://www.his.ntnu.edu.tw/publish01/downloadfile.php?locale=en&periodicalsPage=3&issue_id=33&paper_id=193
  4. 鼠疫:疾病介紹。衛生福利部疾病管制署。https://www.cdc.gov.tw/Category/Page/iCortfmEfVKqcZMeDdEuDA
  5. 陳恒安(2017)。漱口水、高木友枝與《台灣的衛生狀況》。科技大觀園。https://scitechvista.nat.gov.tw/Article/C000003/detail?ID=d9810238-4efa-47b0-a619-94d98a603f77
  6. 莊永明(1998)。台灣醫療史: 以臺大醫院為主軸。遠流出版,頁 711。
  7. 林炳炎(2013)。高木友枝醫學博士的學術生涯。https://pylin.kaishao.idv.tw/wp-content/uploads/2013/11/20131114drtakaki.pdf
  8. 劉仁翔(2020),明治初期岩田技師的臺灣中部地區鼠疫調查報告。國史館臺灣文獻館電子報,197 期。https://www.th.gov.tw/epaper/site/page/197/2729
  9. 避病院。維基百科,自由的百科全書。https://zh.wikipedia.org/wiki/避病院
  10. 范燕秋。醫療衛生歷史篇:日治時期。國家圖書館,臺灣記憶展覽。https://tme.ncl.edu.tw/tw/醫療衛生歷史篇#h1-
  11. 劉士永。日治時期臺灣的防疫與衛生行政。https://www.ntl.edu.tw/public/Attachment/1119143647100.pdf
  12. 魚夫。中央研究所──日治時期臺灣學的重鎮。天下,獨立評論。https://opinion.cw.com.tw/blog/profile/194/article/4481?fbclid=IwAR2kIbtcHiFZizClhLs0RxSs7GjDNwA9POujMN-YLkmI7Gq5i3RRMYfwxj4
所有討論 1

1

1
2

文字

分享

1
1
2
2022 年《Science》年度十大科學突破(下):EBV 病毒與發燒的地球
PanSci_96
・2022/12/30 ・2786字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

接續上篇:2022 年《Science》年度十大科學突破(上):持續進化的 AI 與韋伯太空望遠鏡

看過 2022 年十大科學突破的前五項後,你是否迫不及待想知道另外五項呢?讓我們繼續看下去吧!

多發性硬化症的元兇:EBV 病毒

多發性硬化症(Multiple sclerosis)是一種中樞神經系統疾病,初期症狀只有視力模糊、手腳麻木、走路不穩等,到了後期便逐漸讓病患喪失視力、無法說話和行走。

長久以來,科學家懷疑多發性硬化症的元兇是「人類疱疹病毒第四型病毒」(EBV)。這種病毒主要透過唾液傳播,幾乎每個人一生中都會感染到,然後病毒會潛伏在白血球中。雖然患者大多都有 EBV 抗體,但 95% 的健康成年人也有,難以作為判定依據。

然而,今年 1 月刊載在《Science》的研究指出,感染 EBV 將導致罹患多發性硬化症的風險增加 32 倍。另一篇《Science》研究也發現潛伏在白血球中的病毒可能會「甦醒」,而病毒的其中一種蛋白質,會誘使免疫系統攻擊中樞神經細胞。

-----廣告,請繼續往下閱讀-----

這些新發現給了科學家開發疫苗的方向。目前,有一種 EBV 疫苗正在進行臨床試驗,要是數據顯示疫苗有效,那麼在未來,多發性硬化症或許就能像小兒麻痺一樣,從此絕跡。

新研究確定了 EBV 病毒(藍色)與多發性硬化症的關聯。圖/Science

美國簽署《降低通膨法案》,搶救發燒的地球

今年 2 月,聯合國 IPCC 第六次評估報告指出,若是全球平均升溫超過 1.5°C,各地都將出現多種極端氣候災害,部分地區也將不再適合人類居住。

8 月,美國總統拜登(Joe Biden)簽署了《降低通膨法案》(Inflation Reduction Act),試圖從綠能、醫療、稅收等三大面向解決通貨膨脹的問題,同時減少溫室氣體排放,堪稱美國史上最重要的氣候法案。

身為全球第二的溫室氣體排放國,美國將在未來 10 年撥出 3690 億美元,投入綠能、電動車、核能發電等產業,目標是在 10 年後(2032 年)將溫室氣體排放量降低到 2005 年的 40%。

-----廣告,請繼續往下閱讀-----

目前,全球平均升溫(相較於工業革命前)來到 1.2°C,而且今年的溫室氣體排放量仍持續上升,沒有下降趨勢。許多氣候科學家都認為升溫幅度必然超過《巴黎協定》規範的 1.5°C 上限,因此我們都需要盡快採取更多行動保護地球。

《降低通膨法案》將補貼太陽能在內的綠能產業。圖/Science

逃過黑死病的方法,竟然是遺傳?

700 年前,橫行歐洲的黑死病殺死了 1/3 到 1/2 的人口。關於那些倖存者,科學家好奇了很久,想知道他們當初是如何逃過一劫,以及黑死病究竟帶來了什麼影響。

今年 10 月, ㄧ篇《Science》的研究顯示倖存者體內可能有基因變異,提升他們對鼠疫桿菌(Yersinia pestis)的免疫反應。團隊分析了 500 多具遺骨中的古代 DNA,發現在英國倫敦爆發黑死病後,倖存者體內有 245 處的基因都有出現變異。

在這些 DNA 裡,內質網胺肽酶 2(ERAP2)引起了科學家的注意。這種蛋白酶有兩種變體:一種是完整尺寸,另一種較短,但都可以幫助免疫細胞識別、對抗病毒。科學家發現,遺傳完整尺寸 ERAP2 的人類存活機率是 2 倍,因為他們能夠生成更多細胞激素,協助免疫系統對抗鼠疫桿菌。

-----廣告,請繼續往下閱讀-----

如今,約有 45% 的英國人體內還存有完整尺寸的 ERAP2 變體,但代價就是 ERAP2 也會增加罹患克羅恩病(Crohn’s disease)和類風濕性關節炎等自體免疫性疾病的風險。

從 14 世紀英國倫敦的遺骨中採集 DNA 並紀錄變化。圖/Science

碰!NASA 撞歪小行星!

多年來,NASA 持續監測直徑超過 0.5 公里的近地小行星,並且透過「雙小行星重定向測試計劃」(DART)研究多種讓小行星偏離軌道的方法。

今年 9 月,NASA 讓 DART 飛行器以 22,530 公里的時速撞擊小行星 Dimorphos,讓 Dimorphos 更靠近它繞行的另一顆小行星 Didymos,縮短了 32 分鐘的公轉週期,比 NASA 原先設定的目標還要高出 26 倍。

目前為止,天文學家估計軌道與地球軌道相交的近地小行星有 25,000 顆,大小都足以摧毀一座大城市。雖然行星防禦系統(Planetary Defense)尚未建構出完整情報,但針對人類首次改變天體運行的壯舉,NASA 署長表示「這是行星防禦任務的分水嶺,也是人類文明的分水嶺」,有助於降低小行星或隕石撞到地球的機率。

-----廣告,請繼續往下閱讀-----
寬達 160 公尺的小行星 Dimorphos。圖/Science

從永凍土提取環境 DNA,重建古代生態系統

以往普遍認為 DNA 的保質期約為 100 萬年,但在今年 12 月,科學家從北極寒漠的永凍土中,提取了 200 萬年前殘留至今的環境 DNA 片段。透過分析這些片段,科學家還原了格陵蘭東北部皮里地(Peary Land)約 200 萬年前生態系統的樣貌。

英國劍橋大學研究顯示,在 200 萬至 300 萬年前,皮里地的平均氣溫比現在高 11℃ 至 19℃。從 5 處沉積層中提取的 41 個 DNA 片段,證實了當時有楊樹、樺樹、崖柏和各種針葉樹,也有野兔旅鼠、馴鹿、囓齒動物,以及 1 萬年前滅絕的大象近親——乳齒象。過去從來沒有科學家料到乳齒象的活動範圍竟然延伸到那麼遠的北方。

可惜的是,因為缺少脊椎動物的化石,目前還不清楚確切的生物群落組成,但這項研究證明了利用環境 DNA 追溯 200 萬年前的古生物是可行的,而這也有助於科學家進一步探討生物和環境的演化。

環境 DNA 揭示了 200 萬年前格陵蘭的生態。圖/Science
所有討論 1