Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

小兒麻痺疫苗的誕生–沙克誕辰|科學史上的今天:10/28

張瑞棋_96
・2015/10/28 ・939字 ・閱讀時間約 1 分鐘 ・SR值 550 ・八年級

那是一個充滿信心的時代;二次大戰後的美國,以戰勝國的領導者身分,挾著經濟上的繁榮成長,樂觀地面對未來。但那也是一個惶惶不安的時代;每個家庭莫不擔心家中的小孩是否被蔓延越來越廣的脊髓灰質炎病毒襲擊,而造成小兒麻痺。

發明小兒麻痺疫苗的沙克博士。圖片來源:kpfa

小兒麻痺其實存在已久,美國也早在二十世紀初就試圖追蹤隔離病患,但仍無法遏止小兒麻痺症的流行;到了 1952 年,一年就增加了五萬八千起病例,造成三千多人死亡、兩萬人以上不良於行。所幸過沒多久,終於出現發明疫苗,將整個社會從恐慌氣氛中解放出來的超級英雄──沙克博士。

其實早在沙克之前就有人試圖研發小兒麻痺疫苗,但無論是用以甲醛去活性的死病毒或是用減低毒性的活病毒,都沒產生免疫力,有些兒童還在接種後死亡。沙克決定還是用去活性的病毒才能確保安全性;經過五年的研發,他終於在 1953 年率先製造出能對抗三種不同病毒株的小兒麻痺疫苗,並獲得美國國家小兒麻痺基金會的支持,在次年進行有史以來最大規模的雙盲人體實驗(近百萬名兒童)。當 1955 年正式宣布實驗結果證明沙克疫苗安全又有效後,舉國歡騰,沙克一夕成名,被民眾稱頌為當代巴斯德。

然而,他的同儕很多卻不這麼想。最大的批評聲浪來自沙賓(Albert B. Sabin),他毫不留情面的說道:「你也可以走進廚房去做他所做的事。」、「他一生中從來沒有任何創見。」沙賓敢如此嗆聲,乃因他隔了幾年也發明了口服的小兒麻痺疫苗,不但較須用注射的沙克疫苗方便、便宜,而且因為是用減毒的活病毒製成,免疫效果更好,又有機會藉由接種者的糞便間接感染他人而散布疫苗,因此很快就取代了沙克疫苗。

-----廣告,請繼續往下閱讀-----

不過,鑑於近年來多起沙賓疫苗引發變種的小兒麻痺病毒案例,已經出現檢討聲浪,認為在小兒麻痺已近絕跡的已開發國家或許應該再改回施打沙克疫苗,以避免產生變種的新病毒。沙克vs.沙賓似乎又是自古以來科學家之間爭鬥相嫉的一個例子,不過看來勝敗輸贏有時不見得蓋棺就能論定,而且往往也無所謂輸贏,而是兩者相輔相成才有意義。

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

-----廣告,請繼續往下閱讀-----
文章難易度
張瑞棋_96
423 篇文章 ・ 1028 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

2

26
3

文字

分享

2
26
3
意外不只帶來新發現,也可能引發重大悲劇——疫苗科學的里程碑(二)
miss9_96
・2021/05/23 ・3661字 ・閱讀時間約 7 分鐘

科學終會勝利。Science will win. 

佐劑的發現,要從一個故意把麵包屑打進馬體內、故意讓傷口化膿的科學家說起。佐劑是疫苗科學的第三個里程碑,直至今日,它仍然在許多疫苗中扮演重要的角色。

這一章,我們不只談科學的進展,也談談歷史上的悲劇。近代史上,科學知識飛速發展,政府監管如未同時進步,將導致救命的疫苗變為致命的凶器,引發重大悲劇。

偶然發現的佐劑,為老人小孩帶來大大的便利

有些人的體質,疫苗無法在他們的身體裡產生足夠的免疫力。如:

  • 老年人服用抑制免疫力藥物(如:器官移植者、自體免疫疾病者)、特殊疾病患者(如:HIV感染者/愛滋病患者),他們的T細胞老化,或受到抑制,或受到感染
  • 嬰兒,他們的免疫系統尚未成熟

相較於一般人,疫苗在上述族群體內,更難激發出足夠的免疫力。因此需要一種可幫助疫苗效力的物質,也就是佐劑(adjuvant。該詞源於拉丁語 adjuvare,意為「助人為樂」)。

-----廣告,請繼續往下閱讀-----

1924 年,法國巴斯德研究所的獸醫-加斯頓·拉蒙 (Gaston Ramon) 正將白喉、破傷風毒素注入馬匹,讓動物產生中和毒素的抗體,再收集抗體,準備治療被白喉或破傷風感染的病人。然而,某日發現,若注射的傷口化膿,馬匹反而會產生更大量的抗體。因此他開始嘗試同時注入麵包屑、木薯粉等,結果發現,能引起局部發炎的物質,也能刺激身體生成更強的抗體 [1, 2]

純化白喉毒素,找到最有效的佐劑

而在對岸的倫敦,免疫學家亞歷山大·格蘭尼 (Alexander Glenny) 也正在做白喉毒素刺激動物產生抗體的實驗。他在純化白喉毒素時,利用硫酸鋁鹽讓毒素沉澱(因為蛋白質多帶負電,而鋁鹽帶正電且難溶於水。加入鋁鹽後,正負電吸附毒素蛋白質後,即可在底部收集乳狀沉澱物),收集後再打進天竺鼠體內 [3]。格蘭尼驚訝的發現,相較於純粹的毒素,毒素/鋁鹽乳狀物能引起更強的抗體。1932 年,鋁鹽正式成為人類疫苗的佐劑,並且沿用至今;現行二價 HPV 疫苗(保蓓 Cervarix,荷蘭葛蘭素史克)、COVID-19 疫苗(CoronaVac,中國科興。MVC-COV1901,高端疫苗)也用鋁鹽作為佐劑

約 19 世紀,科學家開發了向馬匹注射破傷風、白喉等毒素,抽取血液中的抗體作為治療用的技術,且沿用至今。圖/ Science
上圖:1809年畫作,描繪感染破傷風後全身痙攣的病徵,下圖:感染白喉可能會導至喉嚨腫脹。
圖/wikipedia & wikipedia

佐劑的種類、原理,以及重要性

佐劑在疫苗領域上有高度重要的地位 [3]

  • 疫苗裡增加佐劑,可協助老年人、幼兒等特定體質的族群,在接種後產生和足夠的保護力
  • 搭配佐劑,可減少抗原的使用。在緊急、須快速生產疫苗的情況,降低藥廠生產抗原的產線壓力
  • 部分疫苗的抗原難以刺激免疫細胞(如:蛋白質類型的疫苗),佐劑的使用可讓抗原發揮效力

而且單一佐劑系統可以搭配多種疫苗,如:美國 Novavax 公司開發的 Matrix-M™ 佐劑系統,同時應用在流感、伊波拉出血熱、新冠肺炎/COVID-19 等疫苗。而最古老的鋁鹽系統,被應用在 HPV 疫苗(預防子宮頸癌,葛蘭素史克二價「保蓓 (Cervarix)」)、新冠肺炎/COVID-19 疫苗(中國科興「CoronaVac」、台灣高端疫苗)等不同藥廠、不同疾病上。

-----廣告,請繼續往下閱讀-----

僅管佐劑在上世紀初已被發現,但原理直到近代才比較清晰。人體的免疫系統可分為:

  • 先天免疫 (innate immunity):不針對特定病原,只要疑似入侵者就吞噬、清除。反應快速,如:巨噬細胞、嗜中性白血球。
  • 後天免疫 (adaptive immunity):只有特定病原體才會啟動。反應較慢,如:產生抗體的 B 細胞、活化其他免疫細胞的 T 細胞。產生的記憶型免疫細胞可維持多年。

雖然疫苗的目標是活化 B 和 T 細胞,但近期研究認為,先天免疫對活化 B 和 T 細胞至關重要。局部發炎吸引巨噬細胞和樹突細胞 (DC, dendritic cell) 等到達現場並活化它們,而吞噬抗原後的樹突細胞,再將抗原傳遞給 B 和 T 細胞並活化後天免疫系統 [3]。因此,鋁鹽等佐劑能引起局部發炎,吸引樹突細胞、巨噬細胞聚集,進而活化後天免疫系統,以達到疫苗產生抗體、記憶型免疫細胞的目的。

而現今的佐劑多樣,可分為三類 [2]

  • 讓局部組織發炎/受損 (Damage-associated molecular patterns-type adjuvants),如:鋁鹽
  • 模仿病原體入侵訊號 (Pathogen-associated molecular patterns-type adjuvants),如:未甲基化的 CpG 序列 DNA
  • 讓白血球更有效地捕獲疫苗 (Particulate adjuvants):製備成奈米等級的顆粒,以利淋巴系統捕捉

儘管科學對佐劑的原理尚未完全理解,但佐劑已在 B 型肝炎、HPV(子宮頸癌相關病毒)等疫苗中,用實戰證明了它的價值。未來面對無法培養的病原體(如:C 型肝炎病毒)、無法誘導免疫力的抗原,相信都會因佐劑的加入而逐步看見曙光。無論是現在或未來,佐劑的出現,都為疫苗科學帶來無窮的潛力。

-----廣告,請繼續往下閱讀-----

疫苗科學在研究者的努力下,進步神速,彷彿疫苗即將幫助人民遠離所有惡疾。然而,政府監管卻沒能與時並進,一昧求快的壓力下,一宗慘案在上世紀 50 年代的美國發生了…

小兒麻痺肆虐的美國,急需疫苗來控制疫情

小兒麻痺在 20 世紀中期,仍是嚴重、兇殘的傳染病。病毒 (poliovirus) 透過糞口傳染,在腸道繁殖,藉由排泄物汙染食物和水,尋找新的宿主。少數病毒會侵入神經系統、破壞運動神經元,導致永久殘疾、癱瘓,甚至死亡。光是 1952 年,美國就有近 6 萬人感染,2 萬多人殘廢、數千人死亡。

上圖:因小兒麻痺導致殘疾之患者,下圖:古埃及 18 王朝(約西元前 1403~1365 年)的石版畫中繪製了疑似因小兒麻痺導致殘疾之患者。圖/wikipedia

1951 年,美國科學家喬納斯·沙克 (Jonas Salk) 開始研究小兒麻痺疫苗。他採取死病毒策略,用福馬林/甲醛殺死病毒,試圖在最安全的形式下誘發免疫力。初步結果發現,沙克疫苗 (salk vaccine) 活化了抗體,且安全無虞。不幸的是,暴發的疫情、劇增的死亡人數,讓監管疫苗的政府機關,壓力越來越大 [4]

政府釀成的悲劇——殺人疫苗,卡特事件 (Cutter incident)

1955 年 4 月 12 日,數十萬人的臨床試驗結果公佈,沙克疫苗可以阻止小兒麻痺,媒體一片歡欣鼓舞。當天下午,美國政府僅花了 2 個半小時,就許可了五家藥廠生產沙克疫苗,其中就包含出事的卡特藥廠 (Cutter Laboratories) [5]

1955 年 4 月 12 日,沙克疫苗公布臨床試驗結果,極佳的保護力獲得各媒體大幅報導。
圖/ wikipedia

4 月 26 日,疫苗大規模施打後僅兩週,兒童接種後癱瘓的消息開始湧入。追查發現,癱瘓患者都曾接種卡特藥廠生產的疫苗。政府緊急召回該廠的疫苗,但此時已有 38 萬劑注入孩童的體內。

-----廣告,請繼續往下閱讀-----

調查後發現,原本只能有死病毒的疫苗裡,在卡特藥廠的製造下,竟高達 12 萬劑的疫苗裡有活病毒。出問題的疫苗不僅讓孩童染病、更引爆社區大流行,4 萬人發病、近兩百人癱瘓、10 人死亡。原可阻止疫情的疫苗卻導致人民死亡,成了科學史上的大悲劇。事後調查認為,此事件的最大責任為政府監管單位政府未依照科學組織的建議,嚴格要求藥廠遵守嚴謹的生產規範 [6, 7]。儘管該事件提升了後續保護和監管,但人類應深刻的記住,若科學屈服在政治和輿論的壓力時,悲劇就可能會引爆,人命和公信力將危在旦夕。

系列文章

  1. Alberta Di Pasquale, Scott Preiss, Fernanda Tavares Da Silva and Nathalie Garçon (2015) Vaccine Adjuvants: from 1920 to 2015 and Beyond. Vaccine.
  2. Ian R. Tizard (2021) Adjuvants and adjuvanticity. Vaccines for Veterinarians. DOI: 10.1016/B978-0-323-68299-2.00016-2
  3. Amos Matsiko (2020) Alum adjuvant discovery and potency. Nature
  4. The tainted polio vaccine that sickened and fatally paralyzed children in 1955. The Washington Post. 2020/04/14
  5. Paul A Offit (2005) The Cutter Incident, 50 Years Later. The New England Journal of Medicine. DOI: 10.1056/NEJMp048180.
  6. Paul-Henri Lambert (2006) A successful vaccine that missed its target. Nature Medicine. DOI: https://doi.org/10.1038/nm0806-879
  7. 美國歷史系列147:卡特疫苗事件。美國在台協會
-----廣告,請繼續往下閱讀-----
所有討論 2
miss9_96
170 篇文章 ・ 1084 位粉絲
蔣維倫。很喜歡貓貓。曾意外地收集到台、清、交三間學校的畢業證書。泛科學作家、科學月刊作家、故事作家、udn鳴人堂作家、前國衛院衛生福利政策研究學者。 商業邀稿:miss9ch@gmail.com 文章作品:http://pansci.asia/archives/author/miss9

0

6
0

文字

分享

0
6
0
千円紙幣上的細菌學家:野口英世誕辰|科學史上的今天:11/24
張瑞棋_96
・2015/11/24 ・982字 ・閱讀時間約 2 分鐘 ・SR值 523 ・七年級

-----廣告,請繼續往下閱讀-----

日本的千圓紙鈔上印著一位身著西裝、頭髮燙捲、留著小鬍子的男士,他就是日本人心目中的國民英雄,野口英世醫生。

日本1000日圓紙幣上的野口英世肖像。圖片來源:wikipedia

在美國紐約的洛克斐勒大學,圖書館二樓的角落裏,也有一座泛黑的野口英世半身銅像。這麼說,他在美國也備受肯定囉?不,學校師生沒有人知道他是誰;在西方,他早已成為歷史的灰燼。究竟為何會如此今非昔比,評價兩極?

野口英世出生於貧農家庭,一歲多時左手被火燒傷以致手指都黏在一起,但他並未因此自卑,反而積極向學,成績優異。後來小學的師生為他募款集資,才得以動手術,使左手恢復七成功能,野口因而立下懸壺濟世的志向。

-----廣告,請繼續往下閱讀-----

野口於1896年自齒科醫學院畢業,但兩年後轉到北里傳染病研究所服務。1899年,美國醫學權威佛萊斯納(Simon Flexner)來日本訪問,負責引導的野口想必留給佛萊斯納深刻的印象,才會在第二年收到野口的主動徵詢後,答應他來美國擔任其實驗助手。

佛萊斯納於1901年協助創建洛克斐勒醫學研究所,並擔任第一任所長;野口也於1904年跟著過來。1913年,野口成功培養出梅毒螺旋體而轟動醫學界,然而他被指控在兩年前為了實驗梅毒的檢測方法,對醫院一百多名與梅毒無關的病人注射梅毒螺旋體的萃取物,卻未事先告知他們。

隨後十幾年野口又陸續發現了小兒麻痺、狂犬病、黃熱病等傳染病的病原體,並發表近二百篇令人驚嘆的論文,被視為繼細菌學家巴斯德與柯霍之後的超級明星;如此輝煌的成就讓他在1913年至1927年間獲得諾貝爾醫學獎提名達七次之多。可惜他於1928年前往非洲研究黃熱病時,自己卻感染了黃熱病而客死異鄉。痛失愛徒的佛萊斯納親自主持野口的葬禮,並為他立了銅像。日本政府更是追贈他日本國民的最高獎章。

然而在他死後,他的研究開始受到西方科學家的質疑。許多人多方嘗試都無法重現他發表的實驗結果,他宣稱發現的各種病原體後來也都被確認是錯誤的。究竟這些錯誤是因為實驗過程不夠嚴謹或受到汙染,還是野口故意捏造資料,如今已不得而知。只是至今他在祖國日本與西方學界所得到的評價竟然有如此巨大的差異,實在頗耐人尋味。

-----廣告,請繼續往下閱讀-----

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

-----廣告,請繼續往下閱讀-----
張瑞棋_96
423 篇文章 ・ 1028 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。