Loading [MathJax]/extensions/tex2jax.js

0

11
4

文字

分享

0
11
4

IPCC最新氣候變遷報告說了什麼?更熱的地球與更脆弱的人類

台灣科技媒體中心_96
・2022/03/03 ・3926字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

氣候變遷衝擊面向更廣,台灣準備好了嗎?

正當全球關注俄羅斯與烏克蘭的戰事發展時,昨(2/28)日聯合國氣候變遷專門委員會(IPCC)發布了最新氣候變遷第六次評估報告第二冊《衝擊、調適與脆弱度》(AR6 Climate Change 2022: Impacts, Adaptation and Vulnerability),再次呼籲各界積極應對氣候變遷衝擊,並立即展開應對政策與調適行動。

該重量級報告指出,人類活動引起的氣候變遷現象,已在世界各地造成極大負面衝擊與不可逆的環境危機,危及大量的陸地與海洋物種生存,目前已有多達 33~36 億人口生存在易受氣候變遷衝擊的脆弱環境中,且氣候變遷影響不僅止於生態物種,更危及人類社會的糧食、水資源、都市及健康問題。

台灣多位專家隨之呼籲,許多過去未被注意到的風險,如心理健康、土木工程都可能遭受衝擊,台灣應重新盤點、反思各領域可能的衝擊與調適策略,以因應不斷變動的氣候變遷衝擊。近年當紅的「自然解決方案(Nature-based Solutions, NbS)」,也首次被納入 IPCC 科學報告,值得相關當局關注。

為協助台灣社會掌握最新氣候發展脈動,台灣科技媒體中心偕同財團法人台達電子文教基金會,於報告發表隔日公開本次報告完整的決策者摘要(SPM)中文翻譯,以及台灣專家回應觀點,協助相關單位制訂更適切的氣候變遷調適策略。

-----廣告,請繼續往下閱讀-----
這份重量級報告指出,人類引起的氣候變遷,已在世界各地造成極大負面衝擊與不可逆的環境危機。圖/envato elements

第六次報告強調的重點為何?

台灣科技媒體中心舉辦記者會,邀請台灣大學生物環境系統工程學系教授童慶斌、中央大學水文與海洋科學研究所教授李明旭、銘傳大學都市規劃與防災學系副教授石婉瑜解析這份重量級報告。這份報告是整個第六次評估報告(AR6)中的第二份,關注氣候變遷造成的衝擊、風險與人類的調適發展。

IPCC 再次呼籲,應對日益增加的氣候變遷風險應即時行動。相較於第五次評估報告,本次更強調,只要升溫超過攝氏 1.5 度,對生態或是人類系統的風險將大幅升高;而且升溫越多,人類將越無法調適。

童慶斌回應報告提到的風險,指出我們應該找出具有一致性與標準性的國家評估方法、建立可靠的科學證據;並根據 AR6 氣候情境,來評估台灣未來氣候變遷下的危害地圖,才能依此做出好的調適。同時標準化的評估方法,有助於不同層級、部門一起協力,建立夥伴關係,應對個別部門很難單一處理的跨領域風險。進一步形成跨部會、跨層級的公私協力夥伴關係,並考量永續發展目標。

童慶斌也提醒「衝擊與調適」在不同部門之間可能互斥,也可能互利。例如農業部門、民生部門、工業部門都會同時面對缺水問題,目前遇到這個問題,台灣是將農業用水調給民生工業部門,但這會與糧食安全互斥。另一面向,當我們面對淹水的問題,處理好淹水也會同時減少病媒蚊滋生的環境,與公共衛生領域共利。

-----廣告,請繼續往下閱讀-----

李明旭則指出,這次報告與第五次評估報告的最大差異,是強調全球暖化超過攝氏 1.5 度將產生的額外嚴酷風險。報告特別提醒調適與減緩之間,需要更好的權衡,並避免導致「不適當的調適」,而不適當的調適可能在解決一個氣候風險問題之後,產生新的衝擊問題,甚至進入高脆弱度、暴露與風險的困境。

這次報告強調全球暖化超過攝氏 1.5 度將產生的額外嚴酷風險。圖/envato elements

6個氣候變遷即將帶來的衝擊

1. 從氣候變遷觀察到的衝擊:

人為引起的氣候變遷,包括更頻繁、劇烈的極端天氣事件,對自然和人類造成廣泛的負面影響,且其造成的衝擊,可能超過人類與自然可調適的範圍。

a.     生態方面

全球評估大約一半的物種已經向極地或更高海拔的地區移動。極端高溫造成數以百計的物種損失,以及陸地及海洋大規模生物死亡的事件。有些生態損失是不可逆的,例如已滅絕的物種;有些衝擊接近不可逆的狀態,例如冰河退縮導致的水文變化。

b.    人類社會

(a)  糧食與水的安全首當其衝。中低緯度地區受到較大的負面衝擊,致使數百萬人面臨嚴重糧食不安全。水產養殖與漁業也受到負面影響。

-----廣告,請繼續往下閱讀-----

(b)  人類身體與心理健康的不利影響。例如:極端高溫導致人類死亡、提升發病率;擴大病媒蚊傳播範圍;極端天氣事件造成心理創傷等。

(c)   在城市中,主要的衝擊集中在經濟與社會弱勢的居民。此外關鍵基礎設施,如交通、水、能源系統,也正在受到極端天氣事件的影響。

報告中觀察到,全球評估大約一半的物種已經向極地或更高海拔的地區移動。圖/envato elements

2. 生態系統與人類的脆弱度和暴露:

a.     生態

全球僅不到 15% 的土地、21% 的淡水、8% 的海洋屬於保護區,且多數保護區缺乏降低氣候變遷影響的管理制度。預計世界上大部分的森林、珊瑚礁和低窪沿海地區,會受氣候影響而退化或損失。

b.    人類社會

大約 33-36 億人生活在極易受到氣候變遷影響的環境中。西非、中非、東非、南亞、中南美洲、小島嶼國家、北極地區是人類高度脆弱的熱點。

-----廣告,請繼續往下閱讀-----
大約 33-36 億人生活在極易受到氣候變遷影響的環境中。圖/envato elements

3. 近期(2021-2040)風險:

在近期全球升溫就可能達攝氏 1.5 度,將會造成多種氣候災害增加。在近期自然和人類系統的氣候風險,取決於脆弱度與暴露程度,而非排放情境。與暖化加劇的情境相比,將升溫限制在1.5度可以大幅減少自然和人類的損失,但不能完全消除。

4. 中長期(2041-2100)風險:

2040 年後,氣候變遷的風險與全球暖化的程度高度相關。

a.     生態

估計在全球升溫攝氏 1.5-2 度間,生物多樣性熱點地區的特有物種的滅絕風險至少翻倍;如果升溫幅度為攝氏 1.5-3 度,則至少增加 10 倍。

b.    人類社會

在中長期所有評估中,暖化程度越高,可使用的水資源風險及水有關的危害程度越大;糧食生產和取得的壓力增加;熱浪的暴露人口持續增加;城市、關鍵基礎設施的風險增加,預計如果全球平均海平面相較於 2020 年上升 0.15 公尺,遭受百年一遇洪災的人口會增加 20%。

-----廣告,請繼續往下閱讀-----

5. 氣候變遷的衝擊與風險越來越複雜、越來越難以管理。

多種氣候災害同時發生,且氣候與非氣候的風險交互作用,將導致新的衝擊與風險。

6. 暫時超出攝氏 1.5 度的風險:

目前的推估模型對於這個路徑的評估有限。但暫時超過攝氏 1.5 度仍會造成部分低恢復力的生態系統,如極地、山區、沿海生態系不可逆的影響。

我們該如何提高氣候韌性?

報告中,針對氣候韌性提出四大重點:

  1. 各個國家地區基於資源、脆弱度、文化價值的差異,選擇不同的排放情境,導致實現氣候韌性發展的機會之窗正在迅速縮小。
  2. 當政府、民間社會和私部門做出以減少風險、公平和正義為優先的發展選擇,且決策過程與資金都有跨部門的合作,最可能實現氣候韌性發展。
  3. 鑑於氣候變遷對生態系統與生物多樣性的威脅,保護生物多樣性與生態系統,是發展氣候韌性的基礎。
  4. 毫無疑問,氣候變遷已經擾亂自然與人類系統。未來十年採取的社會選擇與行動,決定了在中長期路徑上氣候韌性的高低。重要的是,如果當前不迅速減少溫室氣體排放,特別當升溫超過攝氏1.5度,氣候韌性發展的前景,將會越來越有限。

李明旭認為,這份報告不斷提到「包容式的治理過程」,強調資訊公開、決策透明。同時需建立夥伴關係、減少調適的軟性限制,透過政策工具與組織制度,建立促進調適發展的重要基礎。同時這次的報告強調「未來十年,人類的行動將會決定未來我們要面對多少風險」,且與 2030 永續發展的目標緊密扣連。

-----廣告,請繼續往下閱讀-----

石婉瑜提到與過去相比,AR6 採用新的框架評估與討論氣候風險。從人類社會、自然生態與氣候,三個系統的依存關係與交互作用,尋求達成氣候韌性的方法。石婉瑜指出,傳統的系統經常造成「不永續」與「氣候變遷」,因此這份報告強調人類與生態系統的永續、公正轉型,以及各種系統的創新轉變。

圖/envato elements

石婉瑜強調都市化是全球的趨勢,全球大部分的人口居住在都市中,而越來越多的城市暴露在高氣候風險之下,因此「城市」的氣候科學與調適已經是 IPCC 的關注焦點。石婉瑜認為報告中所指不當調適、災害風險不均、氣候正義問題,值得決策者重視,且須納入各類知識與族群參與規劃。此外以生態系統為基礎的「自然解方」,首次被納入 IPCC 報告的城市調適策略,未來台灣規劃調適策略與氣候韌性路徑時,也應列為核心考量。

延伸閱讀

-----廣告,請繼續往下閱讀-----
文章難易度
台灣科技媒體中心_96
46 篇文章 ・ 328 位粉絲
台灣科技媒體中心希望架構一個具跨領域溝通性質的科學新聞平台,提供正確的科學新聞素材與科學新聞專題探討。

0

1
1

文字

分享

0
1
1
伺服器過熱危機!液冷與 3D VC 技術如何拯救高效運算?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/11 ・3194字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 高柏科技 合作,泛科學企劃執行。

當我們談論能擊敗輝達(NVIDIA)、Google、微軟,甚至是 Meta 的存在,究竟是什麼?答案或許並非更強大的 AI,也不是更高速的晶片,而是你看不見、卻能瞬間讓伺服器崩潰的「熱」。

 2024 年底至 2025 年初,搭載 Blackwell 晶片的輝達伺服器接連遭遇過熱危機,傳聞 Meta、Google、微軟的訂單也因此受到影響。儘管輝達已經透過調整機櫃設計來解決問題,但這場「科技 vs. 熱」的對決,才剛剛開始。 

不僅僅是輝達,微軟甚至嘗試將伺服器完全埋入海水中,希望藉由洋流降溫;而更激進的做法,則是直接將伺服器浸泡在冷卻液中,來一場「浸沒式冷卻」的實驗。

-----廣告,請繼續往下閱讀-----

但這些方法真的有效嗎?安全嗎?從大型數據中心到你手上的手機,散熱已經成為科技業最棘手的難題。本文將帶各位跟著全球散熱專家 高柏科技,一同看看如何用科學破解這場高溫危機!

運算=發熱?為何電腦必然會發熱?

為什麼電腦在運算時溫度會升高呢? 圖/unsplash

這並非新問題,1961年物理學家蘭道爾在任職於IBM時,就提出了「蘭道爾原理」(Landauer Principle),他根據熱力學提出,當進行計算或訊息處理時,即便是理論上最有效率的電腦,還是會產生某些形式的能量損耗。因為在計算時只要有訊息流失,系統的熵就會上升,而隨著熵的增加,也會產生熱能。

換句話說,當計算是不可逆的時候,就像產品無法回收再利用,而是進到垃圾場燒掉一樣,會產生許多廢熱。

要解決問題,得用科學方法。在一個系統中,我們通常以「熱設計功耗」(TDP,Thermal Design Power)來衡量電子元件在正常運行條件下產生的熱量。一般來說,TDP 指的是一個處理器或晶片運作時可能會產生的最大熱量,通常以瓦特(W)為單位。也就是說,TDP 應該作為這個系統散熱的最低標準。每個廠商都會公布自家產品的 TDP,例如AMD的CPU 9950X,TDP是170W,GeForce RTX 5090則高達575W,伺服器用的晶片,則可能動輒千瓦以上。

-----廣告,請繼續往下閱讀-----

散熱不僅是AI伺服器的問題,電動車、儲能設備、甚至低軌衛星,都需要高效散熱技術,這正是高柏科技的專長。

「導熱介面材料(TIM)」:提升散熱效率的關鍵角色

在電腦世界裡,散熱的關鍵就是把熱量「交給」導熱效率高的材料,而這個角色通常是金屬散熱片。但散熱並不是簡單地把金屬片貼在晶片上就能搞定。

現實中,晶片表面和散熱片之間並不會完美貼合,表面多少會有細微間隙,而這些縫隙如果藏了空氣,就會變成「隔熱層」,阻礙熱傳導。

為了解決這個問題,需要一種關鍵材料,導熱介面材料(TIM,Thermal Interface Material)。它的任務就是填補這些縫隙,讓熱可以更加順暢傳遞出去。可以把TIM想像成散熱高速公路的「匝道」,即使主線有再多車道,如果匝道堵住了,車流還是無法順利進入高速公路。同樣地,如果 TIM 的導熱效果不好,熱量就會卡在晶片與散熱片之間,導致散熱效率下降。

-----廣告,請繼續往下閱讀-----

那麼,要怎麼提升 TIM 的效能呢?很直覺的做法是增加導熱金屬粉的比例。目前最常見且穩定的選擇是氧化鋅或氧化鋁,若要更高效的散熱材料,則有氮化鋁、六方氮化硼、立方氮化硼等更高級的選項。

典型的 TIM 是由兩個成分組成:高導熱粉末(如金屬或陶瓷粉末)與聚合物基質。大部分散熱膏的特點是流動性好,盡可能地貼合表面、填補縫隙。但也因為太「軟」了,受熱受力後容易向外「溢流」。或是造成基質和熱源過分接觸,高分子在高溫下發生熱裂解。這也是為什麼有些導熱膏使用一段時間後,會出現乾裂或表面變硬。

為了解決這個問題,高柏科技推出了凝膠狀的「導熱凝膠」,說是凝膠,但感覺起來更像黏土。保留了可塑性、但更有彈性、更像固體。因此不容易被擠壓成超薄,比較不會熱裂解、壽命也比較長。

OK,到這裡,「匝道」的問題解決了,接下來的問題是:這條散熱高速公路該怎麼設計?你會選擇氣冷、水冷,還是更先進的浸沒式散熱呢?

-----廣告,請繼續往下閱讀-----

液冷與 3D VC 散熱技術:未來高效散熱方案解析

除了風扇之外,目前還有哪些方法可以幫助電腦快速散熱呢?圖/unsplash

傳統的散熱方式是透過風扇帶動空氣經過散熱片來移除熱量,也就是所謂的「氣冷」。但單純的氣冷已經達到散熱效率的極限,因此現在的散熱技術有兩大發展方向。

其中一個方向是液冷,熱量在經過 TIM 後進入水冷頭,水冷頭內的不斷流動的液體能迅速帶走熱量。這種散熱方式效率好,且增加的體積不大。唯一需要注意的是,萬一元件損壞,可能會因為漏液而損害其他元件,且系統的成本較高。如果你對成本有顧慮,可以考慮另一種方案,「3D VC」。

3D VC 的原理很像是氣冷加液冷的結合。3D VC 顧名思義,就是把均溫板層層疊起來,變成3D結構。雖然均溫板長得也像是一塊金屬板,原理其實跟散熱片不太一樣。如果看英文原文的「Vapor Chamber」,直接翻譯是「蒸氣腔室」。

在均溫板中,會放入容易汽化的工作流體,當流體在熱源處吸收熱量後就會汽化,當熱量被帶走,汽化的流體會被冷卻成液體並回流。這種利用液體、氣體兩種不同狀態進行熱交換的方法,最大的特點是:導熱速度甚至比金屬的熱傳導還要更快、熱量的分配也更均勻,不會有熱都聚集在入口(熱源處)的情況,能更有效降溫。

-----廣告,請繼續往下閱讀-----

整個 3DVC 的設計,是包含垂直的熱導管和水平均溫板的 3D 結構。熱導管和均溫板都是採用氣、液兩向轉換的方式傳遞熱量。導熱管是電梯,能快速把散熱工作帶到每一層。均溫板再接手將所有熱量消化掉。最後當空氣通過 3DVC,就能用最高的效率帶走熱量。3DVC 跟水冷最大的差異是,工作流體移動的過程經過設計,因此不用插電,成本僅有水冷的十分之一。但相對的,因為是被動式散熱,其散熱模組的體積相對水冷會更大。

從 TIM 到 3D VC,高柏科技一直致力於不斷創新,並多次獲得國際專利。為了進一步提升 3D VC 的散熱效率並縮小模組體積,高柏科技開發了6項專利技術,涵蓋系統設計、材料改良及結構技術等方面。經過設計強化後,均溫板不僅保有高導熱性,還增強了結構強度,顯著提升均溫速度及耐用性。

隨著散熱技術不斷進步,有人提出將整個晶片組或伺服器浸泡在冷卻液中的「浸沒式冷卻」技術,將主機板和零件完全泡在不導電的特殊液體中,許多冷卻液會選擇沸點較低的物質,因此就像均溫板一樣,可以透過汽化來吸收掉大量的熱,形成泡泡向上浮,達到快速散熱的效果。

然而,因為水會導電,因此替代方案之一是氟化物。雖然效率差了一些,但至少可以用。然而氟化物的生產或廢棄時,很容易產生全氟/多氟烷基物質 PFAS,這是一種永久污染物,會對環境產生長時間影響。目前各家廠商都還在試驗新的冷卻液,例如礦物油、其他油品,又或是在既有的液體中添加奈米碳管等特殊材質。

-----廣告,請繼續往下閱讀-----

另外,把整個主機都泡在液體裡面的散熱邏輯也與原本的方式大相逕庭。如何重新設計液體對流的路線、如何讓氣泡可以順利上浮、甚至是研究氣泡的出現會不會影響元件壽命等等,都還需要時間來驗證。

高柏科技目前已將自家產品提供給各大廠商進行相容性驗證,相信很快就能推出更強大的散熱模組。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
224 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

2
0

文字

分享

0
2
0
末日模擬!從氣候變遷到核戰爭,人類未來將走向哪個結局?
PanSci_96
・2024/11/19 ・1957字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

科學家模擬的末日場景

隨著二氧化碳排放持續增加,全球的政治局勢日益緊張,世界上各國的承諾屢屢在國際會議中被辜負,戰爭的結束也似乎遙遙無期。警示世界末日的「末日鐘」越來越接近午夜,人類與地球的未來變得越來越悲觀。

這並非一種刻意的悲觀,而是基於氣候變遷和人類衝突升溫的現實。許多人或許和我一樣好奇,末日會不會真的臨近?如果會,那又會是什麼樣的場景?是氣候徹底失控的《明天過後》?還是生態浩劫後的全面沙漠化,需要武力生存的《沙丘》和《瘋狂麥斯》?或者是核戰之後,所有人生存在廢墟中的《異塵餘生》?

我們的未來走向尚未確定,但科學家已經率先模擬了不同的可能結局,讓我們可以一窺未來的模樣。這些模擬告訴我們,如果人類繼續走某些路徑,地球的結局將是如何。至於我們是否能避免這些結果,就得由全體人類共同決定。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

如何模擬出整顆星球的氣候變化?

要模擬整顆星球的大氣變化是一項龐大的任務,至少需要三大要素:理論、資料、和計算資源。

-----廣告,請繼續往下閱讀-----

首先,人類對氣候系統的物理和化學模式需要有足夠的了解,也就是大氣理論必須足夠完備。其次,需要足夠多的資料來模擬整個行星。這些資料包括地球半徑、自轉速度、海洋分布、太陽輻射、大氣成分等等,甚至是地表的狀況與地形。台灣的中央山脈就能影響到西太平洋的颱風走向,進而影響整個東亞的氣候。如果希望盡可能還原地球的真實情況,還需考量海洋的垂直溫度分布、植物分布導致的生物地球化學反應等。

最後,還需要強大的計算資源,也就是超級電腦。由於資料量龐大,每個參數的小誤差都可能引發蝴蝶效應,影響到預測結果。因此,科學家通常會微調各項參數,並對每組參數進行多次計算,這些都需要大量的運算能力。

模擬沙丘中的荒漠星球

科幻小說《沙丘》中的厄拉科斯,經布里斯托大學模擬,揭示未來氣候可能。圖/wikimedia

科幻小說《沙丘》中的厄拉科斯(Arrakis)是一顆完全荒漠化的星球,英國布里斯托大學的亞歷山大·法恩沃斯等人曾對這顆星球進行了模擬。他們使用在研究地球氣候變遷時使用的氣候模型,並結合小說中的設定,如大氣中的二氧化碳濃度和臭氧含量等,模擬了 500 年後的厄拉科斯氣候。

模擬結果顯示,厄拉科斯的赤道和熱帶地區夏季高溫達 45 度,冬季不低於 15 度。而高緯度地區則更為極端,夏季高溫可達 70 度,冬季最低可達 -75 度。由於大氣濕度和雲層的存在,極地反而比赤道更溫暖。此外,儘管小說中描述厄拉科斯幾乎沒有降雨,但模擬顯示高緯度和山區仍會有少量降雨。

-----廣告,請繼續往下閱讀-----

這些結果顯示,科學家不僅愛科幻,也樂於用科學方法來驗證科幻中的設定。這些模擬能讓我們更了解地球的氣候系統,並讓我們警惕荒漠化的危機。

核戰後的世界:核冬天的可怕景象

如果人類全面爆發核戰爭,戰後的世界會是什麼樣子?研究顯示,大規模的核武攻擊將產生大量的輻射塵和煙灰,進入大氣層並遮蔽陽光,導致「核冬天」的到來。

2019 年的一篇研究模擬了美俄之間的全面核戰爭,結果顯示,爆發後的第一年,全球氣溫將大幅下降,北半球的夏季溫度將下降 25 度,冬季氣溫則會降至零下,植物生長期縮短至僅剩 25 天。煙灰遮蔽陽光,導致全球糧食供應崩潰,第二年可能有 50 億人面臨飢餓。

這些模擬結果告訴我們,全面核戰將帶來毀滅性的後果,核冬天將使人類無法正常生活,這是真正的末日場景。

-----廣告,請繼續往下閱讀-----
核戰模擬顯示,氣溫驟降與糧食崩潰將致全球大饑荒。圖/envato

地球的未來會是如何?

地球未來的命運取決於我們今天的選擇。如果我們對氣候變遷置之不理,兩極冰帽將完全融化,海平面上升,許多沿海地區將被淹沒。雖然不至於像《水世界》中那樣極端,但低地區域的居民將面臨嚴重的生存挑戰。

如果人類選擇繼續衝突,甚至爆發毀滅性戰爭,我們的未來將如《瘋狂麥斯》或《異塵餘生》般,生存在廢墟中,面對乾旱、糧食短缺與持續的環境破壞。

歡迎訂閱 Pansci Youtube 頻道 鎖定每一個科學大事件!

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1262 篇文章 ・ 2411 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

1
0

文字

分享

0
1
0
深海發現大型礦場和「暗氧」!是能源危機的希望還是潘朵拉之盒?
PanSci_96
・2024/09/21 ・2334字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

深海的暗氧:無光環境中的神秘氧氣生成

深海,被譽為地球最後的未開發疆域,隱藏著許多不為人知的奧秘。數千公尺深的海底沉積了數量龐大的多金屬結核,這些礦物因含有大量珍貴金屬,對現代技術,尤其是能源轉型,至關重要。然而,科學家在探索這些結核的過程中意外地發現了一種神秘的現象:暗氧,即在無光的深海環境中生成氧氣的過程。這一發現不僅可能改變我們對海洋生態系統的理解,還可能重新定義地球早期生命起源的故事。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

長期以來,科學界普遍認為氧氣的生成依賴於光合作用。光合作用是植物、藻類及一些細菌透過陽光將水和二氧化碳轉化為有機物並釋放氧氣的過程。這一過程主要發生在地球表層和淺水區域,是維持大氣和海洋中氧氣含量的核心機制。根據這一觀點,只有在陽光能夠到達的區域,氧氣才能被生成。因此,對於深達數千公尺的深海區域,我們的認識是,氧氣主要來自於表層水透過洋流輸送到深處。

然而,深海中缺乏光源,光合作用無法進行,這意味著氧氣在深海中的供應受到限制。雖然洋流能夠在一定程度上將氧氣輸送到深海,但這一過程極其緩慢,往往需要數百年甚至上千年才能完成一次循環。因此,科學家一直認為深海是一個缺氧的環境。

多金屬結核的發現,是新能源的關鍵,還是海洋生態的災難?

在這樣的背景下,科學家對深海進行了更深入的探索,並發現了錳結核(英語:Manganese nodules),又被稱為多金屬結核這一珍貴資源。多金屬結核是富含金屬的岩石,其主要成分包括鈷、錳和鎳等金屬。這些結核廣泛分佈於全球深海區域,尤其是太平洋海域,儲量高達數兆噸。這些金屬對綠色能源技術,如電池生產,具有極高的價值,吸引了全球各國的關注。

-----廣告,請繼續往下閱讀-----

然而,這些結核不僅是地球資源的寶藏,它們還隱藏著另一個重要的發現。2013 年,科學家安德魯·斯威特曼(Andrew Sweetman)在太平洋克拉里昂-克里珀頓區域進行深海研究時,意外地發現,在封閉的深海水域中,氧氣濃度竟然有所增加。這一現象引發了科學界的極大關注。

科學家探索深海的多金屬結核時,意外發現「暗氧」的存在。 圖/envato

暗氧的生成機制

斯威特曼的研究團隊推測,深海中的多金屬結核可能在某些化學條件下,充當了天然電池。這些結核通過電化學反應將水分解為氧氣和氫氣,從而在無光的環境中產生了氧氣。為了驗證這一假設,團隊在實驗室中模擬了深海環境,並確實觀察到氧氣從結核生成的現象。

不過,這一過程並非如想像中簡單。根據實驗數據,某些海底結核表面的電壓僅為 0.95 伏特,卻能夠生成氧氣,這與理論上需要的 1.6 伏特電壓不符。研究團隊進一步推測,這可能與結核的成分有關,例如含鎳的錳氧化物可能起到了催化作用,降低了反應所需的能量。此外,結核表面的不規則排列及空隙可能也促進了電子轉移和水的分解。

暗氧的發現挑戰了我們對氧氣生成的傳統理解。過去我們認為,地球上的氧氣主要來自於光合作用,但這一現象表明,甚至在無光的深海環境中,氧氣也能通過無機物的電化學反應生成。這意味著,我們對於地球早期氧氣循環及生命演化的認識可能存在重大疏漏。

-----廣告,請繼續往下閱讀-----

尤其值得注意的是,多金屬結核的形成需要氧氣,而這些結核大量出現在深海中,是否表明早期地球上就已經存在非光合作用的氧氣生成機制?如果是這樣,暗氧是否可能推動了地球上生命的起源?這一問題仍然未有定論,但暗氧的發現無疑為生命起源的研究開闢了一條新的途徑。

未來的挑戰:開採深海資源還是守護地球最後的「淨土」?

除了科學研究的價值,多金屬結核也吸引了全球對於深海資源開採的興趣。這些結核富含稀有金屬,特別是對電池生產至關重要的鎳和鈷。然而,大規模的深海開採可能會對海洋生態系統造成嚴重破壞。

對於發現的深海資源,是要開採?還是選擇守護海洋生態? 圖/envato

首先,深海採礦可能導致噪音和光污染,破壞深海生物的棲息地。此外,採礦過程中產生的懸浮物可能對海洋生物,尤其是水母等生物造成生理負擔。研究顯示,水母在模擬的採礦環境中會因應對懸浮物而消耗大量能量,這可能削弱其免疫系統並降低生存率。

因此,雖然深海資源的開採看似能解決當前的能源危機,但國際間對此議題的爭議仍然持續。全球已有32個國家支持暫停或禁止深海採礦,呼籲進行更多的生態影響研究以確保環境保護。

-----廣告,請繼續往下閱讀-----

暗氧的發現,不僅為科學研究帶來新的挑戰,也為深海資源的開採提出了更高的要求。在能源危機與生態保護之間,我們需要尋找平衡點。未來的技術或許能夠在不破壞環境的情況下,模擬自然過程生成多金屬結核,從而實現可持續的資源開採。

此外,暗氧現象的發現也為探索外星生命提供了新的思路。當我們在其他行星上發現氧氣時,不一定意味著那裡存在光合作用生物,可能是類似多金屬結核的無機反應在默默進行。這一發現或許將改變我們對地外生命的定義與尋找方式。

深海的秘密仍在不斷被揭開。從暗氧的發現到多金屬結核的開採,這片未開發的疆域將在未來的科學探索與資源爭奪中扮演至關重要的角色。無論是能源危機的解決還是生態系統的保護,我們都應以謹慎且負責任的態度面對這一未知的領域,避免打開潘朵拉之盒。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1262 篇文章 ・ 2411 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。