Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

覺得喘不過氣?當心氣胸找上門

careonline_96
・2019/12/04 ・1762字 ・閱讀時間約 3 分鐘 ・SR值 451 ・四年級

-----廣告,請繼續往下閱讀-----

  • 作者/劉育志 醫師
  • 本文轉載自 Care Online 照護線上《喘不過氣的女孩》,歡迎喜歡這篇文章的朋友訂閱支持 Care Online 喔!
圖\pixabay

門診即將結束時,電腦上又冒出一位初診患者。

「咦?怎麼還有人掛號?」我回頭看看時鐘。

護理師若婷正要確認時,門外便傳來急促的腳步聲。

「動作這麼快啊。」若婷起身開門。

-----廣告,請繼續往下閱讀-----

穿著套裝、高跟鞋,一身 OL 打扮的李小姐快步走進診間,上氣不接下氣地說:「掛號櫃台叫我趕快過來,幸好你們還沒離開。」

「醫生…我要做乳房超音波。」李小姐站著一邊喘,一邊說。

「有摸到異常腫塊嗎?」我問。

李小姐搖搖頭。

-----廣告,請繼續往下閱讀-----

「有乳癌家族史嗎?」

李小姐同樣搖搖頭。

我依序問了幾個與乳房相關的問題,並在病歷上做紀錄。

「為什麼會想要做超音波呢?」我問。

-----廣告,請繼續往下閱讀-----

李小姐坐了下來,不過還是有點喘,「因為我前天去給師父把脈……」

「把脈?」

「嗯,把脈完後他說有乳房腫瘤,叫我來檢查。」

「當時有檢查乳房嗎?」

-----廣告,請繼續往下閱讀-----

「沒有,他把脈就知道了。」

「欸……」我的手懸在半空中,不知該如何下筆。若因為這種主訴而安排乳房超音波,肯定會被健保審查委員大筆一刪,順便放大罰扣幾十倍。

當我還在考慮該怎麼回答的時候,李小姐問:「醫生,能夠今天做超音波嗎?」

「今天?」我面露難色,「沒辦法耶,剛剛問過放射科櫃台,乳房超音波最快大概要排到三個禮拜後。」

-----廣告,請繼續往下閱讀-----

「三個禮拜?!」李小姐一臉震驚。

「沒辦法,最近患者很多,所以要排比較久。」我道。

「那我可以去掛急診嗎?」

「恐怕沒辦法,乳房腫瘤沒有立即生命危險,急診應該不會受理。況且,急診室也沒有合適的機器可以替妳做乳房超音波。」

-----廣告,請繼續往下閱讀-----

「真的不能立刻做嗎?」李小姐哭喪著臉道:「我想我可能撐不到那個時候……」

「小姐,妳先別緊張……」我委婉地解釋:「一來,妳不見得有乳房腫瘤;二來,即使有乳房腫瘤,肯定不是今天長出來的,也不會在這麼短的時間內出現大變化。」

「可是,我真的愈來愈喘,愈來愈不舒服,所以才會臨時跟公司請假,趕過來看門診。」李小姐道。

「愈來愈喘……」原本我以為是方才急急忙忙的奔跑讓她上氣不接下氣,但是,經過這段時間的歇息,她的呼吸還是有點急促。

-----廣告,請繼續往下閱讀-----

「我就是覺得胸悶不舒服才去給人家把脈,聽他那樣說,我就掛了下禮拜的門診。可是今天覺得呼吸愈來愈不舒服,於是趕緊過來。」李小姐不死心地問:「其他醫院的乳房超音波也要排這麼久嗎?」

「小姐,妳先別說話,幫妳聽一下。」我從口袋裡拿出聽診器。她的呼吸聲完全符合我的預期。

見我放下聽診器,李小姐焦急地問:「有沒有很嚴重?能不能立刻做檢查?」

「小姐,我現在開單,妳立刻過去放射科。」我特別強調:「立刻!」

「太好了,謝謝醫師。」李小姐的臉上露出喜色。

我迅速輸入檢查代碼後,印表機便呼呼地開始運轉,「小姐,妳等一下要做的檢查不是乳房超音波。」

「什麼?」李小姐愣住了。

「妳需要去照張X光片。」

「是……乳房攝影嗎?」

「不是乳房攝影,是胸部X光。」我道:「讓妳胸悶不舒服的主因應該是氣胸。」

「氣胸?可是我想檢查乳房耶……」

「我們的胸腔裡有肺臟,肺臟由許多肺泡組成。」我在紙上畫了示意圖,「當肺泡破裂時,漏出的空氣會積在胸腔裡,讓人感到胸悶、呼吸不適。倘若沒有及時處理,愈積愈多的空氣使肺臟塌陷,將讓人喘不過氣,甚至可能危及生命。」

李小姐瞪大眼睛,完全說不出話。

「照完X光後,我們直接過去急診室,依妳的狀況應該需要趕緊插胸管引流胸腔裡的空氣。」我迅速說明了治療計畫。

這會兒,若婷已經準備好輪椅,道:「小姐,妳坐上來,我送妳過去。」

「我……我可以自己走……」李小姐有點遲疑。

「不要勉強,為了安全起見,還是坐輪椅吧。」聽完我的勸說,她才坐上輪椅。

「劉醫師,那我就順便把病歷帶過去囉。」若婷道。

「沒問題,我先請他們準備器械,待會兒急診室見!」

當我拿X光片跟李小姐解釋時,她依然半信半疑,直到插完胸管,延續多日的胸悶不適大大改善,她才相信問題真的出在肺臟。雖沒如願做到乳房超音波,但是既然撿回一條命,當然也就沒什麼好抱怨的了。

-----廣告,請繼續往下閱讀-----
文章難易度
careonline_96
562 篇文章 ・ 279 位粉絲
台灣最大醫療入口網站

0

1
0

文字

分享

0
1
0
純淨之水的追尋—濾水技術如何改變我們的生活?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/17 ・3142字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 BRITA 合作,泛科學企劃執行。

你確定你喝的水真的乾淨嗎?

如果你回到兩百年前,試圖喝一口當時世界上最大城市的飲用水,可能會立刻放下杯子——那水的顏色帶點黃褐,氣味刺鼻,甚至還飄著肉眼可見的雜質。十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」,當時的人們雖然知道水不乾淨,但卻無力改變,導致霍亂和傷寒等疾病肆虐。

十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」(圖片來源 / freepik)

幸運的是,現代自來水處理系統已經讓我們喝不到這種「肉眼可見」的污染物,但問題可還沒徹底解決。面對 21 世紀的飲水挑戰,哪些技術真正有效?

-----廣告,請繼續往下閱讀-----

19 世紀的歐洲因為城市人口膨脹與工業發展,面臨了前所未有的水污染挑戰。當時多數城市的供水系統仍然依賴河流、湖泊,甚至未經處理的地下水,導致傳染病肆虐。

1854 年,英國醫生約翰·斯諾(John Snow)透過流行病學調查,發現倫敦某口公共水井與霍亂爆發直接相關,這是歷史上首次確立「飲水與疾病傳播的關聯」。這項發現徹底改變了各國政府對供水系統的態度,促使公衛政策改革,加速了濾水與消毒技術的發展。到了 20 世紀初,英國、美國等國開始在自來水中加入氯消毒,成功降低霍亂、傷寒等水媒傳染病的發生率,這一技術迅速普及,成為現代供水安全的基石。    

 19 世紀末的台灣同樣深受傳染病困擾,尤其是鼠疫肆虐。1895 年割讓給日本後,惡劣的衛生條件成為殖民政府最棘手的問題之一。1896 年,後藤新平出任民政長官,他本人曾參與東京自來水與下水道系統的規劃建設,對公共衛生系統有深厚理解。為改善台灣水源與防疫問題,他邀請了曾參與東京水道工程的英籍技師 W.K. 巴爾頓(William Kinnimond Burton) 來台,規劃現代化的供水設施。在雙方合作下,台灣陸續建立起結合過濾、消毒、儲水與送水功能的設施。到 1917 年,全台已有 16 座現代水廠,有效改善公共衛生,為台灣城市化奠定關鍵基礎。

-----廣告,請繼續往下閱讀-----
圖片來源/BRITA

進入 20 世紀,人們已經可以喝到看起來乾淨的水,但問題真的解決了嗎? 科學家如今發現,水裡仍然可能殘留奈米塑膠、重金屬、農藥、藥物代謝物,甚至微量的內分泌干擾物,這些看不見、嚐不出的隱形污染,正在成為21世紀的飲水挑戰。也因此,濾水技術迎來了一波科技革新,活性碳吸附、離子交換樹脂、微濾、逆滲透(RO)等技術相繼問世,各有其專長:

活性碳吸附:去除氯氣、異味與部分有機污染物

離子交換樹脂:軟化水質,去除鈣鎂離子,減少水垢

微濾技術逆滲透(RO)技術:攔截細菌與部分微生物,過濾重金屬與污染物等

-----廣告,請繼續往下閱讀-----

這些技術相互搭配,能夠大幅提升飲水安全,然而,無論技術如何進步,濾芯始終是濾水設備的核心。一個設計優良的濾芯,決定了水質能否真正被淨化,而現代濾水器的競爭,正是圍繞著「如何打造更高效、更耐用、更智能的濾芯」展開的。於是,最關鍵的問題就在於到底該如何確保濾芯的效能?

濾芯的壽命與更換頻率:濾水效能的關鍵時刻濾芯,雖然是濾水器中看不見的內部構件,卻是決定水質純淨度的核心。以德國濾水品牌 BRITA 為例,其濾芯技術結合椰殼活性碳和離子交換樹脂,能有效去除水中的氯、除草劑、殺蟲劑及藥物殘留等化學物質,並過濾鉛、銅等重金屬,同時軟化水質,提升口感。

然而,隨著市場需求的增長,非原廠濾芯也悄然湧現,這不僅影響濾水效果,更可能帶來健康風險。據消費者反映,同一網路賣場內便可輕易購得真假 BRITA 濾芯,顯示問題日益嚴重。為確保飲水安全,建議消費者僅在實體官方授權通路或網路官方直營旗艦店購買濾芯,避免誤用來路不明的濾芯產品讓自己的身體當過濾器。

辨識濾芯其實並不難——正品 BRITA 濾芯的紙盒下方應有「台灣碧然德」的進口商貼紙,正面則可看到 BRITA 商標,以及「4週換放芯喝」的標誌。塑膠袋外包裝上同樣印有 BRITA 商標。濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計,底部則標示著創新科技過濾結構。購買時仔細留意這些細節,才能確保濾芯發揮最佳過濾效果,讓每一口水都能保證潔淨安全。

-----廣告,請繼續往下閱讀-----
濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計 (圖片來源 / BRITA)

不過,即便是正品濾芯,其效能也非永久不變。隨著使用時間增加,濾芯的孔隙會逐漸被污染物堵塞,導致過濾效果減弱,濾水速度也可能變慢。而且,濾芯在拆封後便接觸到空氣,潮濕的環境可能會成為細菌滋生的溫床。如果長期不更換濾芯,不僅會影響過濾效能,還可能讓積累的微小污染物反過來影響水質,形成「過濾器悖論」(Filter Paradox):本應淨化水質的裝置,反而成為污染源。為此,BRITA 建議每四週更換一次濾芯,以維持穩定的濾水效果。

為了解決使用者容易忽略更換時機的問題,BRITA 推出了三大智慧提醒機制,確保濾芯不會因過期使用而影響水質:

1. Memo 或 LED 智慧濾芯指示燈:即時監測濾芯狀況,顯示剩餘效能,讓使用者掌握最佳更換時間。

2. QR Code 掃碼電子日曆提醒:掃描包裝外盒上的 QR Code 記錄濾芯的使用時間,自動提醒何時該更換,減少遺漏。

-----廣告,請繼續往下閱讀-----

3. LINE 官方帳號自動通知:透過 LINE 推送更換提醒,確保用戶不會因忙碌而錯過更換時機。

在濾水技術日新月異的今天,濾芯已不僅僅是過濾裝置,更是智慧監控的一部分。如何挑選最適合自己需求的濾水設備,成為了健康生活的關鍵。

人類對潔淨飲用水的追求,從未停止。19世紀,隨著城市化與工業化發展,水污染問題加劇並引發霍亂等疾病,促使濾水技術迅速發展。20世紀,氯消毒技術普及,進一步保障了水質安全。隨著科技進步,現代濾水技術透過活性碳、離子交換等技術,去除水中的污染物,讓每一口水更加潔淨與安全。

-----廣告,請繼續往下閱讀-----
(圖片來源 / BRITA)

今天,消費者不再單純依賴公共供水系統,而是能根據自身需求選擇適合的濾水設備。例如,BRITA 提供的「純淨全效型濾芯」與「去水垢專家濾芯」可針對不同需求,從去除餘氯、過濾重金屬到改善水質硬度等問題,去水垢專家濾芯的去水垢能力較純淨全效型濾芯提升50%,並通過 SGS 檢測,通過國家標準水質檢測「可生飲」,讓消費者能安心直飲。

然而,隨著環境污染問題的加劇,真正的挑戰在於如何減少水污染,並確保每個人都能擁有乾淨水源。科技不僅是解決問題的工具,更應該成為守護未來的承諾。濾水器不僅是家用設備,它象徵著人類與自然的對話,提醒我們水的純淨不僅是技術的勝利,更是社會的責任和對未來世代的承諾。

*符合濾(淨)水器飲用水水質檢測技術規範所列9項「金屬元素」及15項「揮發性有機物」測試
*僅限使用合格自來水源,且住宅之儲水設備至少每6-12個月標準清洗且無受汙染之虞

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
225 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

3
5

文字

分享

0
3
5
將一生毫無保留地奉獻給科學——瑪麗亞.斯克沃多夫斯卡.居禮
椀濘_96
・2022/03/21 ・3561字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

做測驗,就有機會獲得免費特製手搖飲品,現場還有大獎等你抽!

瑪麗亞.斯克沃多夫斯卡-居禮(Maria Skłodowska-Curie,1867-1934),看姓氏不難聯想到,她就是我們所熟知的居禮夫人。她開創了放射性理論,發明分離放射性同位素技術,以及發現兩種新元素,是第一位獲得諾貝爾獎的女性,也是首位獲得兩座獎項的學者,在科學上的貢獻對後世影響深遠。

瑪麗亞.斯克沃多夫斯卡-居禮(1867-1934)。圖/Wikipedia

艱難困苦的童年

瑪麗生於波蘭華沙的書香世家,排行老么,家中有布朗斯拉娃(二姐)與索菲亞(大姐)兩位姊姊。父親是一名中學老師兼理事,母親原為一名校長,祖父亦是位受人尊敬的數學與物理教師。

當時的波蘭已被俄羅斯帝國佔領,在沙皇的統治下,波蘭人民的生活處處受限,也影響了瑪麗一家的命運。瑪麗的父親因濃烈愛國精神而被俄國上司打壓,校方撤除了他的理事一職,並將他們全家趕出宿舍;加上雙親的家庭參與波蘭獨立民族起義,家中又遭遇投資失利,經濟頓時陷入困境。

隨後瑪麗一家搬進廉價的住所,父親為貼補家用便招收了多名寄宿生,平時除供應食宿外,從學校下班後還替他們補習來賺取更多收入。生活看似漸漸好轉,但遺憾的是,短短三年內瑪麗的大姐及母親皆因病去世。

1890 年,瓦迪斯瓦夫.斯克沃斯基與女兒們的合影,左起:瑪麗亞、布朗斯拉娃(二姐)、索菲亞(大姐)。圖/Wikipedia

因性別在求學路上受阻

天資聰穎的瑪麗亞自幼就是個相當用功的學生,尤其在數理方面更是表現亮眼;在她 15 歲那年,便以第一名的成績從女子文理學校畢業。

-----廣告,請繼續往下閱讀-----

然而,因當時波蘭的正規高等院校拒收女性學生,波蘭女子若想繼續接受正規的大學教育,唯一一條路就是出國留學,但這對瑪麗家中的經濟條件而言,是筆相當大的開銷且難以負擔。

成績同樣優異的二姐曾想過前往巴黎學醫,夢想成為一名懸壺濟世的醫師,但礙於家中經濟狀況遲遲無法如願。瑪麗想幫姐姐盡早完成學業,決定先當家教來資助其學費,兩人也約定,待畢業後再協助瑪麗出國求學。在瑪麗的支持下,二姐終於得以前往巴黎一圓醫師夢。

爾後的幾年,瑪麗一面做著家教工作,一面自學,期間閱讀了大量化學相關書籍,也是在這時獲得了第一份實驗室工作機會,這消息對她相當振奮;儘管實驗室設備簡陋,但能把在書中讀到的知識親手實作就已心滿意足,此經歷也影響了她未來將走上科學研究這條路。晚年瑪麗回憶起這段的時光:

「就是因為這第一次的實驗室工作,使我肯定自己在實驗研究上的興趣。」

突破重重阻礙取得學位

1891 年,24 歲的瑪麗在進行實驗室工作的同時,也終於踏上留學路,前往巴黎大學修讀物理學。剛到巴黎的她人生地不熟,對語言不熟悉外,又因過往在波蘭所受的教育無法應付大學課程,初期學業表現遠遠不及同儕。瑪麗便在課業上下足功夫,閒暇時間也都泡在圖書館裡,終於皇天不負苦心人,靠著清晰的思維加上勤奮苦讀,成績漸漸有了起色。

-----廣告,請繼續往下閱讀-----

1893 年瑪麗以第一名的佳績成功取得了物理學碩士學位,原先是想再取得一個數學學位,但此時她已將留學用的積蓄花光,也就放棄了這份念頭。幸運的是,在友人的協助下,華沙當局頒發給瑪麗海外優秀留學生「亞歷山大獎學金」,使她得以重返巴黎大學繼續深造,並在隔年順利取得第二個碩士學位。值得讚揚的是,在畢業的幾年後她將這份獎學金歸還給委員會,這舉動令人相當震驚,從未有任何一名學子歸還過,而瑪莉是第一位。

科學界的佳偶——居禮夫婦

學成後,瑪麗留在法國並開啟了她的科研生涯。當時為了能夠順利進行工作,正尋找著合適的實驗室;在同鄉物理學家約瑟夫.科瓦爾斯基介紹下,她結識了未來的丈夫,法國青年科學家——皮耶.居禮。對科學滿懷熱情的兩人情投意合,彼此欣賞著對方的個性及才華。

1894 年,瑪麗返回波蘭生活,原以為能在家鄉繼續從事喜愛的科研工作,然而波蘭的大學仍以性別為由將其拒絕。在皮耶的說服下,瑪麗回到巴黎並協助他完成了磁性研究,兩人也在同年結為連理。

當時總有人打趣得說:「皮耶最大的發現就是瑪麗」。

在實驗室裡的居禮夫婦。圖/Wikipedia

帶領科學邁向新篇章

婚後夫婦倆一面養育女兒,一面做科研。瑪麗首要目標就是取得博士學位,她選定了當時剛發現的X射線以及鈾射線作為研究主題。後續在研究鈾礦時,透過驗電器的測量結果,瑪麗推斷鈾礦必定含有其他活性比鈾大的物質,於是開啟了她尋找其他放射性物質之路。

-----廣告,請繼續往下閱讀-----

皮耶對瑪麗亞的工作越來越感興趣,隨後也加入了太太的行列。他們用酸液分解研磨過的瀝青鈾礦,再用化學分析方法分離出瀝青礦中可能含有比鈾更具放射性的物質。不久後,成功從實驗裡發現了比鈾的活性高 300 倍的新元素。隨後居禮夫婦發表了一篇聯合署名論文,正式宣布以「釙」(Polonium)命名所發現的新元素,以紀念波蘭。

在發現釙之後不久,她從實驗中發覺似乎有更強烈的放射性物質,便認定這也許是另一個新元素,這時物理學家亨利.貝克勒也加入了居里夫婦的研究行列。他們終於找出這個放射性比鈾大 900 倍的物質,三人將新元素命名為「鐳」(radium),拉丁文意為「射線」,也在研究過程中創造出單詞「放射性」(radioactivity)。

在當時居禮夫婦聯合及單獨發表的 32 篇論文中,其中一篇就為:在鐳輻射下,病變或腫瘤細胞比健康細胞死得更快。可說是若沒有這份的研究成果,就不會有現在用來治療癌症的放射性療法了。

得來不易的諾貝爾獎

在一系列研究及發現後,1903 年瑪麗終於獲得巴黎大學物理博士學位。同年瑞典皇家科學院授予居禮夫婦及亨利.貝克勒諾貝爾物理學獎,起初委員會僅表彰皮耶和貝克勒,不過有位倡導女性科學家權利的委員通報並向上申訴,瑪麗亞才能獲得提名,成為了首位獲得諾貝爾獎的女性。

-----廣告,請繼續往下閱讀-----
1911 年諾貝爾獎證書。圖/Wikipedia

隨著瑪麗亞成功從金屬中提煉出鐳,1911 年瑞典皇家科學院授予她第二座諾貝爾獎(此次為化學獎),以表彰:「發現了鐳和釙元素,提煉純鐳並研究了這種引人注目的元素的性質及其化合物」。此次的獲獎肯定也使她能夠說服法國政府支持並建立鐳研究所,該研究所於 1914 年建成,研究領域涉及化學、物理、醫學等。

將自己毫無保留地貢獻給科學與社會

一戰期間瑪麗為協助戰地外科醫生,便在靠近前線的地方設立了戰地放射中心。她的身影穿梭在戰地醫院中,指導著 X 光裝置的組裝及使用,據估計,超過 100 萬受傷士兵受過她的流動式 X 光機治療。

瑪麗與她的 X 光車。圖/Wikipedia

在戰後的歲月裡,瑪麗亞將時間奉獻將所學與經驗傳授給學生,也包括許多遠從世界各地慕名而來的後進學者。在她的指導下,鐳研究所培育出了四位諾貝爾獎得主,女兒伊倫.約里奧-居禮及女婿弗雷德里克.約里奧-居禮也在其中。

1934 年,瑪麗亞因再生不良性貧血逝世於療養院,後世普遍認為是因長時間暴露於輻射中而造成的,當時科學上並未了解到游離輻射會對人體產生危害,也未開發任何防護措施。瑪麗亞的生活處處充滿放射性物質,幾十年間患上了多種慢性疾病,然而一直到去世,她從未意識到這會危及自己的健康甚至是生命。

-----廣告,請繼續往下閱讀-----

瑪麗亞.斯克沃多夫斯卡-居禮一生不慕名利,奔波於科學研究、教育學子,將畢生毫無保留地貢獻給科學與社會。直到今日,世人仍持續讚賞她的付出與貢獻,紀念這位偉大的科學家。

  1. 維基百科—瑪麗.居禮
  2. 科學名人堂—居禮夫人
  3. 居禮夫人:大家都聽過的科學家,與她充滿波折的人生和感情路
  4. 科技大觀園—開啟輻射醫學大門的居禮夫人
  5. 傑出的科學貢獻與多舛波折的人生:瑪麗.居禮誕辰|科學史上的今天:11/7
-----廣告,請繼續往下閱讀-----
椀濘_96
12 篇文章 ・ 20 位粉絲
喜歡探索浪漫的事物; 比如宇宙、生命、文字, 還有你。(嘿嘿 _ 每天都過著甜甜的小日子♡(*’ー’*)

2

15
3

文字

分享

2
15
3
來認識「躺著自轉」的天王星!——太陽系內唯二的冰巨行星
ntucase_96
・2021/10/31 ・2771字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

天王星是非常有趣的行星。希臘羅馬神話中,它是土星的爸爸、木星的爺爺、火星的曾祖父。比起其他行星是「站著自轉」,天王星是「躺著自轉」。太陽系 8 顆行星當中大多都觀測到了 X 光的訊號。唯獨兩顆冰巨行星:天王星、海王星沒有。終於,研究團隊從 2002 年以及 2017 年的資料中找到了天王星上 X 光訊號的證據。本文帶大家認識一些天文星有趣的歷史、文化、以及認識這一篇 X 光的研究成果。

天王星的發現與特色

天王星的視星等大約為 5.5,是一顆非常暗的星,幾乎接近人眼的極限。平時在一般都市環境中非常不容易直接用肉眼看到,只有在晴朗、沒光害的夜空中比較有機會。

航海家 2 號於 1986 年拍攝的天王星。圖/維基百科

正式的發現、命名者是英國的威廉.赫雪爾(William Herschel)。一開始猜測是個彗星,後來才確認是個行星。英國國王喬治三世還因此以一年 200 英鎊的薪水聘僱他,依照零售物價指數(Retail Prices Index)來推算的話,相當於現今一年一百萬台幣的薪水 [2]

這筆薪資顯然相當優渥,本來赫雪爾想要將這顆星命名為「喬治之星」(Georgium Sidus)。不過當時除了喬治三世和赫雪爾以外,當時喜歡這個點子的人並不多。畢竟其他的行星都用希臘神話來命名,突然冒出一顆用英國國王命名的行星怎麼樣看都不合適。

最後由柏林天文學家約翰.波德(Johann Bode)的建議定案為「Uranus」,這個字的詞源是希臘神話中的天空之神「烏拉諾斯」。幾乎每個希臘神話中的腳色都能在羅馬神話中找到對應。「烏拉諾斯」對應到的就是「凱路斯(Caelus)」,是「薩圖恩(Saturn,即土星)」的爸爸;是「朱比特(Jupitar,即木星)」的祖父;更是「馬爾斯(Mars即火星)」的曾祖父。

-----廣告,請繼續往下閱讀-----

因此在希臘羅馬神話當中,天王星、土星、木星、火星可是祖孫四代呢。

恆星一般在天空中的相對位置幾乎是不變的,要花千年、甚至萬年才有可能看到一些變化。離太陽愈遠的行星,在天上的相對位置變化愈慢。木星要回到原來的位置要花 12 年、土星更要花上 30 年,天王星更慢,要 84 年!因為天王星在天上的相對位置實在變化得太慢了,以至於早期先民即使看到了天王星,也認為它是一顆恆星。

航海家 2 號(Voyager 2)即將跟隨它的前輩航海家 1 號(Voyager 1)離開太陽圈(Heliosphere)了。圖/NASA[3]

與其它的行星比起來,天王星離地球非常遙遠。唯一抵達天王星過的太空探測器是 1977 年發射,飛了將近 9 年後才抵達的航海家 2 號(Voyager 2)。這台探測器從地球出發,觀測了木星、土星、天王星、海王星之後,繼續一路向外飛,現在幾乎已經離開了太陽系。

上面大多數的儀器都已經缺少電力、無法運作,只保留了最基本的功能。去年底對它發射訊號時,在將近 35 小時之後還是收到了回應。

-----廣告,請繼續往下閱讀-----

天王星在太陽系的八顆行星裡面,有著一個非常奇特的性質:「躺著自轉」。其他七顆行星的自轉與公轉差不多是在同一個平面上,以地球為例子,地球的自轉軸與公轉軸只差了 23.5° 左右。

但是天王星的自轉軸與公轉軸相差了 98°。如果把公轉面想像成水平面的話,地球的自轉就像是一個旋轉的陀螺,而天王星則是電風扇的扇葉。

太陽系各顆行星的自轉方向及轉軸,大多數的行星都像陀螺一樣、自轉平面與公轉一致,但是天王星卻是躺著的。圖/NASA[4]

天王星上的 X 光訊號!

太陽系的行星成員當中,除了地球以外,水星、金星、火星、木星、土星都偵測到過 X 光的訊號,甚至連彗星、以及矮行星冥王星都偵測到過 X 光。在最近這篇研究出來之前,行星當中就只剩下兩顆冰巨行星:天王星、海王星還沒有量測到 X 光。

最近,研究團隊檢視了「錢卓拉 X 射線天文台(Chandra X-ray Observatory)」的觀測數據,研究團隊量測到了天王星上的 X 光,研究結果發表在期刊《地球物理研究期刊:太空物理學(JGR: Space Physics)》當中 [5]

-----廣告,請繼續往下閱讀-----
圖/NASA [1]

錢卓拉 X 射線天文台是當代最重要的 X 射線望遠鏡。自 1999 年發射升空服役到現在,累積了非常多的觀測資料,有許許多多 X 光的重要觀測貢獻都來自於這台望遠鏡。然而宇宙間能觀測的天體實在太多啦,對天王星的觀測其實非常稀少。截至 2020 年 6 月,只有三次對天王星的觀測:2002 年 1 次、2017 年 2 次。到了這一兩年研究團隊才從這些資料中找到了天王星上 X 光的訊號。

錢卓拉 X 射線天文台(Chandra X-ray Observatory)。圖/NASA [1]

X 光是電磁波頻譜上高頻率、高能量的波段。要產生 X 光,一般來說要有特殊的環境才可以。天王星上 X 光最主要的來源是對太陽光的散射。太陽光本身是一個很強的 X 光光源,即便天王星離太陽這麼遠,太陽所發出來的X光到了天王星以後,被天王星的氣體分子散射開。這個機制是天文學家已知的,過去在木星、土星上面看到的 X 光也都是這一類。

特別的事情是,天文學家藉由木星、土星的數據推算了一個天王星上可能量測到的 X 光強度。但研究量測後卻發現 X 光的強度比推算的數值還要更強。這有幾個可能,一個是天王星對太陽 X 光散射的效果比木星、土星更好。另外一個可能性就是天王星有額外的 X 光產生機制。

目前推論與天王星周遭的帶電粒子有關。比方說,天王星和土星一樣,周圍有一圈環。當帶電粒子撞擊到天王星環的時候,就有機會放出 X 光。另外一個可能性是「極光」,當帶電粒子因為磁場等效應掉進大氣層、與大氣分子相撞後,也有機會放出 X 光。這個現象在木星上也看到過。不過到底是哪個機制就仰賴未來更多的觀測了。

-----廣告,請繼續往下閱讀-----

天王星在太陽系是很重要的存在,它是離我們最近的冰超巨星、而且還躺著自轉,讓我們有機會以不同的角度觀測行星。太陽系的冰超巨星只有兩顆,由於距離遙遠,都很不容易觀測。現在好不容易在天文星上看到了 X 光的影像,使我們得以更全面地了解冰超巨星的性質。對太陽系內、太陽系外的行星都能有更全面的理解。

  1. NASA / First X-rays from Uranus Discovered
  2. Measuring Worth
  3. NASA Planetary Photojournal / NASA Voyager 2 Could Be Nearing Interstellar Space
  4. WASP Planets
  5. R. Dunn et al., A Low Signal Detection of X-Rays From Uranus, Journal of Geophysical Research,  (2021)
  6. SciTechDaily / First Detection of X-rays From Uranus
-----廣告,請繼續往下閱讀-----
所有討論 2
ntucase_96
30 篇文章 ・ 1482 位粉絲
CASE的全名是 Center for the Advancement of Science Education,也就是台灣大學科學教育發展中心。創立於2008年10月,成立的宗旨是透過台大的自然科學學術資源,奠立全國基礎科學教育的優質文化與環境。