網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策

0

0
0

文字

分享

0
0
0

單一奈米材料產生多種雷射色彩

only-perception
・2012/06/05 ・1505字 ・閱讀時間約 3 分鐘 ・SR值 564 ・九年級

紅光、綠光以及藍光雷射已變得夠小、夠便宜,從藍光 DVD 播放器到造型筆(fancy pens)都能看見它們的蹤跡,但每種顏色都使用不一樣的半導體材料並透過精巧的結晶生長過程製作而成。有一種新的原型技術證明,這三種顏色可來自同一種材料。這為產品的製造開啟了大門,例如同一時間使用各種雷色色彩的高效能數位顯示器。

“今日為了創造出一款能呈現任意顏色 — 從白色到深淺(shades)不一的粉紅或水藍 — 的雷射顯示器,你得將這三種不同的材料系統湊在一起,構成三種截然不同的雷射,無論形狀或形態都不盡相同,” Arto Nurmikko 表示,Brown 大學工程教授,以及一篇在 Nature Nanotechnology 期刊上敘述此項創新之論文的資深作者。 “現在晉級到一種稱為「半導體量子點(semiconductor quantum dots)」的材料。”

在論文中所描述的原型雷射,其材料是奈米大小的半導體粒子,叫做膠態量子點(colloidal quantum dots) — 由鎘與硒合金構成內核,並塗佈一層鋅、鎘與硫合金的奈米結晶體,外加一種專用的有機分子膠。位於麻州萊辛頓,QD Vision 公司的化學家利用一種溼化學製程來合成這些奈米晶體,那允許他們藉由改變製造時間,精確調整奈米結晶體的大小。只需要改變大小就能夠產生不同顏色的雷射:4.2 奈米核心產生紅光、3.2 奈米發出綠光而 2.5 奈米閃耀著藍光。不同的大小能產生光譜上其他顏色。

覆層(cladding)與奈米晶體結構為進展之關鍵,超越了之前以膠態量子點來製造雷射的嘗試,第一作者 Cuong Dang 表示,他是一位資深研究助理,在 Nurmikko 的 Brown 小組中還擔任奈米光學實驗室經理。他表示,因其改良過的量子力學與電氣表現,這種塗佈過的角錐狀體(pyramids)與先前的嘗試相較,所需要的脈衝能量少了 10 倍,即製造雷射光所需要的電力少了 1000 倍。

量子指甲油(Quantum nail polish)

當 QDVision 的化學家依 Brown 設計的規格製造一批膠態量子點時,Dang 與 Nurmikko 則製造一瓶黏性液體,Nurmikko 說那有點像指甲油。為了製造雷射,Dang 在一片方形玻璃上 — 或其他各種形狀上 — 塗佈這種液體。當液體揮發後,留在玻璃上的是數個稠密堆積(packed)的固體 — 高度有序的奈米晶體層。將玻璃夾在二面特別準備的鏡子中,Dang 創造出最具挑戰性的雷射結構,稱為垂直共振腔面射型雷射(vertical-cavity surface-emitting laser)。這個 Brown 團隊是第一個以膠態量子點創造出可行的 VCSEL 的團隊。

奈米晶體的外部塗佈了鋅、鎘、硫合金,而分子膠則很重要,因為它減少發出雷射所需要的激發電子態,並防止奈米晶體產生某種串音效應(crosstalk),那會使晶體難以產生雷射光,Nurmikko 說。每批膠態量子點都會有幾個瑕疵品,但通常只要少數幾個就足以干擾光線擴大。

面臨到需要高激發電子態以及緻密堆積層中的破壞性串音(destructive crosstalk),先前的研究小組需要以大量電力激發(pump)他們的量子點,使它們通過更高的門檻以產生光擴大,這是任一種雷射的核心元素。然而,強行激發它們時會產生其他問題:一種過度激發的電子態,稱為激子(excitons)。當量子點中的激子過多時,原本要產生雷射光的能量反而會以熱的形態逸散 — 絕大部分是透過一種稱為 Auger process(歐傑過程)的現象。

奈米晶體的結構及其外部覆層減少了破壞性串音,並降低了使量子點發光所需要的能量。這減少激發量子點雷射所需要的能量,且顯然減少超過激子層次的可能性,在那種層次上,Auger process 會吸走能量。此外,這種新方法的結構還有一種優勢:量子點能迅速動作,在 Auger process 開始(雖然這種情況很罕見,但仍有可能發生)前將雷射光釋出。

“我們試圖證明,那創造的不只是光,而是雷射光,” Nurmikko 說。”原則上,我們目前有數種優勢:能以同樣的化學物質產生所有顏色、以非常廉價的方式製造雷射(相對來說)以及能將它們塗佈到各種表面(不管形狀為何)的能力。這使得各式各樣的裝置配置在未來都有可能出現。”

原始文獻:

Cuong Dang, Joonhee Lee, Craig Breen, Jonathan S. Steckel,
Seth Coe-Sullivan, Arto Nurmikko
Nature Nanotechnology 7, 335–339 (2012)
doi: 10.1038/nnano.2012.61

資料來源:PHYSORG:Single nanomaterial yields many laser colors[April 29, 2012 ]

轉載自0nly-perception

文章難易度
only-perception
153 篇文章 ・ 1 位粉絲
妳/你好,我是來自火星的火星人,畢業於火星人理工大學(不是地球上的 MIT,請勿混淆 :p),名字裡有條魚,雖然跟魚一點關係也沒有,不過沒有關係,反正妳/你只要知道我不是地球人就行了... :D


0

12
5

文字

分享

0
12
5

揭開人體的基因密碼!——「基因定序」是實現精準醫療的關鍵工具

科技魅癮_96
・2021/11/16 ・1998字 ・閱讀時間約 4 分鐘

為什麼有些人吃不胖,有些人沒抽菸卻得肺癌,有些人只是吃個感冒藥就全身皮膚紅腫發癢?這一切都跟我們的基因有關!無論是想探究生命的起源、物種間的差異,乃至於罹患疾病、用藥的風險,都必須從了解基因密碼著手,而揭開基因密碼的關鍵工具就是「基因定序」技術。

揭開基因密碼的關鍵工具就是「基因定序」技術。圖/科技魅癮提供

基因定序對人類生命健康的意義

在歷史上,DNA 解碼從 1953 年的華生(James Watson)與克里克(Francis Crick)兩位科學家確立 DNA 的雙螺旋結構,闡述 DNA 是以 4 個鹼基(A、T、C、G)的配對方式來傳遞遺傳訊息,並逐步發展出許多新的研究工具;1990 年,美國政府推動人類基因體計畫,接著英國、日本、法國、德國、中國、印度等陸續加入,到了 2003 年,人體基因體密碼全數解碼完成,不僅是人類探索生命的重大里程碑,也成為推動醫學、生命科學領域大躍進的關鍵。原本這項計畫預計在 2005 年才能完成,卻因為基因定序技術的突飛猛進,使得科學家得以提前完成這項壯舉。

提到基因定序技術的發展,早期科學家只能測量 DNA 跟 RNA 的結構單位,但無法排序;直到 1977 年,科學家桑格(Frederick Sanger)發明了第一代的基因定序技術,以生物化學的方式,讓 DNA 形成不同長度的片段,以判讀測量物的基因序列,成為日後定序技術的基礎。為了因應更快速、資料量更大的基因定序需求,出現了次世代定序技術(NGS),將 DNA 打成碎片,並擴增碎片到可偵測的濃度,再透過電腦大量讀取資料並拼裝序列。不僅更快速,且成本更低,讓科學家得以在短時間內讀取數百萬個鹼基對,解碼許多物種的基因序列、追蹤病毒的變化行蹤,也能用於疾病的檢測、預防及個人化醫療等等。

在疾病檢測方面,儘管目前 NGS 並不能找出全部遺傳性疾病的原因,但對於改善個體健康仍有積極的意義,例如:若透過基因檢測,得知將來罹患糖尿病機率比別人高,就可以透過健康諮詢,改變飲食習慣、生活型態等,降低發病機率。又如癌症基因檢測,可分為遺傳性的癌症檢測及癌症組織檢測:前者可偵測是否有單一基因的變異,導致罹癌風險增加;後者則針對是否有藥物易感性的基因變異,做為臨床用藥的參考,也是目前精準醫療的重要應用項目之一。再者,基因檢測後續的生物資訊分析,包含基因序列的註解、變異位點的篩選及人工智慧評估變異點與疾病之間的關聯性等,對臨床醫療工作都有極大的助益。

基因定序有助於精準醫療的實現。圖/科技魅癮提供

建立屬於臺灣華人的基因庫

每個人的基因背景都不同,而不同族群之間更存在著基因差異,使得歐美國家基因庫的資料,幾乎不能直接應用於亞洲人身上,這也是我國自 2012 年發起「臺灣人體生物資料庫」(Taiwan biobank),希望建立臺灣人乃至亞洲人的基因資料庫的主因。而 2018 年起,中央研究院與全臺各大醫院共同發起的「臺灣精準醫療計畫」(TPMI),希望建立臺灣華人專屬的基因數據庫,促進臺灣民眾常見疾病的研究,並開發專屬華人的基因型鑑定晶片,促進我國精準醫療及生醫產業的發展。

目前招募了 20 萬名臺灣人,這些民眾在入組時沒有被診斷為癌症患者,超過 99% 是來自中國不同省分的漢族移民人口,其中少數是臺灣原住民。這是東亞血統個體最大且可公開獲得的遺傳數據庫,其中,漢族的全部遺傳變異中,有 21.2% 的人攜帶遺傳疾病的隱性基因;3.1% 的人有癌症易感基因,比一般人罹癌風險更高;87.3% 的人有藥物過敏的基因標誌。這些訊息對臨床診斷與治療都相當具實用性,例如:若患者具有某些藥物不良反應的特殊基因型,醫生在開藥時就能使用替代藥物,避免病人服藥後產生嚴重的不良反應。

基因時代大挑戰:個資保護與遺傳諮詢

雖然高科技與大數據分析的應用在生醫領域相當熱門,但有醫師對於研究結果能否運用在臨床上,存在著道德倫理的考量,例如:研究用途的資料是否能放在病歷中?個人資料是否受到法規保護?而且技術上各醫院之間的資料如何串流?這些都需要資通訊科技(ICT)產業的協助,而醫師本身相關知識的訓練也需與時俱進。對醫院端而言,建議患者做基因檢測是因為出現症狀,希望找到原因,但是如何解釋以及病歷上如何註解,則是另一項重要議題。

從人性觀點來看,在技術更迭演進的同時,對於受測者及其家人的心理支持及社會資源是否相應產生?回到了解病因的初衷,在知道自己體內可能有遺傳疾病的基因變異時,家庭成員之間的情感衝擊如何解決、是否有對應的治療方式等,都是值得深思的議題,也是目前遺傳諮詢門診中會詳細解說的部分。科技的初衷是為了讓人類的生活變得更好,因此,基因檢測如何搭配專業的遺傳諮詢系統,以及法規如何在科學發展與個資保護之間取得平衡,將是下一個基因時代的挑戰。

更多內容,請見「科技魅癮」:https://charmingscitech.pse.is/3q66cw

文章難易度
科技魅癮_96
15 篇文章 ・ 12 位粉絲
《科技魅癮》的前身為1973年初登場的《科學發展》月刊,每期都精選1個國際關注的科技議題,邀請1位國內資深學者擔任客座編輯,並訪談多位來自相關領域的科研菁英,探討該領域在臺灣及全球的研發現況及未來發展,盼可藉此增進國內研發能量。 擋不住的魅力,戒不了的讀癮,盡在《科技魅癮》