Loading [MathJax]/jax/output/HTML-CSS/config.js

0

0
0

文字

分享

0
0
0

公眾意見誤導科學政策?

國科會 國際合作簡訊網
・2012/06/03 ・1225字 ・閱讀時間約 2 分鐘 ・SR值 556 ・八年級

2009年九月康乃狄克州西哈特福市舉行市民大會(town hall meeting),主題為衛生保健改革。圖片來源:維基百科

市民大會或共識會議常被政府機構用來作為制定或影響政策的工具。包括美國衛生研究所(National Institutes of Health)、美國農業部(US Department of Agriculture)都曾採用。這本來是設計讓政府制定決策的過程中,公眾能有發聲的機會,在某些特定的地方議題上提供一些洞見與意見。

但是,面對具爭議性的發展中的新技術時,這類的公眾參與往往不能達到其目的。例如,在一個社區裡是否建一座具爭議性的核廢料儲存區、在哪裡建,是否應該進行可能有致命性的生物病原體研究、在哪裡進行?這類的議題很難透過公眾會議達成協議。最常見的對立意見是:大眾有需要的最新設施對立於個別社區希望這些設施(如:行動電話基地台、電廠、廢棄物棄置場)設在別人家的後院。

政策制定者想利用市民會議多聽各方意見解決歧見,下場就是強化各自的意見、增加衝突、不能達成共識。可是政策制定者還是很喜歡採用這種方式。支持採行公眾會議的人認為這種集會有可能達成共識,並且提供了一般大眾、專家和決策者之間雙向對話的管道,可以及早發掘並辯論相關的倫理、法律、和社會(ethical, legal and social, ELSI)關注;最終能夠對於新興科學領域和它們的社會應用性進行一個長期的規劃。

最近發生的議題有國土安全部(Department of Homeland Security,DHS)下的國家生物與農業防禦設施(National Bio- and Agro-Defense Facility,NBAF)的選址問題。其實採行市民會議,反而得到與大眾意見相反的結果。這個由北卡州立大學科技公眾溝通計畫中心和威斯康辛大學麥迪遜分校生命科學溝通系合作的研究,發現最後選出的六個可能 NBAF 場址的排名和沒有明確界定的「社區接受度」這個要項有關。他們比較 DHS 排名和最後選的六個社區人口普查,以及對媒體人、決策者、和社區領袖作深入訪問。

-----廣告,請繼續往下閱讀-----

這些資料顯示 DHS 評估的「社區接受度」低估了實際上大眾同意度,可能是被發聲的反對團體蓋過了。DHS 的排名也會被個別意見和對於其它人的想法的看法所影響。被少數反對聲浪透過媒體的散播的意見,常常掩蓋過沉默的大多數的意見。因此公眾會議並不一定能代表大眾的意見;尤其是有爭議的科學議題。

由於科學政策面臨的科學挑戰越來越複雜,從個人化的醫藥、奈米科技、到合成生物學,這個問題也更為棘手。這些議題有個共同點:圍繞在這些議題的社會辯論比較少集中在它們的科學可能性,而較多集中在倫理的、法律的、以及政治的爭議性,和它們最後的市場應用性。有必要多花時間與資源主動地、有系統性地對於社區中的各個成員評估其意見;對於具有重大社會與政治衝擊的決策不應該讓有強勢意見願意用各種方法發聲的團體來決定!

作者:駐美國台北經濟文化代表處科技組
參考資料:
[1] Opinion: Misguided Science Policy?—The Scientist [2012-04-10]
[2] Modern Citizenship or Policy Dead End? Evaluating the need for public participation in science policy making, and why public meetings may not be the answer

轉載自國科會國際合作簡訊網 [2012-05-03]

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
國科會 國際合作簡訊網
47 篇文章 ・ 3 位粉絲

0

0
0

文字

分享

0
0
0
從PD-L1到CD47:癌症免疫療法進入3.5代時代
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/25 ・4544字 ・閱讀時間約 9 分鐘

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

如果把癌細胞比喻成身體裡的頭號通緝犯,那誰來負責逮捕?

許多人第一時間想到的,可能是化療、放療這些外來的「賞金獵人」。但其實,我們體內早就駐紮著一支最強的警察部隊「免疫系統」。

既然「免疫系統」的警力這麼堅強,為什麼癌症還是屢屢得逞?關鍵就在於:癌細胞是偽裝高手。有的會偽造「良民證」,騙過免疫系統的菁英部隊;更厲害的,甚至能直接掛上「免查通行證」,讓負責巡邏的免疫細胞直接視而不見,大搖大擺地溜過。

-----廣告,請繼續往下閱讀-----

過去,免疫檢查點抑制劑的問世,為癌症治療帶來突破性的進展,成功撕下癌細胞的偽裝,也讓不少患者重燃希望。不過,目前在某些癌症中,反應率仍只有兩到三成,顯示這條路還有優化的空間。

今天,我們要來聊的,就是科學家如何另闢蹊徑,找出那些連「通緝令」都發不出去的癌細胞。這個全新的免疫策略,會是破解癌症偽裝的新關鍵嗎?

科學家如何另闢蹊徑,找出那些連「通緝令」都發不出去的癌細胞。這個全新的免疫策略,會是破解癌症偽裝的新關鍵嗎?/ 圖片來源:shutterstock

免疫療法登場:從殺敵一千到精準出擊

在回答問題之前,我們先從人類對抗癌症的「治療演變」說起。

最早的「傳統化療」,就像威力強大的「七傷拳」,殺傷力高,但不分敵我,往往是殺敵一千、自損八百,副作用極大。接著出現的「標靶藥物」,則像能精準出招的「一陽指」,能直接點中癌細胞的「穴位」,大幅減少對健康細胞的傷害,副作用也小多了。但麻煩的是,癌細胞很會突變,用藥一段時間就容易產生抗藥性,這套點穴功夫也就漸漸失靈。

直到這個世紀,人類才終於領悟到:最強的武功,是驅動體內的「原力」,也就是「重新喚醒免疫系統」來對付癌症。這場關鍵轉折,也開啟了「癌症免疫療法」的新時代。

-----廣告,請繼續往下閱讀-----

你可能不知道,就算在健康狀態下,平均每天還是會產生數千個癌細胞。而我們之所以安然無恙,全靠體內那套日夜巡邏的「免疫監測 (immunosurveillance)」機制,看到癌細胞就立刻清除。但,癌細胞之所以難纏,就在於它會發展出各種「免疫逃脫」策略。

免疫系統中,有一批受過嚴格訓練的菁英,叫做「T細胞」,他們是執行最終擊殺任務的霹靂小組。狡猾的癌細胞為了躲過追殺,會在自己身上掛出一張「偽良民證」,這個偽裝的學名,「程序性細胞死亡蛋白配體-1 (programmed death-ligand 1, PD-L1) 」,縮寫PD-L1。

當T細胞來盤查時,T細胞身上帶有一個具備煞車功能的「讀卡機」,叫做「程序性細胞死亡蛋白受體-1 (programmed cell death protein 1, PD-1) 」,簡稱 PD-1。當癌細胞的 PD-L1 跟 T細胞的 PD-1 對上時,就等於是在說:「嘿,自己人啦!別查我」,也就是腫瘤癌細胞會表現很多可抑制免疫 T 細胞活性的分子,這些分子能通過免疫 T 細胞的檢查哨,等於是通知免疫系統無需攻擊的訊號,因此 T 細胞就真的會被唬住,轉身離開且放棄攻擊。

這種免疫系統控制的樞紐機制就稱為「免疫檢查點 (immune checkpoints)」。而我們熟知的「免疫檢查點抑制劑」,作用就像是把那張「偽良民證」直接撕掉的藥物。良民證一失效,T細胞就能識破騙局、發現這是大壞蛋,重新發動攻擊!

-----廣告,請繼續往下閱讀-----
狡猾的癌細胞為了躲過追殺,會在自己身上掛出一張「偽良民證」,也就是「程序性細胞死亡蛋白配體-1 (programmed death-ligand 1, 縮寫PD-L1) 」/ 圖片來源:shutterstock

目前免疫療法已成為晚期癌症患者心目中最後一根救命稻草,理由是他們的體能可能無法負荷化療帶來的副作用;標靶藥物雖然有效,不過在用藥一段期間後,終究會出現抗藥性;而「免疫檢查點抑制劑」卻有機會讓癌症獲得長期的控制。

由於免疫檢查點抑制劑是借著免疫系統的刀來殺死腫瘤,所以有著毒性較低並且治療耐受性較佳的優勢。對免疫檢查點抑制劑有治療反應的患者,也能獲得比起化療更長的存活期,以及較好的生活品質。

不過,儘管免疫檢查點抑制劑改寫了治癌戰局,這些年下來,卻仍有些問題。

CD47來救?揭開癌細胞的「免死金牌」機制

「免疫檢查點抑制劑」雖然帶來治療突破,但還是有不少挑戰。

-----廣告,請繼續往下閱讀-----

首先,是藥費昂貴。 雖然在台灣,健保於 2019 年後已有條件給付,但對多數人仍是沉重負擔。 第二,也是最關鍵的,單獨使用時,它的治療反應率並不高。在許多情況下,大約只有 2成到3成的患者有效。

換句話說,仍有七到八成的患者可能看不到預期的效果,而且治療反應又比較慢,必須等 2 至 3 個月才能看出端倪。對患者來說,這種「沒把握、又得等」的療程,心理壓力自然不小。

為什麼會這樣?很簡單,因為這個方法的前提是,癌細胞得用「偽良民證」這一招才有效。但如果癌細胞根本不屑玩這一套呢?

想像一下,整套免疫系統抓壞人的流程,其實是這樣運作的:當癌細胞自然死亡,或被初步攻擊後,會留下些許「屍塊渣渣」——也就是抗原。這時,體內負責巡邏兼清理的「巨噬細胞」就會出動,把這些渣渣撿起來、分析特徵。比方說,它發現犯人都戴著一頂「大草帽」。

-----廣告,請繼續往下閱讀-----

接著,巨噬細胞會把這個特徵,發布成「通緝令」,交給其他免疫細胞,並進一步訓練剛剛提到的菁英霹靂小組─T細胞。T細胞學會辨認「大草帽」,就能出發去精準獵殺所有戴著草帽的癌細胞。

當癌細胞死亡後,會留下「抗原」。體內的「巨噬細胞」會採集並分析這些特徵,並發布「通緝令」給其它免疫細胞,T細胞一旦學會辨識特徵,就能精準出擊,獵殺所有癌細胞。/ 圖片來源:shutterstock

而PD-1/PD-L1 的偽裝術,是發生在最後一步:T 細胞正準備動手時,癌細胞突然高喊:「我是好人啊!」,來騙過 T 細胞。

但問題若出在第一步呢?如果第一關,巡邏的警察「巨噬細胞」就完全沒有察覺這些屍塊有問題,根本沒發通緝令呢?

這正是更高竿的癌細胞採用的策略:它們在細胞表面大量表現一種叫做「 CD47 」的蛋白質。這個 CD47 分子,就像一張寫著「自己人,別吃我!」的免死金牌,它會跟巨噬細胞上的接收器─訊號調節蛋白α (Signal regulatory protein α,SIRPα) 結合。當巨噬細胞一看到這訊號,大腦就會自動判斷:「喔,這是正常細胞,跳過。」

結果會怎樣?巨噬細胞從頭到尾毫無動作,癌細胞就大搖大擺地走過警察面前,連罪犯「戴草帽」的通緝令都沒被發布,T 細胞自然也就毫無頭緒要出動!

這就是為什麼只阻斷 PD-L1 的藥物反應率有限。因為在許多案例中,癌細胞連進到「被追殺」的階段都沒有!

為了解決這個問題,科學家把目標轉向了這面「免死金牌」,開始開發能阻斷 CD47 的生物藥。但開發 CD47 藥物的這條路,可說是一波三折。

-----廣告,請繼續往下閱讀-----

不只精準殺敵,更不能誤傷友軍

研發抗癌新藥,就像打造一把神兵利器,太強、太弱都不行!

第一代 CD47 藥物,就是威力太強的例子。第一代藥物是強效的「單株抗體」,你可以想像是超強力膠帶,直接把癌細胞表面的「免死金牌」CD47 封死。同時,這個膠帶尾端還有一段蛋白質IgG-Fc,這段蛋白質可以和免疫細胞上的Fc受體結合。就像插上一面「快來吃我」的小旗子,吸引巨噬細胞前來吞噬。

問題來了!CD47 不只存在於癌細胞,全身上下的正常細胞,尤其是紅血球,也有 CD47 作為自我保護的訊號。結果,第一代藥物這種「見 CD47 就封」的策略,完全不分敵我,導致巨噬細胞連紅血球也一起攻擊,造成嚴重的貧血問題。

這問題影響可不小,導致一些備受矚目的藥物,例如美國製藥公司吉立亞醫藥(Gilead)的明星藥物 magrolimab,在2024年2月宣布停止開發。它原本是預期用來治療急性骨髓性白血病(AML)的單株抗體藥物。

太猛不行,那第二代藥物就改弱一點。科學家不再用強效抗體,而是改用「融合蛋白」,也就是巨噬細胞身上接收器 SIRPα 的一部分。它一樣會去佔住 CD47 的位置,但結合力比較弱,特別是跟紅血球的 CD47 結合力,只有 1% 左右,安全性明顯提升。

像是輝瑞在 2021 年就砸下 22.6 億美元,收購生技公司 Trillium Therapeutics 來開發這類藥物。Trillium 使用的是名為 TTI-621 和 TTI-622 的兩種融合蛋白,可以阻斷 CD47 的反應位置。但在輝瑞2025年4月29號公布最新的研發進度報告上,TTI-621 已經悄悄消失。已經進到二期研究的TTI-622,則是在6月29號,研究狀態被改為「已終止」。原因是「無法招募到計畫數量的受試者」。

-----廣告,請繼續往下閱讀-----

但第二代也有個弱點:為了安全,它對癌細胞 CD47 的結合力,也跟著變弱了,導致藥效不如預期。

於是,第三代藥物的目標誕生了:能不能打造一個只對癌細胞有超強結合力,但對紅血球幾乎沒反應的「完美武器」?

為了找出這種神兵利器,科學家們搬出了超炫的篩選工具:噬菌體(Phage),一種專門感染細菌的病毒。別緊張,不是要把病毒打進體內!而是把它當成一個龐大的「鑰匙資料庫」。

科學家可以透過基因改造,再加上AI的協助,就可以快速製造出數億、數十億種表面蛋白質結構都略有不同的噬菌體模型。然後,就開始配對流程:

  1. 先把這些長像各異的「鑰匙」全部拿去試開「紅血球」這把鎖,能打開的通通淘汰!
  2. 剩下的再去試開「癌細胞」的鎖,從中挑出結合最強、最精準的那一把「神鑰」!

接著,就是把這把「神鑰」的結構複製下來,大量生產。可能會從噬菌體上切下來,或是定序入選噬菌體的基因,找出最佳序列。再將這段序列,放入其他表達載體中,例如細菌或是哺乳動物細胞中來生產蛋白質。最後再接上一段能號召免疫系統來攻擊的「標籤蛋白 IgG-Fc」,就大功告成了!

目前這領域的領頭羊之一,是美國的 ALX Oncology,他們的產品 Evorpacept 已完成二期臨床試驗。但他們的標籤蛋白使用的是 IgG1,對巨噬細胞的吸引力較弱,需要搭配其他藥物聯合使用。

而另一個值得關注的,是總部在台北的漢康生技。他們利用噬菌體平台,從上億個可能性中,篩選出了理想的融合蛋白 HCB101。同時,他們選擇的標籤蛋白 IgG4,是巨噬細胞比較「感興趣」的類型,理論上能更有效地觸發吞噬作用。在臨床一期試驗中,就展現了單獨用藥也能讓腫瘤顯著縮小的效果以及高劑量對腫瘤產生腫瘤顯著部分縮小效果。因為它結合了前幾代藥物的優點,有人稱之為「第 3.5 代」藥物。

除此之外,還有漢康生技的FBDB平台技術,這項技術可以將多個融合蛋白「串」在一起。例如,把能攻擊 CD47、PD-L1、甚至能調整腫瘤微環境、活化巨噬細胞與T細胞的融合蛋白接在一起。讓這些武器達成 1+1+1 遠大於 3 的超倍攻擊效果,多管齊下攻擊腫瘤細胞。

結語

從撕掉「偽良民證」的 PD-L1 抑制劑,到破解「免死金牌」的 CD47 藥物,再到利用 AI 和噬菌體平台,設計出越來越精準的千里追魂香。 

對我們來說,最棒的好消息,莫過於這些免疫療法,從沒有停下改進的腳步。科學家們正一步步克服反應率不足、副作用等等的缺點。這些努力,都為癌症的「長期控制」甚至「治癒」,帶來了更多的希望。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
228 篇文章 ・ 316 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

7
1

文字

分享

0
7
1
審議民主線上會議,讓公民參與不再是未來式
鳥苷三磷酸 (PanSci Promo)_96
・2021/03/29 ・714字 ・閱讀時間約 1 分鐘 ・SR值 582 ・九年級

本特輯由 教育部青年發展署 委託,泛科學企劃執行

「審議民主」目的是促成公眾對政策進行知情而理性的討論,而為因應疫情發展,線上審議被認為更加切合時代趨勢,教育部青年發展署透過優化線上審議民主的過程,期望未來參與公共事務不再受到疫情或地域的影響與限制。

自疫情開始以來,促使人們生活型態轉變,更凸顯數位治理、網路社會、創新應用的重要性,然而線上審議之相關研究不足仍需深入探討。因此,以線上審議之可行性及具體操作模式為背景,透過「109 年 Let’s Talk 討論議題」及「如何透過數位方式(「小校聯盟」、「數位學伴」)改善偏鄉教育資源?」為主題,共辦理 5 場,每場 2 小時的審議民主線上會議,邀集審議公民及主持人共 14 至 16 位,另安排 5 位審議觀察員,總共 88 位民眾參與,運用數位會議工具、即時通訊軟體,不僅帶動民眾參與線上審議的風氣,也為線上審議增添寶貴的研究成果,形塑青年公共參與文化並實踐數位民主。有關研究結果將在 4 月底前,於青年署官方網站公開,歡迎有興趣的民眾點閱。

此外,為因應線上審議推展,青年署以電玩、打怪等元素,策劃「青年打通關!審議來闖關」免費線上課程,讓學習可以不受時間、空間的限制,輕鬆累積知識,課程教材已於「e 等公務園+學習平臺」、青年署「超牆青年 E 學院」、YouTube 頻道以及泛科學院等網路平臺上架。

-----廣告,請繼續往下閱讀-----

除了線上課程,審議民主實體培訓也即將於 5 月 1 日至 2 日在臺北舉辦,有興趣的青年夥伴,只要符合報名資格(18 至 35 歲),趕緊在 4 月 18 日前至報名網頁報名。

-----廣告,請繼續往下閱讀-----

0

0
0

文字

分享

0
0
0
公眾意見誤導科學政策?
國科會 國際合作簡訊網
・2012/06/03 ・1225字 ・閱讀時間約 2 分鐘 ・SR值 556 ・八年級

2009年九月康乃狄克州西哈特福市舉行市民大會(town hall meeting),主題為衛生保健改革。圖片來源:維基百科

市民大會或共識會議常被政府機構用來作為制定或影響政策的工具。包括美國衛生研究所(National Institutes of Health)、美國農業部(US Department of Agriculture)都曾採用。這本來是設計讓政府制定決策的過程中,公眾能有發聲的機會,在某些特定的地方議題上提供一些洞見與意見。

但是,面對具爭議性的發展中的新技術時,這類的公眾參與往往不能達到其目的。例如,在一個社區裡是否建一座具爭議性的核廢料儲存區、在哪裡建,是否應該進行可能有致命性的生物病原體研究、在哪裡進行?這類的議題很難透過公眾會議達成協議。最常見的對立意見是:大眾有需要的最新設施對立於個別社區希望這些設施(如:行動電話基地台、電廠、廢棄物棄置場)設在別人家的後院。

政策制定者想利用市民會議多聽各方意見解決歧見,下場就是強化各自的意見、增加衝突、不能達成共識。可是政策制定者還是很喜歡採用這種方式。支持採行公眾會議的人認為這種集會有可能達成共識,並且提供了一般大眾、專家和決策者之間雙向對話的管道,可以及早發掘並辯論相關的倫理、法律、和社會(ethical, legal and social, ELSI)關注;最終能夠對於新興科學領域和它們的社會應用性進行一個長期的規劃。

-----廣告,請繼續往下閱讀-----

最近發生的議題有國土安全部(Department of Homeland Security,DHS)下的國家生物與農業防禦設施(National Bio- and Agro-Defense Facility,NBAF)的選址問題。其實採行市民會議,反而得到與大眾意見相反的結果。這個由北卡州立大學科技公眾溝通計畫中心和威斯康辛大學麥迪遜分校生命科學溝通系合作的研究,發現最後選出的六個可能 NBAF 場址的排名和沒有明確界定的「社區接受度」這個要項有關。他們比較 DHS 排名和最後選的六個社區人口普查,以及對媒體人、決策者、和社區領袖作深入訪問。

這些資料顯示 DHS 評估的「社區接受度」低估了實際上大眾同意度,可能是被發聲的反對團體蓋過了。DHS 的排名也會被個別意見和對於其它人的想法的看法所影響。被少數反對聲浪透過媒體的散播的意見,常常掩蓋過沉默的大多數的意見。因此公眾會議並不一定能代表大眾的意見;尤其是有爭議的科學議題。

由於科學政策面臨的科學挑戰越來越複雜,從個人化的醫藥、奈米科技、到合成生物學,這個問題也更為棘手。這些議題有個共同點:圍繞在這些議題的社會辯論比較少集中在它們的科學可能性,而較多集中在倫理的、法律的、以及政治的爭議性,和它們最後的市場應用性。有必要多花時間與資源主動地、有系統性地對於社區中的各個成員評估其意見;對於具有重大社會與政治衝擊的決策不應該讓有強勢意見願意用各種方法發聲的團體來決定!

作者:駐美國台北經濟文化代表處科技組
參考資料:
[1] Opinion: Misguided Science Policy?—The Scientist [2012-04-10]
[2] Modern Citizenship or Policy Dead End? Evaluating the need for public participation in science policy making, and why public meetings may not be the answer

-----廣告,請繼續往下閱讀-----

轉載自國科會國際合作簡訊網 [2012-05-03]

-----廣告,請繼續往下閱讀-----
文章難易度
國科會 國際合作簡訊網
47 篇文章 ・ 3 位粉絲

0

0
0

文字

分享

0
0
0
燒毀基地台防堵新冠疫情?科學素養當道下的省思
科學月刊_96
・2020/07/08 ・2619字 ・閱讀時間約 5 分鐘 ・SR值 605 ・十年級

  • 廖英凱/非典型的不務正業者、興致使然地從事科普工作、科學教育與科技政策研究。對資訊與真相有詭異的渴望與執著,夢想能做出鋼鐵人或心理史學。

2019 冠狀病毒疾病和 5G基地台等新興科學與技術議題,除涉及知識鴻溝和價值差異外,也涉及當代科學的不確定性,不確定性既可來自科學發展中與事實有關的未知謎題,也可涉及與價值有關的選擇與判斷。

圖/af.mil

今(2020)年初始,2019 冠狀病毒疾病(Coronavirus disease 2019, COVID-19)自中國武漢往世界蔓延。

面對來得又急又快的新型病毒,世界各地也因不同的文化與教育程度,催生出了各種謠言或假訊息。而在各種真假訊息之中,令人匪夷所思的是隨著 5G 網路(5th generation mobile networks)的陸續商轉,4 月初在英格蘭與荷蘭,即發生民眾誤信 5G 網路會散布新冠病毒(SARS-CoV-2),或認為 5G 網路會損害免疫系統,而聚眾焚毀基地台。

-----廣告,請繼續往下閱讀-----

若將時間拉回到 16~17 世紀,歐洲各地正處於「獵巫」審判的最高峰,彼時人們認為巫術信仰與厄運、疾病和死亡有關,相信與巫術信仰有關的巫師或女巫及其屍首會帶來災禍,必須要以火刑淨化。事證的檢視與刑罰的判定,多在世俗法庭而非宗教審判所,也欠缺神學與法律的嚴謹基礎。

歷經 4、500 年後,人們已不再將疾病導因於巫術與巫師,但對於新興疾病的未知特性,卻歸咎給了基地台、電磁波和當代新興科技。荒誕的燒毀基地台辟瘟,似乎也頗有千年傳統再次感受的味道。啟蒙時代(Age of Enlightenment)至今三百載,人類自詡進步之路上,似乎還出了點什麼問題……。

電磁恐慌?主流科學難以撼動的經典傳言

恐懼電磁波、電場和磁場對身體帶來危害一直是部份環境和公衛等倡議人士關注的焦點。在臺灣十餘年來,舉凡如行動通訊基地台、雷達站、變電所、高鐵車廂與電子產品等,都曾遭遇過抗議或要求電磁強度標示或管制等倡議。

許多環境倡議者強調新興科技對健康的疑慮。圖/pixnio

-----廣告,請繼續往下閱讀-----

這類議題也不斷重演著少數環境倡議者與科學家的論戰。此類論戰大致可化約理解為環境倡議者多強調新興科技對健康的疑慮、主張環境電磁波的總量管制和警語標示,可視為一種持守「預警性原則」的保守心態。但科學社群則多強調電磁場的物理性質、人造電磁場與地球環境電磁場的相比、大規模公衛研究的成果及原分子尺度的因果研究,可說是一種基於「科學實證」的進取態度。

這兩類迥異態度的拉鋸,是有助於科技政策制定中的事實認定和價值判斷釐清的必要爭論,政策制定與溝通正是在兩種態度的權衡中尋求符合在地情境的最佳解。然而,兩種態度的爭論,呈現於一般傳媒、利害關係民眾所接受到的訊息時,往往僅存片面、造成恐慌與偽科學的資訊。最終演變成倡議者對抗科學霸權的血淚控訴,與科學社群對民眾科學素養低落的失落無策。

走向科學?先天不足後天失調的崎嶇路

對於追求前沿知識的科學社群,當中的科學研究體制成熟且穩定發展。但對於不屬研究者的一般公眾,科學知識在日常生活的取得、理解與應用,仍屬陌生且艱難。特別是對於涉及科學的社會議題,受到科學知識發展高度分化的影響,一般公眾幾無餘力充分理解議題中所蘊含的科學知識,難以在專業知識層次上與該領域專家平等對談,而往往仰賴受信賴的專家論點與指引。科學議題也可能受到來自利益和不當理念驅動的惡意倡議,使科學內容受到誤解、扭曲或偽造。

此外,如 2019 冠狀病毒疾病和 5G 基地台等新興科學與技術議題,除涉及知識鴻溝和價值差異外,也涉及當代科學的不確定性,不確定性既可來自科學發展中與事實有關的未知謎題,也可涉及與價值有關的選擇與判斷。這使得從公眾的角度看待科學時,科學並非也不該總是呈現對錯分明的樣貌,而是具有多元解讀、結論模糊的特色,而仰賴眾研究者勇踏前人未知之境的恆常努力。

-----廣告,請繼續往下閱讀-----

人們自覺關乎自己時,才會有所行動。圖/giphy

當科學議題與風險有關,而仰賴公眾權衡輕重時,內在於公眾的心智機制,也不利於科學議題的判斷。舉凡疫苗、基改、公共衛生、能源與環保等諸多涉及科學的社會議題中,人類對風險判斷過程的損益權衡,常有不一致或矛盾的判斷標準,甚至可受到修辭的影響。例如特維爾斯基(Amos Tversky) 和卡尼曼(Daniel Kahneman)在 1981 年提出的研究發現,當一個議題被描述為 30% 人死亡或描述為 70% 人存活,對於公眾就會產生迥異的情緒感知進而得到不同的決策或判斷。

這種認知上的特色,使得人類感受到的風險與實際帶來的風險並沒有正相關。而當風險事件引發情緒時,人類容易讓情緒感覺驅動行為決策,例如使人過度害怕愛滋病毒卻輕忽肥胖,過度害怕焚化爐空汙卻輕忽菸害,更有甚者,會傾向於詆毀新科技的問世。

因此,若要細究焚毀基地台防疫民眾的動機,可能並非單純的科學知識缺乏或誤信錯假訊息。還跟外在於公眾──科學發展的複雜與不確定性,及內在於公眾──風險判斷的心智認知有關。

-----廣告,請繼續往下閱讀-----

內化科學?知識傳遞的百年窠臼

科學議題判斷的困難,促使廣義的科學界肩負起「撥亂反正」的責任。然而,時至今日,無論體制外的科學傳播或體制內的科學教育,既難堪稱知識傳播的主流於回應真實世界的科學議題,也常有相當距離。儘管近年科學傳播理論已開始轉向具有雙向溝通、參與真實社會議題的「公眾參與科學」,或導入宏觀「科學素養」的科學教育理念。

但多數科學傳播文本或形式,仍屬將科技新知、艱難知識轉化並報導給目標受眾,多維持單方向知識傳遞的「公眾理解科學」階段,較少理解公眾因應科學議題的脈絡,而略難呼應真實社會的科學爭議。科學傳播者雖作為科學知識和公眾之間的「中介者」,但如《科學月刊》前總編輯林基興博士等,直接涉入爭議科學議題的溝通或決策場域也屬罕見。

林基興博士在泛科學的專欄文章。圖/截圖自泛科學

回首臺灣的情境,雖然沒有誇張到燒毀基地台,但也曾有抗議氣象雷達站與阻擋海底電纜的社會爭議,迄今也有現任立委因顧慮電磁波危害,在選前提出反對雷達站、各式基地台和海底電纜等主張。

-----廣告,請繼續往下閱讀-----

形塑科學文化的使命,不僅止於教化與啟迪,更在爭議科學議題的辯證之間。

延伸閱讀

  • Gawande, A., The mistrust of science, The New Yorker, 2016/6/10.

 

 

〈本文選自《科學月刊》2020年7月號〉

科學月刊∕在一個資訊不值錢的時代中,試圖緊握那知識餘溫外,也不忘科學事實和自由價值至上的科普雜誌。

-----廣告,請繼續往下閱讀-----
科學月刊_96
249 篇文章 ・ 3779 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。