0

1
3

文字

分享

0
1
3

言論自由不等於亂說話,但它的界線在哪裡?

研之有物│中央研究院_96
・2019/07/30 ・4608字 ・閱讀時間約 9 分鐘 ・SR值 578 ・九年級

-----廣告,請繼續往下閱讀-----

  • 採訪編輯|黃楷元、美術編輯|林洵安

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位

為什麼研究「言論自由」

言論自由,對個人來說,與自我實現息息相關;對於整個社會來說,則是確保民主價值的必要條件。然而,言論自由不能無限上綱,其中一條紅線是「妨害名譽」。

中研院法律所許家馨副研究員分析發現:各級法院近年來在「民事名譽侵權」認定上,對合理查證的要求越趨「嚴格」,而「刑事誹謗」認定上,對發言者責任認定越趨「寬鬆」。這牽涉到法院如何在政治對立、媒體品質堪慮、社會價值衝突的大環境下,參與塑造公開發言者的言論尺度;此課題攸關臺灣民主發展的品質,值得認真關注。

言論自由的紅線:誹謗

2019 年 3 月的立委補選,有一則出自政論節目的消息讓舉國譁然:「 200 萬噸滯銷文旦,被倒進了水庫。」由於數字驚人,立刻有反對意見駁斥這是「假新聞」。儘管消息來源後來澄清是重量單位的口誤,但仍被質疑情節太誇大,掀起的論戰烽火連天,最後,這個爭議甚至可能影響了選舉結果。

2019年3月曾出現過的「200萬噸文旦」假消息。source: 民視新聞截圖

事實上類似的案例,近年來在臺灣的政壇和媒體早已屢見不鮮。政府高喊「打擊假新聞」、設立「闢謠專區」,但仍然有許多真實性待商榷的資訊,透過新聞及社群媒體,擴散流竄。

這些謠言或假消息形成的錯誤認知,可能會誤導判斷、激化衝突、甚至危及生命財產安全。許多人心中不免出現一個質疑:

我們享有的言論自由,界線到底在哪裡?

中研院法律所許家馨副研究員,就是研究這個領域的專家。言論自由的內涵與範疇,是一個非常龐大且複雜的議題,比如說,其中一條言論的紅線,是「妨害名譽」。光是「怎樣才算成立誹謗」這個問題,就已經讓法律界爭論很長一段時間。

-----廣告,請繼續往下閱讀-----

釋字 509 留下的空白

刑法關於誹謗罪的規定(節錄)。 資料來源│全國法規資料庫

2000 年以前的法律實務,誹謗官司中,刑法第 310 條「證明言論為真」的責任,一直都落在被告身上,若不能證明為真,就成立誹謗罪。這項罪名好比是言論市場的緊箍咒,對新聞記者或者其他針對公共事務發言的人,構成非常沉重的負擔。

直到 2000 年大法官做出了釋字第 509 號解釋:「…依其所提證據資料,認為行為人有相當理由確信其為真實者,即不能以誹謗罪之刑責相繩…」。此解釋大大減輕了被告負擔的舉證責任,從「言論為真」,變成「有理由信其為真」。

然而,釋字 509 沒有說的是:「有理由確信為真」,究竟應該做到什麼程度?

多周延的理由,才足堪確信?這邊出現了很大的模糊地帶,一方面會影響法律的安定性,讓人民無所適從;同時也會造成法官裁量上的困難、甚至是濫權的可能。

於是,許家馨整理了 2000 到 2010 這十年間,高等法院對於刑事誹謗罪的 1163 個判決、以及民事名譽侵權的 471 個判決,並設計下圖的量度進行實證研究,希望能從中整理出脈絡。

-----廣告,請繼續往下閱讀-----
許家馨設計四種量度評估「判決誹謗言論的寬鬆程度」(上方長條),並將之對應到法律或理論上的「故意/過失」歸責程度(下方長條)。圖說重製│黃楷元、林洵安。資料來源│許家馨,2013,〈民刑誹謗二元體系之形成與分析: 以「故意過失」為中心的實證研究

如上圖所示,許家馨用了嚴格、中等、寬鬆、極寬鬆四個量度,來評估所有的判決,也把這四個量度,約略對應到刑法上的故意/過失概念。以下是他對這四個量度的測量標準:

  • 嚴格:要求發言者必須自己證明誹謗言論的真實性,若不能證明真實,就直接課與法律責任的判決(接近釋字 509 做成前的狀態)。
  • 中等:要求發言者應「合理查證」,而查證的合理與否,牽涉到許多面向(例如被告身分、言論公益性、查證成本等)來衡量發言與查證是否「合理」的判決。
  • 寬鬆:當事人只需有些許證據,足夠引起其「合理懷疑」所陳述的事實,非完全憑空捏造,即可免責的判決。
  • 極寬鬆:比上述「寬鬆」更甚的其他判決(例如「加上問號就可免責」等)。

分析結果發現,民事名譽侵權判決、刑事誹謗罪判決,出現了非常明顯的分布差異:民事認定越趨嚴格,刑事認定越趨寬鬆。

一錘定音:「刑寬民嚴」的民刑誹謗二元體系

延續前述的量度,從許家馨整理的下方圖表可看出:刑事案件,從 2006 年之後,非常顯著地朝「寬鬆」的方向發展;而民事案件,扣掉案件太少、參考價值偏低的前兩年,則是緩和地趨向「嚴格」。

2000-2010 年,高等法院刑事誹謗案件及民事妨害名譽侵權案件判決──故意過失的比例變化。圖說重製│黃楷元、林洵安。資料來源│許家馨,2013,〈民刑誹謗二元體系之形成與分析: 以「故意過失」為中心的實證研究

許家馨在 2011 年發表了這個研究,自此確定了臺灣誹謗法制「刑寬民嚴」這個發展趨勢,許家馨稱之為「民刑誹謗二元體系」,大大減少了學術上與實務上針對此一問題的爭議。

-----廣告,請繼續往下閱讀-----

為什麼「刑寬民嚴」呢?這是臺灣政治、社會、媒體環境影響的結果。

一方面,不負責任的爆料文化和失職的媒體,會需要較嚴格的規範加以管制;另一方面,對政府監督的需求、及高度對立的政治生態,又必須對言論採取較寬容的管制。這樣的兩難局面,「民刑誹謗二元體系」或許是較佳的方案。

刑事的誹謗,罪責重、非難性也高,容易引發「寒蟬效應」的危險,因此採取對於言論管制較寬鬆的「真實惡意」原則──只處罰惡意空穴來風的造謠;而在非難性較低、著重合理分配損害與風險的民事名譽侵權,就使用著重客觀行為規範的「合理查證」模式──輕率的發言必須承擔賠償責任。

許家馨表示,這個議題還有很多角度可以繼續鑽研,像是言論的「公共性」程度,是不是也會影響查證義務的高低?「公共性」應該用什麼標準來判斷?這些問題都很值得進一步探討。

思想與言論自由更深層的價值,是守護民主社會

當然,個人或團體的名譽,並不是言論自由及新聞自由的唯一紅線。在討論言論/新聞自由本質的時候,背後應該有更高層次的價值,從人類倫理、民主政治、社會生活等層面出發。

-----廣告,請繼續往下閱讀-----

「 1990 年代的時候,討論言論自由的角度大多是要儘量開放,因為那時候的時空背景,『解除威權遺緒』還是一個主流思潮,社會需要打開出版和評論上的枷鎖,」許家馨說,「但到了近年,民主自由逐漸落實,環境已經不再是對威權體制的衝撞,而是藍綠對立。在這種高度對抗、激化的政治氛圍下,看待言論市場的態度也該有相應調整。」

要推倒一棵樹,你只需要往一個方向猛推就好;但現在,我們要做的是種一棵樹,需要不同的力量。這棵樹就是我們的民主體制。

根據林子儀大法官的觀點,「言論自由」的理論基礎,是來自於人類對於「自我實現」的需求。在對抗威權的年代,這樣的理論可以為民主化運動提供很多的養分。但許家馨認為,在民主慢慢落實後,這理論需要適當修正。為了避免濫用,「言論自由」應該要有更多相對應的「民主功能」或「社會責任」,才能夠維護民主自由體制的品質。

「言論自由」應該要有更多相對應的「民主功能」或「社會責任」,才能夠維護民主自由體制的品質。 source: defense

在民主理論典範中的「審議民主」,就是強調在「公共領域」中的各種公民意見,經過審議的過程去蕪存菁,讓好的意見影響政治決策,維護民主的品質。社會需要有一群人、或一個場域,有足夠活躍的言論空間,以超越黨派的角度,來思考公共議題,既可由上而下宣達政策、也能由下而上反映民意,對於政府進行監督、以及意見的討論辯證。

曾經被寄予「公共領域」厚望的對象,一個是媒體,另外一個是學術界。前者相對更加大眾化一些,能夠有更多公民的參與;但後者,則能提供更嚴謹、更客觀、更科學的方法,來辯證審議各種言論意見、甚至扮演知識的來源。然而,不管是媒體亦或學術界,公共領域理想能否落實,關鍵都在於「黨派政治」的手,有沒有伸進來。

-----廣告,請繼續往下閱讀-----

學術界應該拒絕「黨派政治」的滲透,但可以進行「超越黨派」的政治討論。

許家馨並不樂觀,因為近年來,媒體和學界被政治領域「反殖民」的情況十分嚴重,像是台大校長的爭議、以及「韓流」發燒的媒體現象,都是例子。政治本質就是權力的爭奪,必然會劃分敵我,若把黨派政治帶進媒體和學界,整個社會就會開始趨向對立,逐漸失去思考的活力。

身為學者,許家馨對學界的憂心尤甚。他認為,制度面上,要堅守學術自治,這是跟黨派政治保持安全的距離最好方法。此外,也需要仰賴學者的自覺與責任感。

社會科學永遠不會有單憑一句話就能說清楚的真理。那麼,如果大家不能在知識上,對不同意見抱持足夠的好奇與寬容,我們能走多遠呢?

在衝突對立的社會中,許多人都喜歡窩在舒適的同溫層裡。但許家馨認為,「在學界和肩負社會責任的菁英機構裡面,必須要有走出同溫層的自覺,進行 open-minded 的對話,才能帶動整個社會的言論和思潮。」這是他對於自己、以及所有以知識份子自居的人,最誠懇剴切的期許。

__________

關於許家馨副研究員的Q&A!

中研院法律所副研究員許家馨,以實證法學方法研究誹謗,提出「民刑誹謗二元體系」,釐清大法官 509 號解釋後的學術與實務爭議。 攝影│張語辰

是什麼啟蒙對於言論自由的研究旨趣?

2002 年的時候,政壇爆發一起重大事件──喧騰一時的「涂醒哲舔耳案」(時任衛生署代署長的涂醒哲,被李慶安立委誣指性騷擾男性友人,引起軒然大波,事後證明是張冠李戴,烏龍一場)。那時候我剛到美國芝加哥大學法學院求學,看到新聞很生氣,怎麼可以這樣亂講話。後來就開始對於言論自由的議題產生興趣。

-----廣告,請繼續往下閱讀-----

留學美國時,有看到什麼不同的政治與學術文化嗎?

在美國芝加哥大學法學院唸書時,親眼看見那裡的知識分子,儘管政治立場不同,仍然可以互相肯定、和諧對話。這份學術階層的自我認知,對我這個習慣藍綠對立的臺灣留學生來說,十分震撼。

在政治領域中,競爭是需要的,但要怎麼防止競爭擴大成你死我活的戰爭,需要外面一層很厚的政治社會文化,去把政治給包圍起來。這個方向,臺灣還有很長的路要走。

延伸閱讀

本文轉載自中央研究院研之有物,原文為我們有亂講話的自由嗎?從誹謗談言論自由的邊界與展望,泛科學為宣傳推廣執行單位

-----廣告,請繼續往下閱讀-----
文章難易度
研之有物│中央研究院_96
296 篇文章 ・ 3404 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

1

1
1

文字

分享

1
1
1
讓 AI 取代真人執法可行嗎?將判斷全交給 AI 可能隱藏什麼危險?——專訪中研院歐美研究所陳弘儒助研究員
研之有物│中央研究院_96
・2024/03/18 ・6292字 ・閱讀時間約 13 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自中央研究院「研之有物」,為「中研院廣告」

  • 採訪撰文|劉韋佐
  • 責任編輯|田偲妤
  • 美術設計|蔡宛潔

人工智慧將改變以人為主的法治領域?

由人工智慧擔任警察,再也不是科幻電影的情節,交通管制常見的科技執法就是應用 AI 辨識闖紅燈、未依規定轉彎、車輛不停讓行人等違規行為。 AI 的客觀、高效率正在挑戰以人為審判主體的法治領域,這樣的轉變會對我們產生什麼影響呢?中央研究院「研之有物」專訪院內歐美研究所陳弘儒助研究員,他將帶我們思考:當 AI 取代人類執法時,將如何改變人們對守法的認知?

交通尖峰時段,後方出現一台救護車,你願意闖紅燈讓道嗎?
圖|iStock

想像有一天你正在尖峰時段開車,車子停在十字路口等紅燈時,後方出現一輛急駛而來的救護車,你為了讓道必須開過停止線。這時你是否願意冒著違規被開罰的風險?還是承擔風險以換取他人盡速就醫?

在上述情境中,針對「要不要闖紅燈」我們經歷了一段價值判斷過程。如果剛好十字路口有真人警察,他的判斷可能是:這是情急之下不得不的行為,並非蓄意違規。

然而,如果負責執法的是「法律人工智慧系統」(Artificially legal intelligent,簡稱 ALI)情況可能截然不同。

-----廣告,請繼續往下閱讀-----

ALI 這個詞源自 Mireille Hildebrandt 的研究,在概念上可區分為兩類:採取傳統程式碼的 IFTTT(if this then that)、運用機器學習的資料驅動。前者是注重法律推理或論證的計算機模型,將法律規範轉為程式碼,藉由程式編寫來執行法律任務。後者則透過大量資料的學習,來預測行為範式,用於再犯率、判決結果預測上有較好的成果。

一般情況下,應用在交通管制的 ALI 會辨識車輛是否超速、闖紅燈等違規行為,不過交通情境千變萬化,ALI 能否做出包含「道德價值的判斷」將是一大挑戰!

中研院歐美研究所陳弘儒助研究員察覺,人工智慧(AI)正在左右人們對守法的價值判斷及背後的因果結構,進而反思當我們將原本由人來判斷的事項,全權交由 AI 來執行時,可能產生哪些潛移默化的影響?

讓我們與陳弘儒展開一場從法哲學出發的對話,探索 AI 與法治價值之間的緊張關係。

-----廣告,請繼續往下閱讀-----
中研院歐美研究所陳弘儒助研究員,從法哲學出發,探索 AI 與法治價值之間的緊張關係。
圖|之有物

問

怎麼會對「人工智慧」(AI)與「法律人工智慧系統」(ALI)產生研究興趣?

會對 AI 感興趣是因為我很早就對電腦有興趣,我原本大學想唸資訊工程,因為高中有些科目沒辦法唸,於是去唸文組,大學進入法律系就讀,研究所考入「基礎法學組」研讀法哲學。

後來我到美國讀書,當時 AlphaGo 的新聞造成很大的轟動,啟發我思考 AI 的應用應該有些法律課題值得探討,於是開始爬梳 AI 與法律的發展脈絡。

AI 這個詞大概在 1950 年代被提出,而 AI 與法律相關的討論則在 1970、80 年代就有學者開始思考:我們能否將法律推理過程電腦程式化,讓電腦做出跟法律人一樣的判斷?

事實上,AI 沒有在做推理,它做的是機率的演算,但法律是一種規範性的判斷,所有判斷必須奠基在法律條文的認識與解釋上,給予受審對象合理的判決理由。

這讓我好奇:如果未來廣泛應用 AI 執法,法律或受法律規範的民眾會怎麼轉變?

-----廣告,請繼續往下閱讀-----

至於真正開始研究「法律人工智慧系統」(ALI)是受到我父親的啟發。有一陣子我經常開車南北往返,有一天我跟父親聊到用區間測速執法的議題。交通部曾在萬里隧道使用區間測速,計算你在隧道裡的平均速率,如果超速就開罰。

父親就問我:「政府有什麼理由用區間測速罰我?如果要開罰就必須解釋是哪一個時間點超速。」依照一般的數學邏輯,你一定有在某個時間點超速,所以平均起來的速率才會超過速限,可是法律判斷涉及規範性,我們必須思考背後的正當性課題,不能只用邏輯解釋,這啟發我逐漸把問題勾勒出來,試圖分析執法背後的規範性意涵。

問

如果將執行法律任務的權限賦予 AI,可能暗藏什麼風險?

我們先來談人類和 AI 在做判斷時的差別。人類無時無刻都在做判斷,判斷的過程通常會先做「區分」,例如在你面前有 A 和 B 兩個選項,在做判斷前必須先把 A 和 B 區分開來,讓選項有「可區別性」。

在資料龐大的情況下,AI 的優勢在於能協助人類快速做好區分,可是做判斷還需經歷一段 AI 難以觸及的複雜過程。人類在成長過程中會發展出一套顧及社會與文化認知的世界觀,做判斷時通常會將要區分的選項放進這個世界觀中,最終做出符合社會或自身考量的抉擇。

-----廣告,請繼續往下閱讀-----

當我們將判斷程序交由 AI 執行,就會涉及「判斷權限移轉」的問題,這經常在日常生活中發生,你只要發現原本自己可以執行的事情,有另外一個對象做的比你好或差不多好,你就會漸漸把判斷的工作交給它,久而久之,你大概會覺得這是很好的做法,因為可以節省大量時間。

自駕車導航系統就是判斷權限移轉的例子,由於導航通常可以找出最佳行車路線,駕駛人幾乎會跟著走,但仍有可能誤入路況不佳或無法通行的地方。
圖|Vladimir Srajber, Pexels

我擔心這種判斷權限移轉會快速且廣泛的發生,因為 AI 的工作效率極高,可以大幅節省人力成本,但是哪一些權限可以放給 AI?哪一些權限人類一定要守住?我們經常沒有充足的討論,等到發生問題再亡羊補牢可能為時已晚。

以讓道給救護車而闖紅燈的情境為例,如果讓 AI 來做交管,可以節省警察人力,又可以快速精準地開罰,卻迫使民眾需額外花時間,證明闖紅燈有正當理由。如果是真人警察來判斷,警察通常會認為你的行為有正當理由而不開罰。這對於受法律規範的民眾來說,會產生兩種全然不同的規範作用。

AI 產生的規範作用會讓民眾擔心事後銷單的麻煩程序,如果無法順利解決,可能會訴諸民意代表或上爆料公社,並漸漸改變民眾對守法的態度。而真人警察產生的規範作用,將使民眾自主展現對法律的高度重視,雖然當下的行為牴觸法律,卻是行為人經過多方權衡後做的判斷,相信法律會支持自己出於同理心的行為。

-----廣告,請繼續往下閱讀-----

問

使用 AI 執法除了看上它的高效率,也是因為和真人相比 AI 不會受私情影響,比較可以做出公正的判斷。如果從法治觀念來看,為何決策權不能全權交由 AI 執行?

我認為法治的核心價值在臺灣並沒有很好的發展,我們常想的是怎麼用處罰促成民眾守法,長久下來可能會得到反效果。當人們養成凡事規避處罰的習慣,一旦哪天不再受法律約束,可能會失去守法的動機。

事實上,法治最根深柢固的價值為:

法律作為一種人類行為規範的展現,促使民眾守法的方式有很多種,關鍵在於尊重人的道德自主性,並向民眾陳述判決理由。

給理由非常重要,可以讓民眾不斷透過理由來跟自己和法律體系溝通。如此也可以形成一種互惠關係,使民眾相信,國家公權力能用適當的理由來制定法律,而制定出的法律是以尊重公民自主性為主。當民眾理解法律對我所處的社會有利,會比較願意自動產生守法的動機。

AI 執法看似比人類「公正無私」,但它的執法方式以處罰為主、缺乏理由陳述,也沒有對具體情境的「敏感性」。人跟人之間的互動經常需要敏感性,這樣才能理解他人到底在想什麼。這種敏感性是要鍛鍊的,真人警察可在執法過程中,透過拿捏不同情境的處理方式來累積經驗。

-----廣告,請繼續往下閱讀-----

例如在交通尖峰時段應該以維持交通順暢為原則,這時警察是否具備判斷的敏感性就很重要,例如看到輕微的違規不一定要大動作開罰,可以吹個警笛給駕駛警示一下就好。

我越來越覺得人類這種互動上的敏感性很重要,我們會在跟他人相處的過程中思考:跟我溝通的對象是什麼樣的人?我在他心中是什麼模樣?然後慢慢微調表現方式,這是人類和 AI 最根本的不同。

行動者受各種法律變項影響的因果圖。上圖是由真人警察執法,對於處罰之可能性有影響力,可依不同情境判斷是否開罰。下圖是由全自動法律人工智慧執法,由 AI 直接將處罰之可能性加諸在行動者身上,缺乏真人警察二次確認,很可能影響行動者對守法與否的衡量。
圖|之有物(資料來源|陳弘儒)

問

相較於法律人工智慧,ChatGPT 等生成式 AI 強大的語言功能似乎更接近理想中的 AI,其發展可能對我們產生哪些影響?

我認為會有更複雜的影響。ChatGPT 是基於大型語言模型的聊天機器人,使用大量自然語言文本進行深度學習,在文本生成、問答對話等任務上都有很好的表現。因此,在與 ChatGPT 互動的過程中,我們容易產生一種錯覺,覺得螢幕後好像有一名很有耐心的真人在跟你對話。

事實上,對於生成式 AI 來說,人類只是刺激它運作的外在環境,人機之間的互動並沒有想像中的對等。

仔細回想一下整個互動過程,每當外在環境(人類)給 ChatGPT 下指令,系統才會開始運作並生成內容,如果我們不滿意,可以再調整指令,系統又會生成更多成果,這跟平常的人際互動方式不太一樣。

-----廣告,請繼續往下閱讀-----
ChatGPT 能讓使用者分辨不出訊息來自 AI 或真人,但事實上 AI 只是接受外在環境(人類)刺激,依指令生成最佳內容,並以獲得正向回饋、提升準確率為目標。
圖|iStock

資工人員可能會用這個理由說明,生成式 AI 只是一種工具,透過學習大量資料的模式和結構,從而生成與原始資料有相似特徵的新資料。

上述想法可能會降低人們對「資料」(Data)的敏感性。由於在做 AI 訓練、測試與調整的過程中,都必須餵給 AI 大量資料,如果不知道資料的生產過程和內部結構,後續可能會產生爭議。

另一個關於資料的疑慮是,生成式 AI 的研發與使用涉及很多權力不對等問題。例如現在主流的人工智慧系統都是由私人公司推出,並往商業或使用者付費的方向發展,代表許多資料都掌握在這些私人公司手中。

資料有一種特性,它可以萃取出「資訊」(Information),誰有管道可以從一大群資料中分析出有價值的資訊,誰就有權力影響資源分配。換句話說,多數人透過輸入資料換取生成式 AI 的服務,可是從資料萃取出的資訊可能在我們不知情的狀況下對我們造成影響。

問

面對勢不可擋的生成式 AI 浪潮,人文社會學者可以做些什麼?

國外對於 AI 的運用開始提出很多法律規範,雖然國外關於價值課題的討論比臺灣多,但並不代表那些討論都很細緻深入,因為目前人類跟 AI 的相遇還沒有很久,大家還在探索哪些議題應該被提出,或賦予這些議題重新認識的架構。

這當中有一個重要課題值得思考:

我們需不需要訓練 AI 學會人類的價值判斷?

我認為訓練 AI 理解人類的價值判斷很可能是未來趨勢,因為 AI 的發展會朝人機互動模式邁進,唯有讓 AI 逐漸理解人類的價值為何,以及人類價值在 AI 運作中的局限,我們才有辦法呈現 AI 所涉及的價值課題。

當前的討論多數還停留在把 AI 當成一項技術,我認為這種觀點將來會出問題,強大的技術如果沒有明確的價值目標,是一件非常危險的事情。實際上,AI 的發展必定有很多價值課題涉入其中,或者在設計上有一些價值導向會隱而不顯,這將影響 AI 的運作與輸出成果。

思考怎麼讓 AI 理解人類價值判斷的同時,也等於在問我們人類:對我們來說哪一些價值是重要的?而這些重要價值的基本內容與歧異為何?

我目前的研究有幾個方向,一個是研究法律推理的計算機模型(Computational models of legal reasoning);另一個是從規範性的層面去探討,怎麼把價值理論、政治道德(Political morality)、政治哲學等想法跟科技界交流。未來也會透過新的視野省視公民不服從議題。

這將有助科技界得知,有很多價值課題需要事先想清楚,影響將擴及工程師怎麼設計人工智慧系統?設計過程面臨哪些局限?哪些局限不應該碰,或怎麼把某些局限展現出來?我覺得這些認識都非常重要!

鐵面無私的 ALI ?人類與人工智慧執法最大的分野是什麼?

陳弘儒的研究室有許多公仔,包括多尊金斯伯格(Ginsburg)公仔,她是美國首位猶太裔女性大法官,畢生為女權進步與性別平權奮鬥。
圖|之有物

陳弘儒是臺灣少數以法哲學理論研究法律人工智慧系統(ALI)的學者,他結合各種現實情境,與我們談論 ALI、生成式 AI 與當代法治價值的緊張關係。

由於 ALI 擅長的資料分類與演算,與人類判斷過程中涉及的世界觀與敏感性思辨,有著根本上的差異;以處罰為主、缺乏理由陳述的判斷方式,也容易影響民眾對公權力的信任。因此陳弘儒認為,目前 ALI 應該以「輔助人類執法」為發展目標,讓人類保有最終的判斷權限

至於現正快速發展的生成式 AI ,根據陳弘儒的觀察,目前仍有待各方專家探索其中的價值課題,包括資料提供與使用的權力不對等、哪些人類價值在訓練 AI 的過程中值得關注等。

在過去多是由人文社會學者提出警告,現在連 AI 領域的權威專家也簽署公開信並呼籲:AI 具有與人類競爭的智慧,這可能給社會和人類帶來巨大風險,應該以相應的關注和資源進行規劃和管理

在訪談過程中,有一件令人印象深刻的小插曲,陳弘儒希望我們不要稱呼他「老師」,因為他從小就畏懼老師、警察等有權威身分的人,希望以更平等的方式進行對話。

假如今天以 AI 進行採訪,整個談話過程或許能不受倫理輩分影響,但這也讓我們意識到,在 AI 的世界裡,許多人際互動特有的敏感性、同理反思都可能不復存在。

陳弘儒的研究讓我們體會,AI 在法治領域的應用不僅是法律問題,背後更包含深刻的哲學、道德與權力課題,也讓我們更了解法治的核心價值:

法律要做的不只是規範人們的行為,而是透過理由陳述與溝通展現對每個人道德自主性的尊重。

所有討論 1
研之有物│中央研究院_96
296 篇文章 ・ 3404 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

0
0

文字

分享

0
0
0
民眾黨是未來台灣政治的樞紐?
林澤民_96
・2024/01/30 ・3382字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

一、前言

選後的立法院三黨不過半,但民眾黨有八席不分區立委,足以與民進黨或國民黨結成多數聯盟,勢將在國會居於樞紐地位。無獨有偶的是:民眾黨主席柯文哲在總統大選得到 26.5% 的選票,屈居第三,但因其獲得部分藍、綠選民的支持,在選民偏好順序組態的基礎上,它卻也同樣地居於樞紐地位。這個地位,將足以讓柯文哲及民眾黨在選後的台灣政壇持續激盪。

二、柯文哲是「孔多塞贏家」?

這次總統大選,誰能脫穎而出並不是一個特別令人殷盼的問題,更值得關心的問題是藍白綠「三跤㧣」在選民偏好順序組態中的消長。台灣總統大選採多數決選制,多數決選制英文叫 first-past-the-post(FPTP),簡單來講就是票多的贏,票少的輸。在 10 月中藍白合破局之後,賴蕭配會贏已經沒有懸念,但這只是選制定規之下的結果,換了另一個選制,同樣的選情可能就會險象環生。

從另一個角度想:選制是人為的,而選情反映的是社會現實。政治學者都知道天下沒有十全十美的選制;既定的選制推出了一位總統,並不代表選情的張力就會成為過眼雲煙。當三股社會勢力在制度的帷幕後繼續激盪,台灣政治將無法因新總統的誕生而趨於穩定。

圖/作者自製

如果在「三跤㧣」選舉之下,選情的激盪從候選人的得票多少看不出來,那要從哪裡看?政治學提供的一個方法是把候選人配對 PK,看是否有一位候選人能在所有的 PK 中取勝。這樣的候選人並不一定存在,如果不存在,那代表有 A 與 B 配對 A 勝,B 與 C 配對 B 勝,C 與 A 配對 C 勝的 A>B>C>A 的情形。這種情形,一般叫做「循環多數」(cyclical majorities),是 18 世紀法國學者孔多塞(Nicolas de Condorcet)首先提出。循環多數的存在意涵選舉結果隱藏了政治動盪。

-----廣告,請繼續往下閱讀-----

另一方面,如果有一位候選人能在配對 PK 時擊敗所有的其他候選人,這樣的候選人稱作「孔多塞贏家」(Condorcet winner),而在配對 PK 時均被擊敗的候選人則稱作「孔多塞輸家」(Condorcet loser)。三角嘟的選舉若無循環多數,則一定會有孔多塞贏家和孔多塞輸家,然而孔多塞贏家不一定即是多數決選制中贏得選舉的候選人,而多數決選制中贏得選舉的候選人卻可能是孔多塞輸家。

如果多數決選制中贏得選舉的候選人不是孔多塞贏家,那與循環多數一樣,意涵選後政治將不會穩定。

那麼,台灣這次總統大選,有沒有孔多塞贏家?如果有,是多數決選制之下當選的賴清德嗎?我根據戴立安先生調查規劃的《美麗島電子報》追蹤民調第 109 波(1 月 11 日至 12 日),也是選前最後民調的估計,得到的結果令人驚訝:得票墊後的柯文哲很可能是孔多塞贏家,而得票最多的賴清德很可能是孔多塞輸家。果然如此,那白色力量將會持續地激盪台灣政治!

我之前根據美麗島封關前第 101 波估計,侯友宜可能是孔多塞贏家,而賴清德是孔多塞輸家。現在得到不同的結果,顯示了封關期間的三股政治力量的消長。本來藍營期望的棄保不但沒有發生,而且柯文哲選前之夜在凱道浩大的造勢活動,還震驚了藍綠陣營。民調樣本估計出的孔多塞贏家本來就不準確,但短期內的改變,很可能反映了選情的激盪,甚至可能反映了循環多數的存在。

-----廣告,請繼續往下閱讀-----

三、如何從民調樣本估計孔多塞贏家

根據這波民調,總樣本 N=1001 位受訪者中,如果當時投票,會支持賴清德的受訪者共 355 人,佔 35.4%;支持侯友宜的受訪者共 247 人,佔 24.7%。支持柯文哲的受訪者共 200 人,佔 19.9%。

美麗島民調續問「最不希望誰當總統,也絕對不會投給他的候選人」,在會投票給三組候選人的 802 位支持者中,一共有 572 位對這個問題給予了明確的回答。《美麗島電子報》在其網站提供了交叉表如圖:

根據這個交叉表,我們可以估計每一位明確回答了續問的受訪者對三組候選人的偏好順序,然後再依這 572 人的偏好順序組態來判定在兩兩 PK 的情形下,候選人之間的輸贏如何。我得到的結果是:

  • 柯文哲 PK 賴清德:311 > 261(54.4% v. 45.6%)
  • 柯文哲 PK 侯友宜:287 > 285(50.2% v. 49.8%)
  • 侯友宜 PK 賴清德:293 > 279(51.2% v. 48.8%)

所以柯文哲是孔多塞贏家,賴清德是孔多塞輸家。當然我們如果考慮抽樣誤差(4.1%),除了柯文哲勝出賴清德具有統計顯著性之外,其他兩組配對可說難分難解。但在這 N=572 的小樣本中,三位候選人的得票率分別是:賴清德 40%,侯友宜 33%,柯文哲 27%,與選舉實際結果幾乎一模一樣。至少在這個反映了選舉結果的樣本中,柯文哲是孔多塞贏家。依多數決選制,孔多塞輸家賴清德當選。

-----廣告,請繼續往下閱讀-----

不過以上的分析有一個問題:各陣營的支持者中,有不少人無法明確回答「最不希望看到誰當總統,也絕對不會投給他做總統」的候選人。最嚴重的是賴清德的支持者,其「無反應率」(nonresponse rate)高達 34.5%。相對而言,侯友宜、柯文哲的支持者則分別只有 24.1%、23.8% 無法明確回答。為什麼賴的支持者有較多人無法指認最討厭的候選人?一個假設是因為藍、白性質相近,對許多綠營選民而言,其候選人的討厭程度可能難分軒輊。反過來說,藍、白陣營的選民大多數會最討厭綠營候選人,因此指認較無困難。無論如何,把無法明確回答偏好順序的受訪者歸為「遺失值」(missing value)而棄置不用總不是很恰當的做法,在這裡尤其可能會造成賴清德支持者數目的低估。

補救的辦法之一是在「無法明確回答等於無法區別」的假設下,把「遺失值」平分給投票對象之外的其他兩位候選人,也就是假設他們各有 1/2 的機會是無反應受訪者最討厭的候選人。這樣處理的結果,得到

  • 柯文哲 PK 賴清德:389 > 413(48.5% v. 51.5%)
  • 柯文哲 PK 侯友宜:396 > 406(49.4% v. 50.6%)
  • 侯友宜 PK 賴清德:376 > 426(46.9% v. 53.1%)

此時賴清德是孔多塞贏家,而柯文哲是孔多塞輸家。在這 N=802 的樣本中,三位候選人的得票率分別是:賴清德 44%,侯友宜 31%,柯文哲 25%。雖然依多數決選制,孔多塞贏家賴清德當選,但賴的得票率超過實際選舉結果(40%)。用無實證的假設來填補遺失值,反而造成賴清德支持者數目的高估。

如果擔心「無法明確回答等於無法區別」的假設太勉強,補救的辦法之二是把「遺失值」依有反應受訪者選擇最討厭對象的同樣比例,分給投票對象之外的其他兩位候選人。這樣處理的結果,得到

-----廣告,請繼續往下閱讀-----
  • 柯文哲 PK 賴清德:409 > 393(51.0% v. 49.0%)
  • 柯文哲 PK 侯友宜:407 > 395(50.8% v. 49.2%)
  • 侯友宜 PK 賴清德:417 > 385(52.0% v. 48.0%)

此時柯文哲又是孔多塞贏家,而賴清德又是孔多塞輸家了。這個樣本也是 N=802,三位候選人的得票率分別是:賴清德 44%,侯友宜 31%,柯文哲 25%,與上面的結果一樣。

以上三種無反應處理方法都不盡完美。第一種把無反應直接當遺失值丟棄,看似最不可取。然而縮小的樣本裡,三位候選人的支持度與實際選舉結果幾乎完全一致。後兩種以不同的假設補足了遺失值,但卻過度膨脹了賴清德的支持度。如果以樣本中候選人支持度與實際結果的比較來判斷遺失值處理方法的效度,我們不能排斥第一種方法及其結果。

無論如何,在缺乏完全資訊的情況下,我們發現的確有可能多數決輸家柯文哲是孔多塞贏家,而多數決贏家賴清德是孔多塞輸家。因為配對 PK 結果缺乏統計顯著性,我們甚至不能排除循環多數的存在。此後四年,多數決選制產生的總統能否在三角嘟力量的激盪下有效維持政治穩定,值得我們持續觀察。

四、結語

柯文哲之所以可以是孔多塞贏家,是因為藍綠選民傾向於最不希望對方的候選人當總統。而白營的中間偏藍位置,讓柯文哲與賴清德 PK 時,能夠得到大多數藍營選民的奧援而勝出。同樣的,當他與侯友宜 PK 時,他也能夠得到一部份綠營選民的奧援。只要他的支持者足夠,他也能夠勝出。反過來看,當賴清德與侯友宜 PK 時,除非他的基本盤夠大,否則從白營得到的奧援不一定足夠讓他勝出。民調 N=572 的樣本中,賴清德得 40%,侯友宜得 33%,柯文哲得 27%。由於柯的支持者討厭賴清德(52.5%)遠遠超過討厭侯友宜(23.7%),賴雖然基本盤較大,能夠從白營得到的奧援卻不多。而侯雖基本盤較小,卻有足夠的奧援。柯文哲之所以成為孔多塞贏家,賴清德之所以成為孔多塞輸家,都是這些因素的數學結果。

-----廣告,請繼續往下閱讀-----

資料來源

討論功能關閉中。

林澤民_96
37 篇文章 ・ 239 位粉絲
台大電機系畢業,美國明尼蘇達大學政治學博士, 現任教於美國德州大學奧斯汀校區政府系。 林教授每年均參與中央研究院政治學研究所及政大選研中心 「政治學計量方法研習營」(Institute for Political Methodology)的教學工作, 並每兩年5-6月在台大政治系開授「理性行為分析專論」密集課程。 林教授的中文部落格多為文學、藝術、政治、社會、及文化評論。

0

1
2

文字

分享

0
1
2
臺中、高雄、花蓮舉辦 112 年度廣電媒體專業素養培訓課程,共創優質媒體閱聽環境
PanSci_96
・2023/11/18 ・802字 ・閱讀時間約 1 分鐘

-----廣告,請繼續往下閱讀-----

國家通訊傳播委員會(下稱 NCC)為健全廣電事業發展、提升從業人員專業素養,促使廣電事業製播優質節目及傳遞正確資訊,今(112)年援例舉辦「廣電媒體專業素養」培訓課程,本趟知識列車自 8 月起於臺北開跑,9 月分別安排於臺中、高雄,花蓮場則於 10 月辦理完成。

NCC 於 8 月舉辦專業訓練課程臺北場後,佳評如潮,在 9 月舉辦的臺中、高雄場, 10 月舉辦的花蓮場,各地媒體從業人員共同參與,除了「廣播事業營運發展」、「電視事業營運發展」、「性別平權」、「權益保護」、「多元文化」等主題外,更為中、南、東部業者規劃「內容自律」課程,邀請國立臺灣海洋大學助理教授,同時也是資深媒體人的許文宜教授,從實例探討廣電相關法規,培養內容自律意識;「消費者權益保護」課程邀請衛福部食藥署吳怡萱副稽查員,透過食品藥妝及醫藥法規,講述食藥廣告製播應注意事項。

圖 1 「消費者權益保護」課程邀請衛福部食藥署吳怡萱副稽查員分享

因應數位時代的快速變化,安排「 AI 在廣電媒體的應用發展趨勢」課程,分享科技新知及 AI 於廣電節目應用實例;「事實查證工具應用」課程則旨在培養識別虛假訊息的能力,從而可充分履行媒體的專業責任,安排每場次 3 小時的事實查證工作坊,期提高參與業者事實查核意識及能力,進而杜絕虛假訊息傳播。

圖 2 「 AI 在廣電媒體的應用發展趨勢」課程邀請集仕多股份有限公司梁哲瑋總經理分享

睽違兩年首次回歸實體課程,中、南部從業人員展現其熱情,不僅課程踴躍互動,課後也與講師熱絡交流,紛紛表示課後收穫良多。花蓮場原訂課程面臨「小犬」颱風侵襲而延期一周辦理,出席率仍高達 8 成,展現東部業者學習新知的熱情與企圖心,期待未來廣電媒體產業持續相互砥礪,攜手打造優質視聽環境!

-----廣告,請繼續往下閱讀-----
PanSci_96
1219 篇文章 ・ 2184 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。