0

0
1

文字

分享

0
0
1

一朝見寄生蜂,五代愛乙醇?原來果蠅的記憶能隔代遺傳!

小肥波
・2019/08/23 ・1288字 ・閱讀時間約 2 分鐘 ・SR值 548 ・八年級

作者/小肥波
本文轉載自立場新聞,原文為〈果蠅記憶能隔代遺傳!

2019/8/28 11:30 編按:原本標題與配圖皆有誤植,已抽換更正。

我們的行為與性格究竟是由基因還是環境影響呢?這個由 17 世紀開始的「先天與後天」爭論,到今時今日仍未有最終結論。不過,近代越來越多研究顯示,父母身處的環境可能會對後代行為與喜好造成一定的影響,最新刊於 eLife 的研究亦有類似論調。

該研究由美國達特茅斯學院 (Dartmouth College) 醫學院的 Julianna Bozler 領導,瞭解環境壓力因素如何影響果蠅 (Drosophilia melanogaster) 後代的表現型 (phenotype) 。她指出,過去一些神經元編碼行為,例如:恐懼,被認為無法跨代遺傳,因此團隊想測試環境引起的父母行為改變,是否會透過「記憶」傳至後代。

果蠅是人類很常使用的研究物種。圖/André Karwath aka Aka [CC BY-SA 2.5], via Wikimedia Commons
故事要從果蠅其中一個天敵「寄生蜂」說起。寄生蜂會將卵注入果蠅幼蟲體內,而人類已知雌果蠅為了避開寄生蜂,會比較喜歡將卵產於釋出乙醇的食物上,保護幼蟲免受寄生蜂感染。

-----廣告,請繼續往下閱讀-----

在實驗中,團隊會將果蠅與寄生蜂放在一起共處 4 天,然後才會收集果蠅卵,這些幼蟲成年後不會再與其他果蠅或寄生蜂接觸。團隊會將之分成兩組,一組用於繁殖後代,另一組則分析其對乙醇的喜好。

團隊發現,最初與寄生蜂一起生活的果蠅,有 94% 都傾向於釋出乙醇的食物上產卵,這種行為更會持續出現於其他即使無與寄生蜂互動的後代身上。

雖然,這種行為傾向百分比在第一代後代已有所下降,只有 73% 會於釋出乙醇的食物上產卵,但產卵傾向持續了五代,到第六代才回復至初代的喜好水平,換言之改變並非永久性的生殖系變化 (germline change) ,而是一個可逆轉特徵。

藉由遺傳記憶,即使是從來沒和寄生蜂相處過的果蠅,也知道要「慎選」產卵的地點,避免被寄生蜂攻擊。Paco Romero-Ferrero [CC BY 2.0], via Wikimedia Commons
更重要的是,團隊發現,其中一個推動這種改變行為傾向的關鍵,是雌性果蠅大腦特定區域的神經肽 F (neuropeptide-F, NPF) 釋放受到抑制。這種改變亦有部份源自視覺訊號(見到寄生蜂),才能夠觸發並遺傳至後代。值得留意的是,初代之後的雄或雌性都有能力將對釋出乙醇食物的偏好傳給其後代。

-----廣告,請繼續往下閱讀-----

神經肽 F 是一種與成癮行為有關神經傳導物質 (neurotransmitter) ,而在哺乳類中相對應的稱為神經肽 Y (neuropeptide-Y, NPY) , NPY 除了與成癮行為有關外,亦是哺乳類中樞神經系統中內含量最多的神經肽,幫助細胞溝通、生長與分化,如果我們能更好好了解果蠅的生物學、表觀遺傳學,以及其遺傳特徵的基本機制,或者能幫助有酗酒、濫藥問題的父母,不將問題傳到下一代。

參考資料

  • Bozler, J., Kacsoh, B.Z. & Bosco, G. (2019). Transgenerational inheritance of ethanol preference is caused by maternal NPF repression. eLife 2019;8:e45391. DOI: 10.7554/eLife.45391

延伸閱讀

文章難易度
小肥波
8 篇文章 ・ 1 位粉絲
販賣腦汁維生的蛋散,最愛吃喝玩樂,望有錢從天而降,全人類不須工作。著有《養生大謬誤》。Facebook 專頁

0

6
1

文字

分享

0
6
1
怎麼調配黃狗、棕狗,或是黑狗?——狗與狼的遺傳調色盤
寒波_96
・2021/09/29 ・4432字 ・閱讀時間約 9 分鐘

-----廣告,請繼續往下閱讀-----

只要控制一個基因,就有黃狗、棕狗、黑狗變化

黑狗、灰狗、棕狗、黃狗、乳牛狗、白狗……狗的毛色非常多變,受到多個基因影響,其中一個基因叫作 Agouti。一項研究調查各種毛色的狗與狼,發現透過不同的調控方式,只要操縱同一個基因,便能產生黑狗到黃狗的深淺變化。

所謂「不同的調控方式」其實是兩段 DNA 序列的組合,在狗被馴化以前已經存在;回溯其演化過程,除了新突變,也涉及未知古狼的遺傳交流。

論文定義出 5 種毛色的狗狗。圖/參考資料 1

影響色素的 Agouti(也叫 ASIP)基因不只狗有 ,鼠、兔等哺乳類也都具備。此一基因的蛋白質產物,是個會影響毛囊生產色素的訊號分子,如果不存在,毛囊會生產偏深的 eumelanin 色素;假如存在,會促進偏淺的 pheomelanin 色素形成。

狗狗們都配備一樣的 Agouti 基因,但是基因表現的高低,會導致毛色由淺到深的差異,趨勢是 Agouti 表現愈多,毛色便會愈淺。

不同顏色的狗,基因的編碼 DNA 序列都一樣,那麼基因表現的差異,應該是取決於調控的非編碼序列差異。倘若某些 DNA 變異是影響毛色的原因,我們應該可以看到,具備某款變異的狗是一個顏色,其他變異的狗是另一個顏色。

-----廣告,請繼續往下閱讀-----

釐清毛色的遺傳調色盤

為了找到基因型與表現型的關係,研究者定義從很黑到淺黃 5 群不同毛色,比較大家 Agouti 基因周圍的差異。

基因表現受到旁邊的啟動子(promoter)影響,狗的 Agouti 基因有 3 個啟動子,一個距離最遙遠,不同毛色的狗都一樣;而另外兩個啟動子,不同毛色的狗序列有異,看似為影響毛色深淺的成因。

狗的 Agouti 基因有三個啟動子調控,兩個在不同狗中各有差異。圖/參考資料 1

一個啟動子叫作 hair cycle promoter,簡稱 HCP,位置就在基因前方,跟編碼 DNA 連在一起,照序列差異可分為 5 款。另一個啟動子叫作 ventral promoter,簡稱 VP,位置離基因比較遠,可以分為 2 款。

比較各種 HCP 啟動子,5 款中有 3 款會讓基因失去活力;毛色不太受到 Agouti 影響之下,配備 HCP3、HCP4、HCP5 的狗狗都會走深色系。

-----廣告,請繼續往下閱讀-----

其餘 2 款,HCP2 令基因表現較低,使得毛色較深;HCP1 讓基因表現較高,毛色較淺,不過仍然會有些色素,毛色將是淺黃狗,不至於到白狗。

另一個啟動子 VP,配備 VP1 的表現較高,毛色淺;配備 VP2 則表現較低,毛色深。

Agouti 基因的兩個調控零件 VP、HCP 搭配,能形成不同毛色。圖/參考資料 1

兩段啟動子的序列搭配,可以形成多種組合,例如 VP2 加 HCP4 會是最深的黑狗,VP2 加 HCP1 是棕狗,VP1 加 HCP1 則是最淺的黃狗。

至此,研究者們釐清了毛色表現型與基因型的關係,不過這是怎麼演化而來的呢?進一步分析發現好像有點複雜,有意思的是,VP 與 HCP 的演化史很不一樣。

  • 延伸閱讀:《哈士奇的藍眼睛,基因》。之前研究眼睛顏色也發現過,狗的基因不變,調控改變造成顏色不同這回事。
Agouti 基因不同調控零件組合,形成各種毛色的狗狗。圖/參考資料 1

祖傳的毛色調控零件

同一生物分家後,若是不再遺傳交流或受到天擇影響,累積 DNA 改變將隨著時間愈來愈多。因此將大家的遺傳序列擺在一起畫演化樹,呈現的關係通常會符合親戚分家的順序。較晚分家的成員,在演化樹上會比較近,較早分家的則比較遠。

-----廣告,請繼續往下閱讀-----

Agouti 基因兩個啟動子周圍的序列,畫出來的演化樹不一樣。只看遠離基因的 VP 周圍序列(48 kb),狗、灰狼、胡狼、豺等親戚,呈現的演化樹和物種關係一致。意思是這段序列的演化,應該是照著親戚分家的過程累積差異。

由序列判斷,VP2 是原本的遺傳型號,後來才衍生出 VP1。長眠於西伯利亞東北部的亞納古狼(Yana),已經配備讓毛色變淺的 VP1,所以這個突變誕生的年代,肯定比他活跳跳的 3.35 萬年前更早,也非常可能早於狗的馴化。

比較豺、郊狼、灰狼、狗等親戚 Agouti 基因周圍的序列,將距離基因較遠的 VP 周圍區域,以及包含編碼部分的 HCP 周圍區域拆開,分別畫演化樹,發現兩者的樹形關係明顯有別。VP 和物種關係一致,HCP 則受到毛色深淺影響。圖/參考資料 1

與未知古狼遺傳交流,獲得遠古調控零件

然而,包含基因編碼部分的 HCP 周圍序列(16 kb),各親戚畫出來的演化樹,和物種關係不一樣。狗和灰狼血緣最近,演化樹上卻被歸類到兩個不同分枝。

非洲的豺(dhole) 最早分出,和物種的關係一致。但是在此之後,先分家的是淺色狗和北極狼(Arctic gery wolf),本該與淺色狗被歸為同一群的深色狗和灰狼,之間還夾著衣索比亞狼( Ethiopian wolf)、郊狼(coyote)、亞洲胡狼(golden jackal),這些親戚關係差異更大的物種。

很明顯,HCP 此一調控基因表現的零件,有狼沒有照著祖傳繼承。詳細考量 DNA 差異,論文推論最可能的狀況是:狗、灰狼、圖博狼(Tibetan wolf,也叫西藏狼、喜馬拉雅狼)、郊狼、亞洲胡狼等親戚,在共同祖先的時期配備 HCP2,很近期的某群狗又衍生出毛色變深的 HCP5。

-----廣告,請繼續往下閱讀-----
論文推論 HCP 的演化狀況。令毛色變淺的 HCP1,原本誕生於某未知的古狼支系,後來由於情慾流動,才轉移到圖博狼、北極狼、狗的族群中。圖/參考資料 1

而圖博狼、北極狼與狗的 HCP1 是哪來的?依照演化關係推論,它本來應該存在於某種未知的古狼,其演化位置處於和豺分家之後,亞洲胡狼、郊狼、灰狼分家之前(約超過 200 萬年)。某個時刻未知古狼基因突變,誕生了 HCP1,又透過情慾交流使 HCP1 傳進其他狼群。

目前資訊不可能得知未知古狼是誰,遺傳交流發生在什麼時候,論文也沒有太多著墨。我們不要太在意細節!只能看出圖博狼似乎保留變化最少的 HCP1 型號,北極狼與狗的 HCP1 改變較多;而某些黑狗的祖先,又衍生出令毛色變深的 HCP3 和 HCP4。

毛色變淺,有助於適應雪地環境?

論文推論,情慾流動而來的 HCP1 能幫助適應雪地。因為住在北極區的灰狼,以及青藏高原與蒙古的圖博狼,兩地環境頗有相似,都配備會讓毛色變淺的 HCP1。

住在類似雪地環境的圖博狼與北極狼,毛色類似,他們也都配備 HCP1。圖/參考資料 1

控制毛色的 2 個遺傳零件,最淺組合為 VP1 加 HCP1。現代各地的灰狼中,只有北美洲部分灰狼長這樣,主要住在北極區,歐亞大陸都沒有。

已知的古代樣本中, VP1 加 HCP1 組合最早見於距今 3.35 萬年的亞納古狼;可以推論人類尚未馴化狗以前,古代早有野生的淺毛狼存在。

不過他的近親兼鄰居,3.5 萬年前也住在西伯利亞東北部的泰梅爾古狼(Taimyr)毛色倒是比較深。不見得住在雪地,一定要長成淺毛。

-----廣告,請繼續往下閱讀-----
令毛色變淺的 VP1 和 HCP1 變異,可能的逐步演變過程。圖/參考資料 1

你要淺色狗,還是深色狗?

狗最初馴化的狀況,可謂曖昧難解。狗源自某群灰狼,在距今 1.5 到 4 萬年前馴化(亞納古狼的分家時間更早,並非狗的直系祖先),但是具體的時間、地點,一次、兩次或更多次都不清楚。

綜合現有資訊推測,大部分毛色的可能組合,在一萬年前都已經存在;接下來的發展,應該同時受到環境適應與人為偏好影響。

論文分析中,最早的淺黃狗距今 4800 年,位於愛爾蘭;可是遺傳上分家很早的澳洲野犬(Dingo)、新幾內亞唱犬(New Guinea singing dog)也是黃狗,可見黃毛狗的基因歷史悠久。

古代、現代的狗與狼,Agouti 基因的調控組合與預期毛色。圖/參考資料 1

出土於西伯利亞東北部的若霍夫島(Zhokhov Island,ZKV),距今 9500 年的古狗,遺傳是 VP2 加 HCP4,應當為毛色最深的黑狗。他可謂白雪中的黑色雪橇犬,這是人類為了方便識別,有意挑選的結果嗎?

令毛色變淺的遺傳零件 VP1 和 HCP1,在狗馴化之前已經存在。但是使得毛色變深的突變們,其實也一直誕生,而且是在狗馴化之後多次發生:HCP2 衍生出 HCP5、HCP1 變成 HCP3、HCP1 變成 HCP4。若霍夫古狗的 HCP4 便是早期案例。

-----廣告,請繼續往下閱讀-----

最後歸納一下重點。新研究釐清了狗、狼毛色與遺傳的關係:Agouti 基因的兩個調控零件搭配組合,能形成由黑到黃的深淺毛色。毛色既有的可能性中,野生狼受到環境影響;馴化狗出現以後,除了環境適應,還取決於人為的偏好。

延伸閱讀

參考資料

  1. Bannasch, D. L., Kaelin, C. B., Letko, A., Loechel, R., Hug, P., Jagannathan, V., … & Leeb, T. (2021). Dog colour patterns explained by modular promoters of ancient canid origin. Nature ecology & evolution, 1-9.
  2. Dog coat patterns have ancient origin
  3. Genetic enigma solved
  4. Bergström, A., Frantz, L., Schmidt, R., Ersmark, E., Lebrasseur, O., Girdland-Flink, L., … & Skoglund, P. (2020). Origins and genetic legacy of prehistoric dogs. Science, 370(6516), 557-564.
  5. Sinding, M. H. S., Gopalakrishnan, S., Ramos-Madrigal, J., de Manuel, M., Pitulko, V. V., Kuderna, L., … & Gilbert, M. T. P. (2020). Arctic-adapted dogs emerged at the Pleistocene–Holocene transition. Science, 368(6498), 1495-1499.
  6. Ramos-Madrigal, J., Sinding, M. H. S., Carøe, C., Mak, S. S., Niemann, J., Castruita, J. A. S., … & Gopalakrishnan, S. (2020). Genomes of Pleistocene Siberian wolves uncover multiple extinct wolf lineages. Current Biology.

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

寒波_96
193 篇文章 ・ 1020 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。

0

4
3

文字

分享

0
4
3
COVID-19可能增加老人失智風險,需長期追蹤
寒波_96
・2020/12/20 ・1449字 ・閱讀時間約 3 分鐘 ・SR值 536 ・七年級

-----廣告,請繼續往下閱讀-----

COVID-19(武漢肺炎、新冠肺炎)對於老年人的殺傷力比較大。除了感染病毒造成的直接危害之外,專家也觀察到不少重症患者出現「譫妄 (delirium) 」的症狀,令人憂心,是否幾年後「失智 (dementia) 」的風險將會增加?

老惹。圖/geekculture

什麼是「譫妄」?

譫妄是一類短期症狀,老年人出現的機率較高。患者往往會意識混亂、產生幻覺,例如看到魚在牆壁上用膝蓋走路之類的。

導致譫妄的原因仍有許多不解,不過並不罕見。2015 年的研究指出,住進加護病房的重症者約有 33% 發生譫妄。然而,一項研究調查武漢肺炎的重症者,發現 2000 人中高達 55% 出現譫妄,比例明顯高出許多。

瘟疫初期的重災區,義大利的倫巴底,就有醫師觀察到有些病患沒什麼呼吸道症狀,但是明顯出現譫妄。由此推論,診斷武漢肺炎時,譫妄應該列入可能的症狀之一。

-----廣告,請繼續往下閱讀-----

看似有道理的推論是,當壓力過大,超過腦部處理的能力,例如長期發炎,或是神經傳導物質失調,令腦內小劇場失去平衡,便會營造譫妄上演的舞台。

譫妄和失智有什麼關係?

另一值得重視的是,過去研究發現譫妄出現之後幾年,產生失智(也常被稱為老人癡呆)的機率也會增加。

失智是一類長期症狀的統稱,實際觀察指出譫妄與失智呈現正相關,發生過譫妄的人,失智的機率會增加。反過來一樣:失智的患者,譫妄機率也變高。

譫妄與失智呈現正相關。圖/Pixabay

但是譫妄和失智,無法肯定是否有因果關係,或是譫妄如何促進失智。譫妄倘若真的會促進失智,目前有 3 種可能的解釋。

-----廣告,請繼續往下閱讀-----
  1. 譫妄發生時,腦袋受到急性傷害,例如有害物質一時堆積在腦部。這些令腦部短期損傷的效果,長期最終將發展為失智症。
  2. 手術或感染造成腦部長期發炎。發炎可以增加血流,促進循環將廢棄物及有害物帶走;但是發炎太久的話,也可能損害細胞與組織,比方說讓神經細胞受傷,一段時間後導致認知失調的後遺症。
  3. 失智患者(即使只處於初期)神經元的聯結比較稀疏,面對發炎等困境時,神經組織的防禦較糟,更容易受損。這使得他們發生譫妄的機率增加,失智症也容易變得更嚴重。此一論點也稱作「閾值假說 (threshold hypothesis) 」。

結論

總之觀察得到的關係是:武漢肺炎重症患者,發生譫妄的機率高,可能增加隨後出現失智症的風險。

因此在診斷與治療武漢肺炎時,也必需注意譫妄造成的影響;而患者「康復」一段時間之後,是否有失智的徵兆,也是需要長期追蹤關注的項目 。

參考資料

延伸閱讀

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

寒波_96
193 篇文章 ・ 1020 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。

0

1
2

文字

分享

0
1
2
身體受傷會發炎,但你知道心智也有可能會發炎嗎?——《終結憂鬱症》
PanSci_96
・2020/04/28 ・2697字 ・閱讀時間約 5 分鐘 ・SR值 523 ・七年級

  • 作者/艾德華.布爾摩 (Edward Bullmore);譯者/高子梅
  • 編按:本書不同於傳統生理、心理二元論觀點,而從免疫學的角度切入、結合神經科學,重新思考憂鬱症與身體發炎的關聯。文中的 P 太太為類風濕性關節炎患者,也被作者診斷有憂鬱症的症狀。

我曾經簡單地以為,心智在發炎可能類似身體的發炎。從羅馬時期以來,我們就知道身體發炎時會紅腫。所以,我以前把發炎的心智想像成腫脹、憤怒、滿溢、激切、不受控制、潛藏著危險。用精神醫學的用語來說,大概就是躁症。

不過我現在的想像完全相反:那不會是一個易怒和極具威脅的傢伙,而是一個陰鬱和沉悶的人。像 P 太太,她雙手因發炎的關節而腫脹變形,心裡暗自納悶自己的情緒怎麼這麼低落,精神不濟。現在,她在我眼中就是典型的心智在發炎,不是比喻,而是運作上就是如此。

心智的發炎不像身體發炎那樣的「狂暴」,更多是陰鬱、沉悶。圖/GIPHY

發炎常出現在憂鬱之前?

把「心智在發炎」從隱喻轉化為實際狀況,首先我們要有十足的證據顯示發炎和憂鬱症的強烈關聯。承認兩者之間有關就是好的開始(這種關聯有時候就在眼前,卻被視而不見)。不過關鍵問題是因果。

一個後二元論的全新思維要能穩固扎根,就需要從科學上證明發炎不只跟憂鬱症有關,而是會直接造成憂鬱症。看看各事件發生時間的先後,可以幫助我們理出因果關係,前因一定先於後果。如果發炎是憂鬱症狀的前因,那麼我們希望有證據顯示發炎出現在憂鬱症之前。最近有研究提出了這方面的證據。

-----廣告,請繼續往下閱讀-----

舉個例子,2014 年,一項研究發現,布里斯托(Bristol)和英格蘭西南部 15000 名孩童中,九歲時沒有憂鬱症但有輕微發炎的孩童,在十年後滿 18 歲時極有可能罹患憂鬱症。這只是其中一個例子。目前已有數十項人類研究和數百項動物研究顯示,發炎出現在憂鬱症或憂鬱行為之前。

想確認發炎與憂鬱的關係,有先後順序還不夠。

但光是順序的先後,並不足以讓大家正視發炎是憂鬱症的前因。科學家和醫師會質疑發炎是如何引發憂鬱症的:究竟是什麼樣的生物機轉,一步一步從血液的細胞激素,到大腦出現變化,進而引發憂鬱的心情。

動物實驗中,也觀察到老鼠被注射致病菌後,也會有類似人類憂鬱症的症狀。圖/GIPHY

關於這些問題,最近的動物和人體實驗也提出了有力的證據。實驗結果顯示,如果一隻老鼠被注射致病菌,行為上就會變得有點像是我在看過牙醫後的樣子。牠會退縮,不願與其它動物互動,活動力降低,睡眠和進食周期受到干擾。簡而言之,在動物身上,感染確實會引發一種被稱為疾病行為(sickness behaviour)的症候群,有點類似人類的憂鬱症。

事實上,要觀察到這種疾病行為,你甚至不必先讓老鼠遭受感染,只要在牠身上注射細胞激素就可以,這也證明了並非是細菌本身造成疾病行為,而是對感染的免疫反應造成的。發炎會在動物身上直接引發類似憂鬱症的行為,這一點無庸置疑。

-----廣告,請繼續往下閱讀-----

此外,我們現在也很清楚發炎會如何影響老鼠的大腦。我們知道神經細胞若是暴露在細胞激素下,死亡機率會升高,而且不太會再生。我們也知道神經細胞若是發炎,它們之間的連結(稱為突觸[synapses])在資訊學習上就會比較無力。而且發炎會降低血清素的供給,而血清素是神經細胞之間的傳導物質。

所以至少從動物實驗中,我們可以直接連結發炎與大腦神經細胞運作方式的改變,來解釋看似憂鬱症的疾病行為。

發炎的生理機制真的會讓人產生憂鬱嗎?

修但幾勒!我們並不能以實驗之名把危險的細菌注射進人體內。圖/GIPHY

但要在人體內複製類似的連結,就不太容易了。畢竟我們不能以實驗之名把危險的細菌注射進人體內,也不能把細胞激素(或任何其它物質)直接注射進健康人士的大腦裡,所以不可能觀察發炎會對活生生的人類神經細胞造成什麼影響。

-----廣告,請繼續往下閱讀-----

另外,要一次觀察一個細胞很難。絕大部分的人類神經細胞(大概有一千億個)都緊密地集中在大腦裡,受到頭骨的嚴密保護,與外在世界完全隔離。要想「看到」一個活人頭殼裡的運作,唯一方法只能靠磁振造影這樣的大腦掃描技術。

最近的 fMRI 研究已經開始證明,人體發炎對大腦和心情有直接的因果關係。

舉例來說,健康的年輕人在接受傷寒疫苗的注射後,就會跟實驗室的老鼠被注射細菌後一樣,免疫系統出現反應,血液裡的細胞激素會倏地升高。這些受試者出現輕微憂鬱,他們大腦內某些區域活躍了起來,而這些區域就我們所知跟情感表現有關。

所以精神免疫學已經成熟到能以新的角度和合理的說法,來幫忙解答我為什麼看完牙醫後會變得憂鬱。我不需要搬出機器裡的鬼魂。我可以理所當然地主張,是我接受的根管手術造成細胞激素上升,穿透血腦屏障,傳遞發炎訊號,讓大腦神經細胞的情緒處理網絡起了變化,進而導致憂鬱症發作,害我老是揮之不去死亡的陰影。

發炎這種免疫反應,為何會引發憂鬱呢?

這套反二元論的說法,在每一個步驟上都有可靠的實驗證據,不過還是不夠完整。畢竟在現有的證據基礎上,仍有一些缺口和異常,雖然這種情況對任何一門發展迅速的科學領域來說都在所難免。然而,就算我們已經可以回答「如何引發」,我們還是很想問「為何引發」。

發炎反應引發的憂鬱會不會是想讓我們好好在床上休息呢?圖/GIPHY

-----廣告,請繼續往下閱讀-----

在科學上,唯一可以接受的答案就是演化。為什麼發炎會引發憂鬱症?只能說這是物競天擇的結果。一定是因為唯有對感染或任何發炎出現憂鬱反應,才有利於我們的生存(或者至少在以前是有利於我們的生存)。我們一定是繼承了這種自好幾代以前就物競天擇下來的基因,能讓我們在發炎的當下因憂鬱反應而受惠。

以我來說,我可以合理推測,我遺傳了曾經幫助先人熬過感染的基因,所以在看過牙醫後,短暫地感到憂鬱。這樣的基因遺傳很可能有助我從根管治療的輕微創傷復原,一方面積極地殺死任何致病菌,另一方面指揮我待在床上,保留體力。

當然,不管是神經免疫學還是精神免疫學這類 A 加 B 式的新領域,重點並不是要找到我不喜歡看牙醫的理由,而是說,一旦我們可以繪出一條從身體經由免疫系統通到大腦和心理的路徑,一旦我們以後二元論的概念來闡明發炎的心智,就能找到全新的方法來對付精神問題。

image description

-----廣告,請繼續往下閱讀-----

——本書摘自《終結憂鬱症:憂鬱症治療大突破》,2020 年 2 月,如果出版社

PanSci_96
1219 篇文章 ・ 2204 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。