Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

勞動節特輯:科學大盤點!這些是你上班累積的身體債嗎?

PanSci_96
・2019/05/01 ・2679字 ・閱讀時間約 5 分鐘 ・SR值 513 ・六年級

只要是適用勞基法的員工,五一勞動節便視同國定假日是可以放一天假的(除了軍公教和醫院,這也是今年許多新聞在討論的議題啊)。根據泛科學不科學的編輯部調查,上班根本是累積壞習慣的補習班:像是酗咖啡、久坐、加班加班加班(我也是千百個不願意)、讓同事感情變差的開放式辦公室、長時間盯著螢幕的各式後遺症,你也有以上症頭嗎?讓我們來一一細數,順便來個好文盤點吧!

想到要上班頭就好痛啊啊啊啊啊!圖/ pixabay

每天都一定要喝咖啡!但怎樣才是太超過?

咖啡因在現代人忙碌的生活中扮演重要的角色,許多人早上會喝杯咖啡醒腦,中午用餐後血糖上升,頭腦感到昏昏沉沉時,不少人又會想再來一杯咖啡提個神。但你知道為何咖啡能提神呢?每天的咖啡攝取量上限又是多少呢?

咖啡讓人清醒, 是因裡面所含的咖啡因 (caffeine),而咖啡因的化學結構和會讓人昏昏欲睡的腺苷 (adenosine)非常接近。所以當我們攝取咖啡時, 咖啡因會穿過血腦障壁與腺苷受體 (adenosine receptor) 結合抑制其活性(receptor blockade),讓大腦「暫時」不想休息。所以當你已經覺得愛睏的時候,喝咖啡就來不及啦,因為腺苷已經和腺苷受體結合了。

健康成人每天咖啡因建議攝取量為 400 毫克,相當於大約3~5杯咖啡。

-----廣告,請繼續往下閱讀-----

咖啡因對一般人健康的「利」與「弊」已廣泛在不同文獻探討,綜合所提到的「利」,包括提振精神、增加警覺性、專注力和反應力、降低心血管疾病和神經退化疾病,甚至長壽等;「弊」則包括心悸、引發睡眠障礙、焦慮、易怒、影響骨骼健康和腸胃功能,對懷孕婦女則可能影響胎兒健康。但因各文獻證據的強弱不一,需要專業者才能評斷這些結論的有效性及對個人的適用性。

更多關於咖啡的小知識,很推薦可以看這支動畫喔:

一直一直一直盯著螢幕看,然後會不會就瞎掉了?

不會。
但長期使用3C產品還是會有一些相關的眼疾,不只有近視和老花,還有可能會引起黃斑部病變。因此建議若你的職業會一直一直盯著螢幕看的話,建議能定期檢接受定期的眼科檢查,一旦發現視力退化,也不要只以為是近視或老花眼發作,應該立即向眼科醫師報到。

那護眼吃葉黃素有效嗎?目前研究認為,葉黃素除了能夠抗氧化之外,還能降低視網膜黃斑病變的機率,降低藍光對視網膜的傷害。其他護眼產品,例如蝦紅素、花青素等,請參考這篇文章:除了葉黃素,想保養眼睛還能吃什麼?常見護眼營養成分盤點

-----廣告,請繼續往下閱讀-----

那麼下班睡前最喜歡的躺在床上關燈滑手機眼睛又會不會瞎掉呢?

也不會。詳細推倒 推導歡迎參考這篇文章:關燈滑手機眼睛會不會瞎掉?

然後也要注意使用時姿勢要正確喔,如果脖子僵硬請看:

還不睡?這是那些熬夜欠下的債

儘管在熬夜之後,每個人所感受到的自覺症狀各自不同,但在代謝觀點的科學研究已經指出:睡眠剝奪(sleep deprivation)會使體重增重,進而提昇肥胖、代謝疾病 、甚至心血管疾病 等風險。關於這些代謝異常成因的說法目前並不統一,但是確實也有研究指出在睡眠不足的人身上有找到醣類代謝以及內分泌系統的紊亂。

-----廣告,請繼續往下閱讀-----

我們在熬夜之後,透過一杯咖啡或是一罐營養飲料或許可以提神醒腦,卻顯然無法挽回因為熬夜造成的種種代謝紊亂的事實。或許我們可以期待有一天能夠將這些代謝上的失調一網打盡的「免睏」問世,然而睡眠不足所造成的影響牽連甚廣,成功率只能說是未知數。當前最中肯建議大概是:好好睡上一覺吧!

過勞真的會死嗎?超時工作對健康的影響

近年來,研究指出工作壓力、加班、工作不穩定等因素,都可能會增加罹患心血管疾病的風險。2015年十月,醫學權威雜誌《刺胳針》(The Lancet)發表了一篇跨國性的報告,彙整了歐、美和澳洲的研究,其中包括了超過六十萬名的勞工,平均追蹤8.5年。

結果發現每週工作超過55小時的勞工,和工作36-40小時的勞工相比,高工時的勞工罹患中風的風險增加了33%。而即使是工時稍短的情況(每週49-54小時),中風風險仍會增加27%。顯見工作時數增加,勞工的健康情況有可能因此而變差。

然而,影響疾病的因素極多,包含職業、性別、社會地位等,都會影響罹病的機率,並非簡易的單向關係就能解釋。但仍值得有關單位多注意,以及別一直加班為老闆賣命了,人生是自己的啊!

-----廣告,請繼續往下閱讀-----

好的辦公室讓人更愛辦公事?

你的辦公室是哪種辦公室呢?你又愛不愛在這樣的辦公室辦公事?

在Facebook,即使高階主管也沒有特別的辦公室,這個巨大的辦公空間,一張辦公桌挨著另一張辦公桌,希望能夠創造一個促進合作的工作環境。像 Facebook 這樣的「開放式辦公室」,在美國發源於50年代,70年代開始盛行。相較於傳統封閉型或有隔間的辦公室,這種辦公室設計方式能夠創造更多空間,促進同事間的溝通與互動,進一步影響員工士氣和工作效率,當然也可大幅降低裝潢的費用。卻也可能帶來一些負面的影響,因為沒有隔間的關係,隔壁的電話聲、打字聲、說話聲……聽得一清二楚,沒有隱私也容易被打擾,有可能伴隨工作壓力、降低工作滿意度,最終也可能影響工作產出。

Google 的空間則在設計時嘗試創造一些「偶遇」的機會,因為你無法預知創新和新的想法什麼時候發生,所以在設計各種設施和行進動線的時候,需要考慮如何讓工程師或創意人才聚在一起。而根據他們的觀察,在餐檯偶遇,比傳統會議室裡進行的討論來的有效 !

改變辦公室的設計的確能夠改變一個人或團隊的工作方式,也能夠形塑企業文化。除了空間與動線的配置外,研究也發現,工作環境中有窗景、植物和明亮的色彩可提升正向情緒。如果以藍色和紅色為主的辦公室相比,在藍色辦公室工作的員工憂鬱指數比較高。

-----廣告,請繼續往下閱讀-----

如果能發懶誰想上班,而工作的模式也大大影響著我們的日常作息。你有哪些因為工作累積的好習慣或是壞習慣呢?在五一勞動節的這天來跟我們聊聊吧!

祝天下的好員工都不會遇到慣老闆!XD

-----廣告,請繼續往下閱讀-----
文章難易度
PanSci_96
1262 篇文章 ・ 2413 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

0
0

文字

分享

0
0
0
LDL-C 正常仍中風?揭開心血管疾病的隱形殺手 L5
鳥苷三磷酸 (PanSci Promo)_96
・2025/06/20 ・3659字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文與 美商德州博藝社科技 HEART 合作,泛科學企劃執行。

提到台灣令人焦慮的交通,多數人會想到都市裡的壅塞車潮,但真正致命的「塞車」,其實正悄悄發生在我們體內的動脈之中。

這場無聲的危機,主角是被稱為「壞膽固醇」的低密度脂蛋白( Low-Density Lipoprotein,簡稱 LDL )。它原本是血液中運送膽固醇的貨車角色,但當 LDL 顆粒數量失控,卻會開始在血管壁上「違規堆積」,讓「生命幹道」的血管日益狹窄,進而引發心肌梗塞或腦中風等嚴重後果。

科學家們還發現一個令人困惑的現象:即使 LDL 數值「看起來很漂亮」,心血管疾病卻依然找上門來!這究竟是怎麼一回事?沿用數十年的健康標準是否早已不敷使用?

膽固醇的「好壞」之分:一場體內的攻防戰

膽固醇是否越少越好?答案是否定的。事實上,我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(High-Density Lipoprotein,簡稱 HDL)和低密度脂蛋白( LDL )。

-----廣告,請繼續往下閱讀-----

想像一下您的血管是一條高速公路。HDL 就像是「清潔車隊」,負責將壞膽固醇( LDL )運來的多餘油脂垃圾清走。而 LDL 則像是在血管裡亂丟垃圾的「破壞者」。如果您的 HDL 清潔車隊數量太少,清不過來,垃圾便會堆積如山,最終導致血管堵塞,甚至引發心臟病或中風。

我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(HDL)和低密度脂蛋白(LDL)/ 圖片來源:shutterstock

因此,過去數十年來,醫生建議男性 HDL 數值至少應達到 40 mg/dL,女性則需更高,達到 50 mg/dL( mg/dL 是健檢報告上的標準單位,代表每 100 毫升血液中膽固醇的毫克數)。女性的標準較嚴格,是因為更年期後]pacg心血管保護力會大幅下降,需要更多的「清道夫」來維持血管健康。

相對地,LDL 則建議控制在 130 mg/dL 以下,以減緩垃圾堆積的速度。總膽固醇的理想數值則應控制在 200 mg/dL 以內。這些看似枯燥的數字,實則反映了體內一場血管清潔隊與垃圾山之間的攻防戰。

那麼,為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。我們吃下肚或肝臟製造的脂肪,會透過血液運送到全身,這些在血液中流動的脂肪即為「血脂」,主要成分包含三酸甘油酯和膽固醇。三酸甘油酯是身體儲存能量的重要形式,而膽固醇更是細胞膜、荷爾蒙、維生素D和膽汁不可或缺的原料。

-----廣告,請繼續往下閱讀-----

這些血脂對身體運作至關重要,本身並非有害物質。然而,由於脂質是油溶性的,無法直接在血液裡自由流動。因此,在血管或淋巴管裡,脂質需要跟「載脂蛋白」這種特殊的蛋白質結合,變成可以親近水的「脂蛋白」,才能順利在全身循環運輸。

肝臟是生產這些「運輸用蛋白質」的主要工廠,製造出多種蛋白質來運載脂肪。其中,低密度脂蛋白載運大量膽固醇,將其精準送往各組織器官。這也是為什麼低密度脂蛋白膽固醇的縮寫是 LDL-C (全稱是 Low-Density Lipoprotein Cholesterol )。

當血液中 LDL-C 過高時,部分 LDL 可能會被「氧化」變質。這些變質或過量的 LDL 容易在血管壁上引發一連串發炎反應,最終形成粥狀硬化斑塊,導致血管阻塞。因此,LDL-C 被冠上「壞膽固醇」的稱號,因為它與心腦血管疾病的風險密切相關。

高密度脂蛋白(HDL) 則恰好相反。其組成近半為蛋白質,膽固醇比例較少,因此有許多「空位」可供載運。HDL-C 就像血管裡的「清道夫」,負責清除血管壁上多餘的膽固醇,並將其運回肝臟代謝處理。正因為如此,HDL-C 被視為「好膽固醇」。

-----廣告,請繼續往下閱讀-----
為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。/ 圖片來源:shutterstock

過去數十年來,醫學界主流觀點認為 LDL-C 越低越好。許多降血脂藥物,如史他汀類(Statins)以及近年發展的 PCSK9 抑制劑,其主要目標皆是降低血液中的 LDL-C 濃度。

然而,科學家們在臨床上發現,儘管許多人的 LDL-C 數值控制得很好,甚至很低,卻仍舊發生中風或心肌梗塞!難道我們對膽固醇的認知,一開始就抓錯了重點?

傳統判讀失準?LDL-C 達標仍難逃心血管危機

早在 2009 年,美國心臟協會與加州大學洛杉磯分校(UCLA)進行了一項大型的回溯性研究。研究團隊分析了 2000 年至 2006 年間,全美超過 13 萬名心臟病住院患者的數據,並記錄了他們入院時的血脂數值。

結果發現,在那些沒有心血管疾病或糖尿病史的患者中,竟有高達 72.1% 的人,其入院時的 LDL-C 數值低於當時建議的 130 mg/dL「安全標準」!即使對於已有心臟病史的患者,也有半數人的 LDL-C 數值低於 100 mg/dL。

-----廣告,請繼續往下閱讀-----

這項研究明確指出,依照當時的指引標準,絕大多數首次心臟病發作的患者,其 LDL-C 數值其實都在「可接受範圍」內。這意味著,單純依賴 LDL-C 數值,並無法有效預防心臟病發作。

科學家們為此感到相當棘手。傳統僅檢測 LDL-C 總量的方式,可能就像只計算路上有多少貨車,卻沒有注意到有些貨車的「駕駛行為」其實非常危險一樣,沒辦法完全揪出真正的問題根源!因此,科學家們決定進一步深入檢視這些「駕駛」,找出誰才是真正的麻煩製造者。

LDL 家族的「頭號戰犯」:L5 型低密度脂蛋白

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。他們發現,LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷,如同各式型號的貨車與脾性各異的「駕駛」。

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。發現 LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷。/ 圖片來源:shutterstock

早在 1979 年,已有科學家提出某些帶有較強「負電性」的 LDL 分子可能與動脈粥狀硬化有關。這些帶負電的 LDL 就像特別容易「黏」在血管壁上的頑固污漬。

-----廣告,請繼續往下閱讀-----

台灣留美科學家陳珠璜教授、楊朝諭教授及其團隊在這方面取得突破性的貢獻。他們利用一種叫做「陰離子交換層析法」的精密技術,像是用一個特殊的「電荷篩子」,依照 LDL 粒子所帶負電荷的多寡,成功將 LDL 分離成 L1 到 L5 五個主要的亞群。其中 L1 帶負電荷最少,相對溫和;而 L5 則帶有最多負電荷,電負性最強,最容易在血管中暴衝的「路怒症駕駛」。

2003 年,陳教授團隊首次從心肌梗塞患者血液中,分離並確認了 L5 的存在。他們後續多年的研究進一步證實,在急性心肌梗塞或糖尿病等高風險族群的血液中,L5 的濃度會顯著升高。

L5 的蛋白質結構很不一樣,不僅天生帶有超強負電性,還可能與其他不同的蛋白質結合,或經過「醣基化」修飾,就像在自己外面額外裝上了一些醣類分子。這些特殊的結構和性質,使 L5 成為血管中的「頭號戰犯」。

當 L5 出現時,它並非僅僅路過,而是會直接「搞破壞」:首先,L5 會直接損傷內皮細胞,讓細胞凋亡,甚至讓血管壁的通透性增加,如同在血管壁上鑿洞。接著,L5 會刺激血管壁產生發炎反應。血管壁受傷、發炎後,血液中的免疫細胞便會前來「救災」。

-----廣告,請繼續往下閱讀-----

然而,這些免疫細胞在吞噬過多包括 L5 在內的壞東西後,會堆積在血管壁上,逐漸形成硬化斑塊,使血管日益狹窄,這便是我們常聽到的「動脈粥狀硬化」。若這些不穩定的斑塊破裂,可能引發急性血栓,直接堵死血管!若發生在供應心臟血液的冠狀動脈,就會造成心肌梗塞;若發生在腦部血管,則會導致腦中風。

L5:心血管風險評估新指標

現在,我們已明確指出 L5 才是 LDL 家族中真正的「破壞之王」。因此,是時候調整我們對膽固醇數值的看法了。現在,除了關注 LDL-C 的「總量」,我們更應該留意血液中 L5 佔所有 LDL 的「百分比」,即 L5%。

陳珠璜教授也將這項 L5 檢測觀念,從世界知名的德州心臟中心帶回台灣,並創辦了美商德州博藝社科技(HEART)。HEART 在台灣研發出嶄新科技,並在美國、歐盟、英國、加拿大、台灣取得專利許可,日本也正在申請中,希望能讓更多台灣民眾受惠於這項更精準的檢測服務。

一般來說,如果您的 L5% 數值小於 2%,通常代表心血管風險較低。但若 L5% 大於 5%,您就屬於高風險族群,建議進一步進行影像學檢查。特別是當 L5% 大於 8% 時,務必提高警覺,這可能預示著心血管疾病即將發作,或已在悄悄進展中。

-----廣告,請繼續往下閱讀-----

對於已有心肌梗塞或中風病史的患者,定期監測 L5% 更是評估疾病復發風險的重要指標。此外,糖尿病、高血壓、高血脂、代謝症候群,以及長期吸菸者,L5% 檢測也能提供額外且有價值的風險評估參考。

隨著醫療科技逐步邁向「精準醫療」的時代,無論是癌症還是心血管疾病的防治,都不再只是單純依賴傳統的身高、體重等指標,而是進一步透過更精密的生物標記,例如特定的蛋白質或代謝物,來更準確地捕捉疾病發生前的徵兆。

您是否曾檢測過 L5% 數值,或是對這項新興的健康指標感到好奇呢?

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

2
0

文字

分享

0
2
0
那個月亮,那個喜鵲,七夕的 Google Doodle 看起來不太科學
余海峯 David
・2022/08/11 ・1435字 ・閱讀時間約 2 分鐘

七夕是牛郎織女每年一會的浪漫日子。在這麼浪漫的日子,最適合的話題當然是科學了。

多少喜鵲才夠跨越銀河?

牛郎織女在每年的七夕,即農曆七月七日,於鵲橋相聚。所謂鵲橋,就是由無數喜鵲搭建而成的橋梁,牛郎和織女各自從兩邊走到鵲橋中間,浪漫不已。

喂,等等,動保團體都去哪裡了?這不是明目張膽的虐待動物嗎?

稍安毋躁。能夠飛越銀河的當然不會是一般鳥類,可以在真空的宇宙空間中飛行的必定是神鳥啦!神鳥應該不在凡人立法規管的保護範圍內,就算真的要管也是天庭的事吧。

(謎之音:究竟真空中要翅膀有鳥用啊!)(再謎之音:究竟真空為什麼要橋梁啊!)

聽故不要駁故。我們有興趣的是究竟每年一次牛郎織女相聚要勞動多少隻神鵲呢

-----廣告,請繼續往下閱讀-----

假設神鵲的大小與地球上的普通喜鵲相若,而且假設鵲橋只有一層(沒有鵲踏鵲的情況出現),我們就能算出每年天庭需要出動多少隻神鵲。地球上的喜鵲(Pica)有幾個不同的種,其中歐亞喜鵲(Eurasian magpie)身長若 45 公分(其中一半是尾巴的長度):

歐亞喜鵲(Eurasian magpie)。圖/Wikimedia

那麼銀河呢?在地球上望出去,我們見到的是銀河的垂直切面,因此牛郎織女跨越的其實並不是銀河的闊度,而是銀河的厚度。銀河其實就是我們身處的銀河系的圓盤,擁有千億顆恆星,從銀心到圓盤的邊緣直徑大概 5 萬多光年,但厚度卻只有 1 千光年

1 千光年即是光線也要飛 1 千年才能跨越的距離,我們就暫且不要深究為何牛郎織女能在一個晚上橫跨這個距離了。光速等於每秒跑 299,792.458 公里,因此 1 千光年就等於 9,454,254,955,488,000 公里。神鵲排排隊,1 公里就能排 222,223 隻。所以,我們需要 9,454,254,955,488,000 × 222,223 = 2,100,952,898,973,409,824,000 隻神鵲才能橫跨 1 千光年的距離。

噢不,由於牛郎織女有兩隻腳,因此實際上需要 2 倍數目的神鵲,即是大概 42 萬億億隻神鵲才足夠。

攝影師到底在哪裡為牛郎織女拍攝 Google Doodle?

呃,我相信天庭會好好慰勞那些神鵲的。現在我們來看看 2020 年七夕時,Google 發佈的 Doodle 作品:

-----廣告,請繼續往下閱讀-----
2020 年七夕(8 月 25 日)的 Google Doodle。圖/Google

大家發現問題了嗎?

農曆屬於陰陽曆,即是其曆法同時基於太陽和月球的運行。農曆的月份必定始於新月(初一),中間是滿月(十五),終於新月(廿八)。七夕是農曆七月七日,因此月球此時應該是半月,但在這幅 Google Doodle 裡面卻是滿月!這令很多人大惑不解,有些人甚至嘲笑 Google 工程師的無知。

雖然我並沒有受薪於 Google,但基於科學精神,且讓我來嘗試為 Google 解圍:真的有可能在七夕拍攝得到牛郎織女在鵲橋上相聚,而背景是滿月的照片嗎?

答案是肯定的!秘訣就在於「Easy 天文地科小站」提到的「我們不能用凡夫俗子在地球上的角度看事情」。

由於牛郎、織女、神鵲們都是神仙,我們合理假設攝影師也是神仙。既然攝影師是神仙,那當然不會局限於凡人的攝影角度吧。因此,我們看看下圖,就知道這幅 Google Doodle 是如何拍攝的了。

-----廣告,請繼續往下閱讀-----
神仙攝影圖解。圖/余海峯

如果你看到這裡,恭喜你,你跟我們這些科學家一樣很閒。

-----廣告,請繼續往下閱讀-----
余海峯 David
18 篇文章 ・ 22 位粉絲
天體物理學家。工作包括科研、教學和科學普及。德國馬克斯・普朗克地外物理研究所博士畢業。現任香港大學理學院助理講師。現為《立場科哲》科學顧問、《物理雙月刊》副總編輯及專欄作者、《泛科學》專欄作者。合著有《星海璇璣》。

0

1
0

文字

分享

0
1
0
2020世界地球日,一起玩 Google doodle 遊戲學蜜蜂小知識!
PanSci_96
・2020/04/22 ・1366字 ・閱讀時間約 2 分鐘 ・SR值 527 ・七年級

玩過今天的 Google Doodle 了嗎?為了慶祝世界地球日 50 週年,Google Doodle 以蜜蜂 (bee) 做為遊戲主角,讓大家體驗沾花粉與授粉的過程,並提供關於蜜蜂的小知識,就讓我們來了解一下吧!

大眼瞪小眼,此眼非彼眼

蜜蜂具有一對複眼 (compound eyes) 與三個小小的單眼 (ocelli)。其中,位於頭部兩側、又大又明顯的複眼是由許多的「小眼」(ommatidia) 單元所組合而成,每一個小眼上都具有角膜鏡 (corneal lens) 和晶錐 (crystalline cone),能夠將光線集中並聚焦在數個延長、環狀排列的網膜細胞 (retinula cell) 上,而在小眼的中央則具有能夠接受光的感桿 (rhabdom) 構造。

由於小眼環狀排列的一叢視網膜細胞外圍被一圈吸光的色素細胞(pigment cell)所包圍,導致每個小眼獨立成像,並與相鄰的小眼分開來,而當所有小眼的影像加在一起時則可提供全景式的影像,便是所謂的聯立影像眼 (apposition eyes)。

圖/slideplayer, after Snodgrass, 1935 / Wilson, 1978 / CSIRO, 1970 ; Rossel, 1989

-----廣告,請繼續往下閱讀-----

至於在頭頂上、複眼之間則具有排列成三角形的三個小單眼,其最外層的透明表皮覆蓋在同樣透明的真皮細胞上,因此光線可以透過去並到達由許多感桿組成的網膜細胞上,然而由於進入單眼的光線聚焦在感桿之後,所以視網膜只能接收到模糊的影像

單眼主要會整合大視野範圍的光線,對低強度的光或光的細微改變相當敏感,但並不具有高解析力,故通常作為飛行時控制上下左右搖擺的水平儀,和記錄與白晝行為節律相關的光強度週期變化。

女王大人高高在上

真社會性 (Eusociality) 高度發展的蜜蜂蜂群中通常會有蜂后 (queen)、工蜂 (worker)、雄蜂 (drone) 三個角色。蜂后與工蜂皆為雌性,蜂后體型較大,能夠產卵甚至抑制其他工蜂的生殖能力;而工蜂則負責建造蜂巢蜂室、搜尋獵物、守衛蜂巢與餵食幼蟲,至於雄蜂則會與蜂后交配,提供精子,由於其交尾器會在交尾後撕裂,雄蜂便會因而死亡。

圖/IRISH BEEKEEPERS ASSOCIATION CLG, after Winston, 1987

-----廣告,請繼續往下閱讀-----

誰知盤中飧,蜜蜜皆辛苦

外出的工蜂會採集花蜜,並將其收集在腸胃 (proventriculus or honey stomach) 當中。當工蜂回巢後,便會將花蜜吐出 (regurgitate) 並傳給內勤的工蜂,接著內勤的工蜂便會將花蜜消化並反覆的吸入再吐出,製造泡泡來增加表面積,好讓原先花蜜中高達 70~80% 的水分能夠慢慢蒸發,並藉由消化酵素將蔗醣水解為葡萄醣與果醣,同時分解掉其他澱粉與蛋白質,增加酸度。之後便會將蜂蜜存於巢中,藉由巢中的高溫與搧風,使得水分降低至 18% 左右,讓糖份濃度過飽和而能避免發酵 (fermentation) 後,便會以蜂蠟封存起來。

圖/Pixabay

除了上述以外,Google Doodle 還提供了更多有關蜜蜂本身的知識,以及蜜蜂對自然生態的不可或缺,像是全世界有三分之二的農作與 85% 的開花植物都需要仰賴他們授粉,以及蜜蜂被科學家視為關鍵物種 (keystone species),如果沒有他們的存在則可能整個生態系統將徹底崩潰等等,可見其無可取代的重要性。

那麼,在世界地球日 50 周年的今天,你對維持生態的蜜蜂們更加了解了嗎?

-----廣告,請繼續往下閱讀-----

資料來源

-----廣告,請繼續往下閱讀-----