0

7
2

文字

分享

0
7
2

揭露蜜蜂的防疫策略!——保持「社交距離」如何阻斷寄生蟲在巢內傳播?

Fisher_96
・2021/11/27 ・3050字 ・閱讀時間約 6 分鐘

昆蟲的群落中存在特殊的社會結構以及互動方式,使得牠們的接觸與聯繫都相當密集。這樣的行為模式帶給昆蟲很多優勢,牠們能夠更有效率地養育幼蟲、進行覓食與資訊傳播,或穩定環境以更有效利用儲存在巢中的大量食物。但同時,這樣高度密集的接觸也有可能為昆蟲的群落帶來不可挽回的缺陷——例如傳染病。

昆蟲會依據不同的年齡而有不同的工作,並產生不同的階級,不同階級在巢中所居住的位置也不同,昆蟲的巢中都會被組織成不同空間來利用。為了對抗疾病的壓力,群居的昆蟲還進化出了不同形式的社會防疫方式:昆蟲會透過行為的改變,來避免病原體入侵群落,而且病原體或寄生蟲等可能對群落造成傷害的外來壓力,還會是推動昆蟲群落組織的關鍵因素。

目前,已經有研究透過螞蟻與蜜蜂實驗證實,昆蟲會透過調整群體社交網路以及巢內空間使用,來降低微生物疾病傳播的風險,並且可以成功發展為組織免疫反應。群居昆蟲的巢穴中棲息著各種各樣的蟎蟲,某些種類會對群落適應性產生重大影響。這樣的防疫方式對寄生蟲也一樣成立嗎?

遭瓦蟎(圖中央蜜蜂背上紅點)寄生的蜜蜂。圖/WIKIPEDIA by Piscisgate

瓦蟎去去走!威脅蜂群生存的寄生蟲

瓦蟎(Varroa destructor,又稱狄斯瓦蟎)就是全世界蜜蜂生存最嚴重的威脅之一。瓦蟎會吸食蜂蜜體液,也會傳播各種病毒和病菌,若是幼蟲被瓦蟎寄生,在羽化後常會有翅膀變形或沒有翅膀而無法飛行,影響整個蜜蜂群落。因為這樣,瓦蟎在過去幾十年中,對整個北半球蜜蜂群落的衰落產生了巨大影響。

在蜜蜂族群的巢內空間中,最靠近中心的巢室由蜂后、幼蟲以及保育蜂構成。保育蜂是工蜂的一種,由羽化三天的幼年雌蜂擔任,除了照顧幼蟲與蛹,也進行與外部巢室的聯繫。外部巢室主要是工蜂的空間,保育蜂會在外部巢室為其他蜜蜂進行社交梳理(幫另一隻蜜蜂清除身上的髒東西和寄生蟲等的行為)。

在羽化一個月後,保育蜂會成為中年覓食蜂,負責出外採蜜,這時候牠們就可能會在花朵上遇到寄生蟲而不小心帶回巢中,進而影響整個群落。雌蟎會為了繁殖而寄生在保育蜂身上進入內部巢室。

瓦蟎不僅會吸食蜜蜂體液,還會傳染疾病/WIKIPEDIA

面對瓦蟎威脅,蜂群也會加大「社交距離」

為了查明蜜蜂族群在遭遇瓦蟎侵襲時,是否會啟動如前述遇到微生物疾病時的反應?近期倫敦大學學院(University College London, UCL)和義大利薩薩里大學(University of Sassari, Uniss)的研究人員共同在《科學進展》(Science Advances, AAAS)發表研究,透過觀察蜜蜂的空間使用和社交互動模式,發現當蜜蜂的蜂巢受到寄生蟲威脅時,蜜蜂也會增加社交距離來減少寄生蟲傳播。

研究團隊針對蜜蜂的群落進行了幾種實驗設定與假設。第一,觀察在野外環境中遭瓦蟎入侵的整個群落,以觀察特定免疫防禦策略的變化;第二,觀察在實驗室中對實驗感染瓦蟎的侵擾引起的社會行為變化,並依據社會免疫理論進行了預測,如下圖。

在實驗的第一部分中,團隊監測了巢中與寄生蟲傳播較密切相關的兩種行為:覓食舞蹈和社交梳理。覓食蜂在進入蜂巢後會進行覓食舞蹈,以將食物來源的確切位置傳達給其他覓食蜂,在有瓦蟎的蜂巢中,覓食蜂跳覓食舞的位置更集中在靠近蜂巢入口處,而在沒有瓦蟎的蜂巢中,覓食蜂跳舞的位置平均分布在巢中蜂巢入口的位置和蜂巢的中央。

奇妙的是,在感染組中,採蜜蜂仍然會在無蓋的育雛室中跳舞,團隊推測是因為在無蓋的巢室跳舞時,振動信號可以傳遞的更遠,而更可以有效將食物訊號傳遞給其他採蜜蜂(過去已經有研究確認)。同時,社交梳理也更頻繁地發生在蜂巢中央以及無蓋的育雛室中。

因此可以發現,蜜蜂固然會為了防疫而改變跳舞的位置,但還是需要在防止寄生蟲傳播以及群落內資訊傳遞的需求之間權衡,牠們也會同時透過過增加社交梳理的頻率以及改變位置來達成防止瓦蟎入侵的目的。社交梳理行為向巢穴中心的轉移,也就代表保育蜂(較年輕的工蜂)更集中在巢穴中心的位置,拉開了與較年長的其他工蜂的距離。

而在第二個實驗中,研究團隊觀察 1 天齡蜜蜂成長過程中的社交行為,包括社交梳理、觸角接觸和交哺行為,來確認蜜蜂群體是否會為了防止瓦蟎入侵改變社交行為。觸角接觸是蜜蜂用來識別與溝通的主要方式,交哺行為則是蜜蜂將液體食物分發給其他蜜蜂的過程。

團隊原本預測,在瓦蟎入侵的壓力下,社交梳理會增加,而觸角接觸和交哺行為會減少,降低巢穴中社交網路的凝聚力(即群體的聯繫程度),受感染群體的網路連接性和節點中心性(蜜蜂在社交互動網絡中的良好連接程度都會降低)。

蜜蜂會為了防疫而改變跳舞的位置,但也會為了資訊傳遞的效率不得不靠近容易被傳染的幼蟲。圖/Pixabay

揪甘心!遭寄生的蜜蜂獲得更多支援

研究人員在實驗中發現,有瓦蟎組中的蜜蜂接受社交梳理的次數增加,這是符合團隊推測的結果。不過與無瓦蟎組相比,在有瓦蟎組中觀察到的觸角接觸和交哺行為卻都增加了。實驗團隊推測,或許是因為觸角接觸可以放出巢穴中有寄生蟲的資訊,同時,感染了寄生蟲的蜜蜂,需要透過吸收更多營養來強健體魄、對抗寄生蟲,進而除去身上的寄生蟲。

看到這裡我們可以發現,蜜蜂對於蟎蟲的存在其實缺乏明顯的組織免疫策略,有蟎組的蜜蜂社會凝聚力並沒有降低,而且與其他蜜蜂相比,被瓦蟎感染的蜜蜂個體在社交網路中的地位也沒有降低,反而受到了更多的照顧。或許是因為,若過度劃分與受感染蜜蜂的互動,可能會導致蜜蜂社會的混亂,以及工蜂勞動力的流失。

雖然目前的實驗與推測沒有非常強力的證據支持,但至少可以看出,昆蟲的社會免疫策略還是會產生變化,並且這些變化在昆蟲社會中不同年齡或階級相互作用的重要性。

當然,前述蜜蜂的防疫策略,在昆蟲的行為與階級都擁有特定表現的基礎上,更有利於調整社會結構的特定變化(例如空間、頻率等),又能同時保持群體內的互動,更能讓昆蟲個體在利用社會行為好處的同時,盡可能將傳染病的特定風險降至最低,而或許對蜜蜂群體來說是利大於弊。

昆蟲個體既要維持對族群的貢獻,又要避免將疾病傳染給同伴。圖/Pixabay

畢竟,為了防疫所造成的社會疏遠對於所有群居動物來說代價肯定都相當高昂,這從 2020 年持續至今的 COVID-19 病毒來看更加明顯。人類在這樣的過程中要如何去拿捏利弊,基於人類社會的複雜性可能造成牽一髮動全身的成果,或許不同人、社會與國家都會有不同的想法與做法,而不像昆蟲行為能夠如此單純。但至少我們可以確定,就像蜜蜂群體的發展一樣,遲早會有一個平衡。

參考資料

文章難易度
Fisher_96
5 篇文章 ・ 3 位粉絲
想藉由慢慢把知識收入囊中的方式來長大的一條魚,著迷於各種領域知識,想嘗試把困難的事情變簡單,並試著找方法讓自己跟別人都可以享受沒有目的性的吸收知識的快樂。

0

1
1

文字

分享

0
1
1
漱口,預測心血管疾病?
胡中行_96
・2023/10/02 ・1881字 ・閱讀時間約 3 分鐘

「您去找家庭醫學科或牙科做年度健檢時,可以進行漱口檢測。」2023 年 8 月《口腔健康前沿》(Frontiers in Oral Health)期刊加拿大論文的共同作者,誠心推薦:「這個簡單的口腔發炎評估工具,能於任何診所實施。」「優良的口腔衛生,跟定期看牙一樣,總是備受推崇,特別是看在此證據的份上。」通訊作者也在一旁幫腔。[1]所以,他們到底是研究什麼口腔疾患? 誤會大了,重點是心臟病啊!

圖/engin akyurt on Unsplash

研究設計

研究團隊招募了 18 至 30 歲之間,不抽菸、BMI 小於 30 kg/m2,沒有高血壓與心血管疾病,且常規藥物不會影響相關功能的 16 名男性跟 12 名女性,總共 28 名受試者。其中女性採樣時間必須在月經頭 2 天;口服避孕藥使用者為服用安慰劑期間;[註]其餘避孕方式則一律排除。研究團隊希望藉由篩選的條件,盡力避開老化、個人宿疾、特定生理差異等,各種會干擾結果的因素。[2]

人都找好之後,試驗步驟大致如下:8 小時內避免運動和攝取任何咖啡因或酒精,並且除了飲水外,禁食 6 小時。正式採樣當天,先測量身高、體重,用自來水潄口 10 秒,吐掉;稍候2分鐘,又以 10 毫升的生理食鹽水漱個 30 秒,再吐進 20 毫升的唾液收集管,送驗口腔嗜中性白血球計數(oral neutrophil counts)。接著平躺至少 10 分鐘,以心電圖測量心律;然後維持同樣的姿勢,測量血壓脈波速率(pulse wave velocity)和肱動脈血流介導舒張(brachial artery flow-mediated dilation)。[2]

口腔嗜中性白血球計數牙齦發炎程度的指標。檢體與 4% 的甲醛混合,冷藏於 4°C 的冰箱內直到檢驗,不得超過2天。經過離心機高速轉動處理後,除去上層澄清的液體,將沉澱的細胞與 500 µl 的 Hank’s 平衡鹽溶液混合。以 4 µg 的吖啶橙(Acridine orange)染劑,為其中 250 µl 的細胞上色,並靜置於室溫的暗房裡 15 分鐘。取出稀釋 10 倍,於顯微鏡下放大 200 和 400 倍,以血球計數盤(haemocytometer)輔助,肉眼計算嗜中性白血球的數量。[2]

血球計數盤示意圖。圖/Zhang S, Kuhn JR. (2012) ‘Cell isolation and culture’. In: WormBook: The Online Review of C. elegans Biology. Pasadena (CA): WormBook.(CC BY)

另外,脈波速率是感測脖子與大腿內側的脈搏,以二者的距離和脈波傳導的時間差計算速率,進而瞭解動脈的硬度:[2, 3]脈波速率愈快,代表血管壁愈硬。肱動脈血流介導舒張則是暫時阻塞血流再放行,透過超音波取得影像,以上臂肱動脈直徑變化的百分比,來反映其內皮功能的情形。[2]

漱口檢測的原理

受試者雖然沒有已知的口腔問題,但是某些其實有程度不等的牙齦發炎。研究團隊從上述諸多檢測的結果,歸納出一個明顯的現象:當口腔發炎愈嚴重,嗜中性白血球計數愈高;肱動脈舒張的變化就越小,即血管內皮功能越差。其他項目則沒有特別的關聯。[2]

口腔嗜中性白血球計數愈高,肱動脈舒張的變化就愈小。圖/參考資料 2,Figure 5(CC BY 4.0)

他們解釋,這是因為細菌組成的生物膜,也就是牙菌斑(dental plaque),所分泌的代謝物,滲透過牙齦溝(sulcus)上的連接上皮(junctional epithelium),擴散進入血流。於是,口腔發炎就變成系統性的發炎。此時,系統內的發炎性細胞素(inflammatory cytokines)濃度上升,因而減少血管內皮的一氧化氮(nitric oxide)產量,間接削弱血管舒張的能力,久而久之就容易得到動脈粥狀硬化(atherosclerosis)。[2]

牙齦連接上皮(JE)的位置。圖/Könönen E, Gursoy M, Gursoy UK. (2019) ‘Periodontitis: A Multifaceted Disease of Tooth-Supporting Tissues’. Journal of Clinical Medicine, 8(8):1135.(CC BY 4.0)

比起繁複或侵入性的心血管檢測,漱口絕對方便舒適許多。不過,現在這個前驅研究的規模甚小,因此論文的通訊作者表示,期望未來能納入牙周病患者,進一步探索不同程度的牙齦發炎,與心血管疾病的關係。[1]

  

備註

口服避孕藥每份有 28 顆,其中 21 或 24 顆含荷爾蒙,其餘的則為安慰劑。[4]

參考資料

  1. Gillham AB. (18 AUG 2023) ‘A simple mouth rinse could spot early heart disease risk’. Frontiers Science News.
  2. Hong K, Ghafari A, Mei Y, et al. (2023) ‘Oral inflammatory load predicts vascular function in a young adult population: a pilot study’. Frontiers in Oral Health, 4:1233881.
  3. Measurement of pulse wave velocity’. (03 JUL 2013) NHS Health Research Authority, U.K.
  4. The pill (combined oral contraceptive pill)’. (JUN 2023) Healthdirect Australia.
胡中行_96
169 篇文章 ・ 61 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。

0

4
1

文字

分享

0
4
1
舌頭、石頭,迸出新滋味?科學家為什麼要舔石頭?——2023 搞笑諾貝爾獎
PanSci_96
・2023/09/30 ・3674字 ・閱讀時間約 7 分鐘

J……J 個是!這顆石頭一接觸到我的舌頭,它就像火一樣燃燒,同時留下苦澀和尿味的味道,在這之後還留下了一點甜味。

圖/Youtube

這,這一顆石頭不一樣,它有酸辣味和硫酸鹽味,卻同時給我一種難以形容的愉悅感!就像在品嘗紅酒的酸味一樣!

圖/Youtube

等等,我並沒有壞掉,我現在做的事是某些地質學家和古生物學家真的會做的事,而且這件事還得了諾貝爾獎!只是是搞笑諾貝爾獎。

搞笑歸搞笑,舔石頭卻真的是再實用不過的方法。因為,舌頭真的是太好用了!

地質地科系祖傳秘招——舔石大法!

2023 年的搞笑諾貝爾獎的化學與地質獎頒給了地質學家揚.扎拉謝維奇,得獎的原因不是因為特定研究,而是它整理了地質學家和古生物學家「品嘗」岩石和化石的「研究史」。

有在跟我們直播的泛糰肯定知道,在今年搞笑諾貝爾獎頒發的隔週,上個月的 9 月 18 日,我們在 YouTube 官方舉辦的 2023 YouTube Festival 活動中,辦了一個實體見面會。在見面會中我們介紹了今年其中三個搞笑諾貝爾獎,其中就包含這則「地質學家為什麼要舔石頭」。另外兩個獎項分別是操縱死靈蜘蛛,和研究為什麼上課為什麼會令人感到無聊。這場見面會也有同時開直播,連結放在右上角的資訊卡,裡面提到不少有趣的觀點,歡迎去直播存檔複習。

當天,除了就像開場演繹的,不同岩石真的嚐起來味道不一樣以外,有一個地科系的觀眾,現場分享了另一個有趣的觀點。但先說聲抱歉,那時候觀眾手持的麥克風訊號沒有進到我們的混音器,所以在線上收聽的朋友沒有聽到前半段。

我們這邊重新轉述一下,這位觀眾說早在這個獎項頒發前,就知道用舔石頭來辨識種類的這種方法了,因為他的老師就是這麼教他的!沒想到,這竟然是地科與地質系祖傳的秘技嗎!

舌頭比手指還好用?

但除了味道外,觀眾還分享了一個這次搞諾沒有提到的原因,就是舌頭的觸覺可能比手還靈敏。某些岩石例如砂岩跟頁岩,可能用手摸不出差別;用舌頭舔,竟然就能分別出差別。

什麼,舌頭真的這麼厲害嗎?想想好像也是,我們吃東西的時候會用舌頭去感受食物的形狀,這些觸感甚至也是我們品嘗食物時,了解食物的重要一環。除此之外,我們還可以找出食物中的魚刺,或是卡在牙縫中的菜渣,有些人還能幫櫻桃梗打結呢。

圖/Giphy

但好像從來沒有人拿舌頭和手去做比較,因為只要講到觸覺,我們第一時間就會認為手指更加靈敏。

其實,還真的找到有人研究過,一群俄亥俄州立大學食品科技系的實驗團隊,就研究了這個問題。他們準備了幾個形狀極為相似的樣品,樣品的長度、厚度、缺口的大小都一樣,只有缺口處的傾角不同。

傾角從 45 度到 90 度都有,每塊的角度以 5 度為間隔。受試者必須拿起兩塊樣品,並在蒙眼的情況下,分別用摸或舔的方式來分辨出兩者分別為哪一塊。其中一塊始終是 90 度,另一塊則是從 65 度開始角度遞增。

這次的實驗有 30 位受試者,結果表明,使用手指來分辨兩塊樣品,平均要兩塊的角度差超過 19.81 度時,才能分辨出差異。如果用舌頭舔呢?只要兩者的角度差超過 12.75 度,就能分辨出差異!比用手摸的角度差小了許多,也就是舌頭真的比較靈敏。

實驗結果數據,JND(Just Noticeable Difference)表受試者在樣品相差幾度時能感受到差異。圖/Comparison of The Tactile Sensitivity of Tongue and Fingertip Using a Pure-Tactile Task

當然,這個實驗還有兩個方向值得討論,一是這只針對物體邊緣形狀的靈敏作分析,但觸覺有許多不同感受,例如紋理、粗糙程度等,所以可能每種觸覺做出來的實驗結果會不同。這個實驗看起來不難做,各位可以準備一些能放入嘴的材料,例如請朋友直接將比較硬的芭樂切成不同形狀來舔舔看差別,就能簡單復刻這個實驗甚至更改參數,有實際測試的觀眾也不要忘記留言告訴我們。我們這邊也同步徵求花京院來協助我們實驗。

而另一點是,關於舌頭為什麼有跟手指同等,甚至更強觸覺的生理機制,本篇研究僅止於現象探討,還未有深入研究。

圖/Giphy

濕濕的石頭更好觀察?

除了味覺和觸覺外,舔石頭還有另一個重要的原因,就是濕潤的石頭紋理更清楚,更方便研究。

這應該大家都有經驗,在學校的大理石地板拖地,或是海邊的鵝卵石,沾到水之後,石頭的紋理都更加清楚,看起來也更漂亮。但這又是為什麼呢?

影響的原因有很多,但影響最大的,就是濕潤的表面讓石頭更「平」,產生類似拋光的效果。但為什麼磨平拋光,顏色就更好看呢?

我們知道光線照到鏡子會產生反射,但鏡子很平整,如果現在照射到的是一個凹凸不平的表面,光線就會往四處反射,這種現象稱為漫反射。當我們只想看石頭上的其中一點時,旁邊的光卻會雜亂的跑進我們的眼睛,影響到對比度。並且各種顏色的色光聚在一起會形成白光,因此這些漫反射而來的光線,就會以白光的形式被我們看到。白話文就是,物體的對比下降了,但是整體的亮度提高,變成我們常看到灰白色的石頭表面。

直到石頭被拋光,或是因為濕潤產生拋光的效果,這些漫反射就會減少,石頭整體變得比較暗沉,但是斑紋之間的對比度提高了。這就是為什麼粗糙的石頭顯得灰白,浸濕之後卻呈現深沉而圖樣明顯的原因。

還沒完,薄薄一層水還會造成更多影響。例如,這層折射率介於空氣與石頭之間的介質,可以幫助光線稍微穿透岩石的表層後再反射出來,提供視覺上更多的紋理細節。如果將水換成木工中常使用的亮光漆,除了反射與折射外,亮光漆中的分子,還足以讓光線產生散射,讓你在上不同厚度的亮光漆時,能產生不同的顏色變化。

簡單來說,不論是水還是漆,這薄薄的一層介質,能像相機的鏡片一樣,透過光學調校,將更清楚、細節更多的影像送進相機的感光元件,也就是我們的眼睛上。而替換不同的鏡片,就能改變我們看到的樣子。

有介質存在於空氣與觀測物間時,光會產生折射,造成不同視覺效果。圖/askamathematician.com

這個看似玩笑的舔石頭研究,確實好像又有幾分認真的道理,我們自己在研究的時候,最開始也覺得超ㄎㄧㄤ,後來又發現能學到不少冷知識。

最後也想調查一下,除了舔石頭以外,大家還對哪一則搞笑諾貝爾獎有興趣,希望我們也來講講呢?

  1. 帶電的筷子,能讓食物更好吃?
  2. 哪些人有倒著說話的特殊能力?
  3. 要多少人抬頭看天空,才會吸引路人跟著抬頭?

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

參考資料

PanSci_96
1209 篇文章 ・ 1915 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

1
1

文字

分享

0
1
1
室溫超導體:開啟未來世界的鑰匙?
Castaly Fan (范欽淨)_96
・2023/09/26 ・3942字 ・閱讀時間約 8 分鐘

2023 年 7 月 23 日,來自南韓的研究團隊發表了《The First Room-Temperature Ambient-Pressure Superconductor》,宣示著世界上第一個室溫常壓超導體被成功發明。文章剛刊登到 arXiv 上,便掀起了全球各地的研究熱潮,不少媒體競相報導,科技市場、各種概念股也沸騰著。那麼,「室溫超導體」究竟是何方神聖?

超導體——能源損耗的救星?

相信大家對於這個詞並不陌生、卻又不甚熟悉。在中學時代理化課,我們接觸過「導體」這個詞;在關注科技業或者財經新聞時,可能接觸過「半導體」這個詞。而「超導體」(superconductor)究竟是什麼?

首先,「超導」是一種物理性質,在距今大概一百多年前便被發現。最早可以追溯到 1911 年,科學家發現:將汞(水銀)透過液態氦冷卻至 4.2 K(相當於 -268.95 °C)時,電阻將完全消失,這便是「超導現象」的開端。因此,「低溫」似乎是開啟新世界的一把鑰匙。而電阻消失有什麼幫助?

事實上,我們生活周遭的一切都是在無窮的損耗中進行的,以電子產品和通訊設備為例,這些電路元件與器材的運作源於電流,亦即導線內部電子的游動,但這個傳輸過程是耗能的,因為電子會不斷與導線內壁的原子碰觸、摩擦,從而消耗到不少能量,同時也意味著導線壽命會隨時間衰減。電路損耗的能量與電阻成正比(P = I²R),如果電阻消失了,那意味著損耗的電熱能也將消失,這將大幅提升電子在線路中的傳輸效率,從電力傳輸、通訊、發電機,到交通工具、家用電器等層面,使用效能都將顯著提升。

到了 1933 年,物理學家發現:當物質低於臨界溫度變成超導體時,會具有「完全抗磁性」,也就是原本應該穿過物體本身的磁力線會巧妙地從旁「繞過」,這個現象被稱為「麥斯納效應」(Meissner effect)。這個效應帶來了超導體的「懸浮」性質,也就是在不用任何外力的接觸下,在足夠的低溫環境中、超導體便可以藉由抗磁性讓物體「懸浮」而起。我們知道,凡是有接觸便有摩擦力的產生,而摩擦力會損耗不少熱能,因此,如果可以不透過外力接觸而操控物體、就意味著沒有了摩擦力、也就可以不再擔心能量的損耗。

A diagram of a sphere and a line

Description automatically generated
麥斯納效應示意圖:當超導材料低於臨界溫度時(右),便可產生完全抗磁性。圖/Wikimedia

簡而言之,我們可以歸納「超導體」具有下列兩大特性:

  • 超導電性:在臨界溫度以下,電阻消失,意味著能量損耗可被降至最小值。
  • 完全抗磁性(麥斯納效應):在臨界溫度以下,磁力線被排斥於物體之外,意味著超導體可具有懸浮特性。

科幻電影中,那些飛快如光的磁浮列車、懸空而起的滑板、或者看似反重力的幽浮,這些都可以透過超導實現,因此,未來世界很可能充滿著各個類型的超導設備。即使在今日,相關的應用也已出現,比如日本便在數十年前研發出「超導磁浮列車」(SCMaglev),2015 年測試的最高時速即達到每小時 603 公里,刷新了地表上速度最快的列車紀錄。

室溫超導體——物理學的聖杯

然而,你或許也發現了,「超導體」並非唾手可得,至少需要「低溫」這個條件,又或者「高壓」 。

而低溫不僅僅是冰點這樣的溫度,而是接近「絕對零度」(0 K,即 -273.15 °C) 的「極低溫」,因此,開發出「高溫超導體」成為了物理學家的重要目標,而這裡的「高溫」並不是讓水煮沸、會讓你燙傷的溫度,而是指高於絕對溫標 77 K(-196.2 °C,即液態氮的沸點)的溫度。這個對人類來說已是難以想像的低溫、對超導體而言卻是相對的高溫。截至 2023 年,人類所開發出最高溫的超導體是一種名為 lanthanum decahydride(十氫化鑭,LaH₁₀)的化合物,其臨界溫度是 250 K(-23 °C),在 200 GPa(相當於接近兩百萬大氣壓)的環境下才得以實現超導特性。

A diagram of a molecule

Description automatically generated
目前已知被證實的高溫超導體——「十氫化鑭」的化學結構。圖/acs.org

由此可知,要開發出「高溫超導體」實屬不易,發明出「室溫」、「常壓」的超導體基本上更是難上加難。且液態氦、液態氮這些低溫材料都是需要一定的成本,再加上要定溫保存更是不易,因此,倘若室溫超導體能被成功發明,這意味著不僅能大幅降低成本、還能大幅提升運作效能。

LK-99——睽違已久的聖杯、或是泡影?

回到文章一開始的新聞:2023 年 7 月下旬,韓國科學技術研究院 (KIST)以李石培、金智勳為主的研究團隊宣稱他們開發的材料「LK-99」在「室溫」、「常壓」環境下具有超導特性。這次的實驗紀錄號稱:他們的 LK-99 材料具有室溫超導特性,且上限可以到達 400 K(127 °C)這名副其實的「高溫」,並且是在正常大氣壓力下完成的——這遠遠勝過上一個高溫超導體 250 K、200 GPa 的紀錄;不僅如此,這個「LK-99」製作過程超乎想像地簡易,基本上待在實驗室不用三天就可以完成!擁有這麼良好特性、且製作過程又特別上手的超導材料如果被證實,勢必掀起第四次工業革命。

A diagram of a molecule

Description automatically generated
LK-99 的晶體結構側視圖。圖/https://arxiv.org/pdf/2307.16040.pdf

讓我們先來看看這個團隊在論文中的研究內容:首先,這個「LK-99」是近似於 Pb₉Cu(PO₄)₆O 的化合物,從化學式來看,可以發現鉛(Pb)、銅(Cu)、磷(P)這些都是不難到手的化學元素。而製作過程基本上就是研磨、混合、加熱、密封、抽真空等步驟,來回大概三天以內、就能生成 Pb₉Cu(PO₄)₆O,也就是 LK-99。根據他們的論文所述,這個晶體結構的形變會在材料內部產生應力,從而在特定截面產生「超導量子阱」(superconducting quantum well,SQW),致使材料產生了超導特性。這一系列過程都在常溫、常壓下進行的,且LK-99的超導特性可以維持到攝氏 127 度的高溫。

簡單來說,這個 LK-99 的超導性質與溫度、壓力無關,而是肇因於晶體本身,特定的結構形變導致了物質產生超導現象。在他們發布的影片中,可以看見灰黑色的 LK-99「部分懸浮」在磁鐵上,這是他們用來佐證「完全抗磁性」(麥斯納效應) 的證據,之所以沒有完美地懸浮是因為晶體的雜質所導致;此外,他們也宣稱測量結果顯示零電阻率,也就是電阻完全消失的「超導電性」。當「零電阻率」、「完全抗磁性」這兩個條件充分具備後,LK-99 便可以被視為一個成功的室溫超導體。

A black piece of coal on a round metal container

Description automatically generated
影片中所顯示的 LK-99 具有部分懸浮的特性。圖/Wikimedia

在論文推出後,世界各地的學術機構與實驗室開始著手復現 LK-99 的製備過程、並競相發表研究成果,短短不到兩週時間,關於 LK-99 的復現實驗以及理論相關的研究已經有二十多項。然而,截至目前(2023 年 8 月 10 日)為止,尚未有成功復現、且通過同行審核被登上期刊的成果(論文發表在學術預印本網站 arXiv,一般需要通過同行審核才有機會被刊登在期刊)。實驗的成果不盡相同,有些證明了 LK-99 的懸浮與抗磁性、有些證明了零電阻率,但也有一些只有觀測到電阻的跳變、有些甚至沒有觀測到任何結果。

一個值得注意的部分是:即使韓國研究團隊的論文中宣稱他們觀測到 LK-99 的抗磁性,也有不少團隊復現 LK-99 的懸浮特性,然而,這並不能斷定它來自於「麥斯納效應」。事實上,不少磁性物質都會有「抗磁性」,這來自於微觀的分子磁矩;但超導體所具備的是由宏觀「超導電流」產生的「完全抗磁性」(注意:本文目前為止強調的都是「完全」抗磁性),甚至能因麥斯納效應產生的磁通量而「固定懸浮」在同一位置(即使將底座磁鐵 180 度反轉,它也應當平穩地懸浮在相同的角度——這背後是複雜的量子機制,而非磁場或靜力平衡的結果)。另一方面,即使一些實驗發現了該物質有「零電阻」的結果,但這並不全然等同於「零電阻率」,因為如果測量的尺寸過小、也是會有量測不出電阻的可能性。因此,目前大部分的研究指向大概是:LK-99 或許具有抗磁性,但並未被證實存在有明確的超導行為。

歷史借鏡與未來展望

事實上,物理學家對於室溫超導的聖杯之旅一直以來從未間斷。舉例而言,2020 年,美國羅徹斯特大學以迪亞斯(Ranga P. Dias)為首的團隊便號稱開發出了一種名為 carbonaceous sulfur hydride 的超導材料,利用鑽石生成,並在 288 K (15 °C)、267 GPa 的環境下具有超導特性,甚至登上《自然》期刊,但該論文在兩年後因為統計分析結果的瑕疵而被撤銷;2023 年初,該團隊再次宣稱開發出了以 lutetium hydride(氫化鑥)為主的超導材料,這次的結果更令人驚豔——在 294 K (23 °C)、1 GPa(約莫一萬大氣壓)下便具有超導特性。可惜的是,該論文後來也因為涉嫌抄襲與偽造數據而被撤下。

科學最重要的一個評判標準就是它必須是「可證偽的」(falsifiable),對於從事實驗的科研人員而言,一個發明是否能被確立最關鍵的要素便在於實驗「可復現」(repeatable) 與否。如果一個實驗無法被成功復現,便很難說服學界接受研究成果。目前看來,南韓團隊所研發的 LK-99 可能無法算是成功的室溫超導體,不過我們也無需氣餒;儘管 LK-99 的超導行為目前尚未被成功復現與證實,但多少也給人們開闢一條研究蹊徑。

人類對於室溫超導體的探索從未間斷,物理學家們也嘗試以各種材料進行研發、希冀能儘早將璀璨的遠景付諸現實。雖然人們所憧憬的那種像科幻片中先進且便捷的「未來世界」可能不會在明天就來臨,但以當前科學日新月異的發展步調來說,也許已是指日可待。

A train on a track

Description automatically generated
超導的應用早已陸續浮現在生活中,日本的超高速列車 SCMaglev 便用到了低溫超導的磁浮特性。圖/scmaglev.jr
Castaly Fan (范欽淨)_96
6 篇文章 ・ 2 位粉絲
科學研究者,1999年生於台北,目前於美國佛羅里達大學(University of Florida)攻讀物理學博士。2022年於美國羅格斯大學(Rutgers University)取得物理學學士學位,當前則致力於學術研究、以及科學知識的傳播發展。 同時也是網路作家、《隨筆天下》網誌創辦人,筆名辰風,業餘發表網誌文章,從事詩詞、小說、以及文學創作。