Loading [MathJax]/extensions/tex2jax.js

1

1
0

文字

分享

1
1
0

在被澳洲喜鵲猛烈攻擊前,跪求交友!

胡中行_96
・2022/07/25 ・3085字 ・閱讀時間約 6 分鐘

在臺灣被國寶級的藍鵲巴頭,是無上的榮耀;[1] 但在澳洲遭喜鵲攻擊,卻是送醫的前奏。[2] 每年 7 月到 11 月,[2] 澳洲喜鵲的季節性暴力行為,以及當地居民的壯烈犧牲,總是貢獻不少素材給國際新聞版面。[3, 4] 為確保筆者生命安全與本專欄的續存,以下整理了預防澳洲喜鵲襲擊的專業建議,順便跟將來有興趣赴澳旅遊、留學或打工度假的讀者分享。

  

正在對自行車騎士發動攻勢的澳洲喜鵲。圖/GPLama (Shane Miller)

  

澳洲喜鵲的攻擊行為

澳洲喜鵲(學名:Cracticus tibicen)是澳大利亞極為常見的鳥類[5] 平時待人親和,但一到繁殖季節,地域性就變得特別強烈。[6] 鳥巢附近方圓 100 到 150 公尺內的自行車騎士,是最頻繁的攻擊目標;[6] 其次為行人;再來則是跑者。 [7] 具侵略性的多為公鳥,且僅佔澳洲喜鵲總數的 9% ;[2] 然 而每年仍有數以千計的人受害,其中近 15% 受傷,[7] 包含少數被狠啄耳朵或眼睛[2] 2021 年澳洲全國有超過 5,300 例的相關通報案件。[7] 媒體報導有一名 5 個月大的女嬰,從倉皇躲避的母親手裡墜落,最後死於頭部重傷。[4, 8]

-----廣告,請繼續往下閱讀-----

研究顯示喜鵲認得超過 100 張人臉,一般傾向把陌生人當作威脅。值得注意的是, COVID-19 疫情期間,澳洲鳥盟(BirdLife Australia)的專家 Sean Dooley ,擔心有些封城地區的防疫政策,會造成更多人類受害。因為澳洲喜鵲若是認不得戴口罩的熟面孔,或許會展開一視同仁的無差別攻擊。[9]

  

新聞報導澳洲喜鵲攻擊兒童。來源:7NEWS Australia on YouTube

  

「喜鵲警報」民營通報系統

2013 年的時候,一名騎自行車被澳洲喜鵲攻擊的網站工程師,察覺沒有全國性的通報系統,可以舉發喜鵲的惡行,便自行架設一個供大眾使用。[7] 如今,他的「喜鵲警報」(Magpie Alert)網站,每年發佈統計數據,並成為博物館與媒體不時引用的資料來源。[4, 6, 7] 若比較該網站近年的圖表,某幾州的攻擊次數,在 COVID-19 疫情期間的確有成長的趨勢。[7] 然而,這到底是因為民眾戴口罩,或是網站愈來愈熱門,還是大家突然比較有時間上網通報,就不得而知了。

-----廣告,請繼續往下閱讀-----

  

進入澳洲喜鵲攻擊範圍的警告標誌。圖/Cfitzart on Wikipedia(CC BY-SA 3.0)

  

各種失敗的預防方法

澳洲有個非常厲害的單位,叫做「聯邦科學與工業研究組織」(Commonwealth Scientific and Industrial Research Organisation,簡稱CSIRO),曾研發出 WiFi 、塑膠鈔票,還有連英國女王都用過的 Aerogard 防蚊液。[10, 11] 2010 年的時候,某隻兇猛的澳洲喜鵲,搬到國立澳洲大學和 CSIRO 黑山園區之間的通道上。該喜鵲不顧先來後到,便鳩佔鵲巢,還唯恐別人侵門踏戶。牠居高臨下鳥瞰新居周圍的疆域,敏捷地驅逐任何過境者。讓 CSIRO 的科學家們逮到機會,進行了一個非正式的動物實驗。[12]

興高采烈的幾位 CSIRO 科學家們自告奮勇,以千奇百怪的造型騎著自行車,接近這隻澳洲喜鵲;一邊再由同事錄下整個過程,作為是否遭受攻擊的證據。他們測試的重點以戴或不戴自行車安全帽,還有應該增添何種安全帽配件為主,例如:在上面黏假眼睛、綁毛根(絨毛鐵絲)或束線帶、綑上兩台攝影機、裝上假喜鵲、蓋上誇張的假髮,甚至完整露出灰髮稀疏的禿頭,期望喜鵲寬待長輩等。[12]

-----廣告,請繼續往下閱讀-----

雖然上述裝扮大多不具實質效果,純粹把騎士搞得像隻花俏的驚弓之鳥,其中倒是有幾個嘗試略顯成功:一是整頭真髮,不戴安全帽;二是在騎乘途中脫帽,暴露禿頭;三則是在安全帽外包上非洲捲假髮,以致完全看不到帽子。[12] 總之,好像外表看起來沒有安全帽,反而能倖免於難;但要是假髮滑動影響騎士視線,或是倒楣發生車禍,頭部卻缺乏保護,那豈不是更加危險?

假如真的不幸碰上澳洲喜鵲攻擊,自行車騎士該做的就是下車,步行離開牠的勢力範圍,並用帽子、眼鏡和雨傘保護自己的頭部與眼睛。[2] 不過千萬也別跑得太快或是反擊,否則會導致情勢惡化。[6]

  

CSIRO 科學家被澳洲喜鵲驅逐的紀錄短片(上)。來源:gib395 on YouTube
CSIRO 科學家被澳洲喜鵲驅逐的紀錄短片(下)。來源:gib395 on YouTube

  

化敵為友

既然連國家級的智囊團介入都無效,難道人類就只能任憑澳洲喜鵲追著跑嗎?澳洲新英格蘭大學的動物行為學榮譽教授 Gisela Kaplan ,可不這麼覺得。根據 Kaplan 教授的說法, 80% 順利繁衍後代的澳洲喜鵲,住在人類社區[13] 牠們的平均壽命約在 25 到 30 歲之間[6, 13] 基於喜鵲擅長認人又有良好的記憶力,人類不妨近水樓台,化敵為友,跟牠們培養長期的親善關係。[13]

-----廣告,請繼續往下閱讀-----

友誼是雙向的。對人類來說,能保障人身安全,還有無須照顧的喜鵲陪玩,簡直比養寵物還划算。然而,牠們何必跟我們攀關係?針對這個問題, Kaplan 教授解釋,澳洲喜鵲有置產壓力,偏偏適合的育幼環境有限,造成嚴重的市場競爭。多數的喜鵲 5 歲以前,無法鞏固屬於自己的勢力範圍,而最終能成功繁衍後代的成鳥也僅佔 14% 。所以,與澳洲喜鵲交友的方法很簡單,完全沒有必要用食物利誘,光是當個人畜無害的鄰居,就別具吸引力。[13]

一旦澳洲喜鵲認證您是位和平的人類,牠們可能會正式把自家的孩子介紹給您認識,允許牠們在周遭玩耍。此外,還會就近觀察您的一舉一動,並積極模仿。比方說, Kaplan 教授的喜鵲朋友,就曾趁她不注意,偷敲鍵盤,再看看螢幕上出現什麼結果;或是當她在院子裡除草時,於一旁跟著堆土。[13] 人類與動物本來就不一定得相互敵對,如果哪天真遇上了澳洲喜鵲,不妨花點時間彼此瞭解,試著交個朋友吧!

  

一隻澳洲喜鵲攜家帶眷地,來跟這名澳洲女子做朋友。來源:The Dodo on YouTube

  

-----廣告,請繼續往下閱讀-----
  1. 台灣藍鵲護巢巴學生頭 文大教授拍下精彩一刻(中央通訊社,2021)
  2. Stay safe from swooping magpies (Queensland Government – Department of Environment and Science, 2021)
  3. 澳洲「恐怖之鳥」今年傷人特別多 疑與口罩有關[影](中央通訊社,2021)
  4. Baby dies in Australia after magpie swooping attack (CNN, 2021)
  5. Australian Magpie (BirdLife Australia, accessed in 2022)
  6. Why do Magpies swoop? (Australian Museum, 2021)
  7. Magpie Alert (Jon Clark, 2022)
  8. Parents of baby girl who died after magpie attack thank community for ‘overwhelming kindness’ (ABC News, 2021)
  9. Magpie-swooping season could be worse in Victoria this year as face masks confuse birds (The Guardian, 2020)
  10. We Are CSIRO (CSIRO, 2022)
  11. Aerogard (CSIROpedia, 2011)
  12. You make me wanna swoop: dispelling magpie myths (CSIROscope, 2015)
  13. Magpies can form friendships with people – here’s how (The Conversation, 2019)
-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
胡中行_96
169 篇文章 ・ 67 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

1

2
2

文字

分享

1
2
2
原住民祖先見過明亮的南方之星?傳說是真的,而且超過一萬年!
寒波_96
・2023/11/08 ・2777字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

有些故事代代相傳之下,經歷非常漫長的時光。過去很久以後,五百年、三千年或一萬年,都已經是「很久很久以前」,難以判斷到底多久。2023 年發表的一項研究認為,澳洲南方的塔斯馬尼亞島,有個故事似乎能追溯到超過一萬年前。

塔斯馬尼亞的祖傳故事

大英帝國的調查隊抵達塔斯馬尼亞初期,估計島上約六千到八千位居民;原住民們統稱為「palawa」,不過又能分成多個有所區別的族群。英國人在公元 1803 年建立第一個殖民地,然後,不意外地起爭議。

走訪塔斯馬尼亞各地,留下許多紀錄的英國人魯賓遜先生(George Augustus Robinson)。圖/參考資料3

走訪塔斯馬尼亞各地,留下許多紀錄的英國人魯賓遜先生(George Augustus Robinson)。圖/參考資料3

殖民者與原住民的衝突加劇後,1823 到 1832 年間導致約兩百位殖民者及九百位原住民身亡。有些英國人希望能和平解決問題,最終勸誘加上強迫,1829 到 1835 年間將島上的原住民,都成功遷移到位於塔斯馬尼亞和澳洲之間,巴斯海峽的弗林德斯島(Flinders)。

-----廣告,請繼續往下閱讀-----

英國人認為這是一次「友善」的轉移任務。以當時狀況而言,確實算是相對和平的收場,但是慘遭強制搬遷的原住民依然損失慘重,人口以外,他們脫離原本的家園「Lutruwita」,文化、語言幾乎喪失殆盡。

遷徙計畫中,英國人魯賓遜先生(George Augustus Robinson)可謂關鍵角色。他走訪塔斯馬尼亞各地,說服原住民搬家,也對當地風俗文化非常好奇,留下大量紀錄。

這些 1830 年代的紀錄,就像塔斯馬尼亞傳統文化的切片。後來有些原住民重返塔斯馬尼亞,試圖擺脫殖民時,英國殖民者當初搜集原汁原味的資料,也成為重建傳統的材料之一。

魯賓遜等人搜集的紀錄來自多位原住民的說法,其中一個故事相當費解,至少當年魯賓遜無法理解,新問世的論文總算揭開奧秘。

-----廣告,請繼續往下閱讀-----

情節湊不上,是因為發生在太久之前

祖先的遷徙故事,提到他們來自一片大陸;後來大陸被海水淹沒,當時岸邊附近有冰山漂浮。那時望向南方的天空,可以見到一顆很亮的星。

塔斯馬尼亞與澳洲之間的地形。兩地之間原本存在陸橋,海水上升後形成巴斯海峽。圖/參考資料1

塔斯馬尼亞原住民一代一代仰望星空,也建立一些自己的天文學知識,被魯賓遜忠實收錄。那顆南方大星星卻令人費解,因為星空中根本沒有符合描述的那顆星。最可能的對象是老人星(Canopus),也稱為船底座α(α Carinae)。

星空中最亮的是天狼星,第二就是老人星,顯然它非常顯眼,可是位置明顯有差。是原住民唬爛,還是魯賓遜唬爛,或是魯賓遜紀錄錯誤呢?新的分析指出,他們都是正確的,因為一萬兩千年前的星空,老人星確實處於故事中的那個位置。

-----廣告,請繼續往下閱讀-----

首先,故事提到祖先前來的道路被大海淹沒,冰山在岸邊漂浮。對照現代科學知識,能輕易推論這講的是冰河時期結束,海平面上升,淹沒澳洲與塔斯馬尼亞之間的陸橋,形成巴斯海峽,讓塔斯馬尼亞成為一個四面環海的島。

接著是星空為什麼不同?從地球表面仰望夜空,星星的分布位置會由於「歲差」緩慢改變。回溯調整成一萬多年前的星空,老人星的確就在那兒。

地表很多位置都能見到南方明亮的老人星,不同民族、文化各有自己的想像。台灣人即使沒有親眼注意過,也肯定知道老人星,因為這就是福祿壽中的「壽星」,形象化叫作南極仙翁。

有趣的是,中文名字叫老人星,英文名字 Canopus 則來自特洛伊戰爭傳說中的一位年輕人,他是航海家,後來不幸在埃及被毒蛇咬死……所以中國想像這顆星是老人,歐洲卻想像是年輕小夥。

-----廣告,請繼續往下閱讀-----

回溯塔斯馬尼亞 1831 年 8 月 1 日,凌晨 5 點時的星空。圖/參考資料1

難以理解的時候,先忠實紀錄

考慮到魯賓遜紀錄的日期是 1830 年代,更加深故事的真實感,因為當時英國人還不知道「冰河時期結束導致海面上升」。阿加西(Louis Agassiz)首度宣稱冰川歷史的想法要等到 1837 年,更多年後取得較多支持,十九世紀後期才廣為人知。

魯賓遜等歐洲人對聽到的故事內容難以理解,他們或許會聯想到聖經的大洪水,但是完全想像不到冰河時期。所以這些內容,大概更能免於印象或偏好影響,反映忠實的紀錄。

據此推敲,塔斯馬尼亞祖傳故事講的是:「大約 1.2 萬年前海水上升之際,明亮的老人星在那個位置」。如果推論正確,這便是傳承 1.2 萬年的口述歷史,堪稱全人類罕見的文化遺產。

-----廣告,請繼續往下閱讀-----

有人或許會好奇,一些研究認為早在四萬年前,已經有人穿過澳洲,抵達塔斯馬尼亞。可是島上原住民的祖先故事,卻是一萬多年前?

我想可能是因為,記憶對於愈久遠的事情常常會愈壓縮,把更早發生的事情疊加到比較近期,印象很深的事件中。或許原住民的祖先很早就過去,但是海水上升淹沒陸橋令人印象太過深刻,就變成故事的素材。

另一件啟示是,世界上不知道的事情太多了,當你不太理解聽到什麼的時候,不要試著腦補,就照聽到的忠實紀錄下來!

延伸閱讀

參考資料

  1. Hamacher, D., Nunn, P., Gantevoort, M., Taylor, R., Lehman, G., Law, K. H. A., & Miles, M. (2023). The archaeology of orality: Dating Tasmanian Aboriginal oral traditions to the Late Pleistocene. Journal of Archaeological Science, 105819.
  2. Rising seas and a great southern star: Aboriginal oral traditions stretch back more than 12,000 years
  3. GEORGE AUGUSTUS ROBINSON
  4. 老人星名字來源神話人物 Canopus 維基百科

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
所有討論 1
寒波_96
193 篇文章 ・ 1090 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。

2

11
5

文字

分享

2
11
5
小鳥為什麼不走路要用彈跳的?——《鴿子為什麼要邊走邊搖頭?》
晨星出版
・2023/10/25 ・1493字 ・閱讀時間約 3 分鐘

彈跳的鳥類

用雙腳移動時,只有鳥類會使用而人類不會用的動作,那就是彈跳。這種名為彈跳的運動既困難又麻煩,為什麼鳥要這樣子彈跳呢?其實到現在我們還無從得知。

如同前述,彈跳是兩腳幾乎同時一起跳的運動方式。我們常見的鳥,像是麻雀和日菲繡眼這種小鳥就是用彈跳的(圖一),而烏鴉在急的時候也會彈跳。

麻雀是兩腳並用一起跳,但也有兩腳稍微錯開來彈跳的物種。例如巨嘴鴉之類的鳥類身體會微微傾斜,左右腳些微錯開,用「噠噠、噠噠」這樣的節奏來彈跳。這兩種本質上的差異目前還不清楚,不如說彈跳跟跑步的差異也還不清楚,所以步行研究者目前也是束手無策。

圖一、麻雀的彈跳,左右腳微微錯開著地(照片 ③ 中偏差大約是 1/120 秒)

歐亞喜鵲這種鳥同時會彈跳也會跑步,但比較兩者的研究顯示,在跑步與彈跳中,腳的運動方式跟肌肉動作幾乎一樣。彈跳跟跑步一樣,是高速移動的方式,活用肌腱像是彈簧的功能來轉換動能跟彈性位能。然後,兩種的差別只有「雙腳交互動作」或是「幾乎一起動作」而已。

-----廣告,請繼續往下閱讀-----

彈跳和跑步除了腳動的時機以外沒有什麼不同,那為什麼只有一部分的鳥是用彈跳的呢?

這個問題,很遺憾現在的科學還沒有解開,現階段一致贊同的只有:一般認為會彈跳的鳥是相對小型的種類,以及常待樹上的種類。看了許多鳥以後,會發現確實小型的鳥很常彈跳。另外,喜歡待在樹上的鳥則是常用兩腳一起從一根樹枝跳到另一根樹枝上,所以在地上也同樣會用兩腳一起跳躍,這樣說來可能就會覺得可以理解。

但是在樹上彈跳,在地上也還是可以步行不是嗎?不這樣區分移動方式,應該是因為有什麼身體構造或生理學上的理由才對,但這問題至今仍然是謎。

-----廣告,請繼續往下閱讀-----
圖/giphy

另一方面,小型的鳥喜歡彈跳的理由,如果用「彈跳適合用來高速移動」,可以解釋一部分的疑問。比起小型鳥,大型鳥的步幅更大,一般步行速度也比較快。如果小型鳥想跟大型鳥用同樣速度移動的話,就需要走得很快。像是人類,也很常在路上看到小孩要小跑步拚命跟上大人的走路速度。跟那個狀況相同,小型鳥有使用相對身體尺寸的高速進行移動的必要性。

想像看看會啄食掉落在地面的種子的鴿子和麻雀,如果用同樣密度灑餌,鴿子只要數步就能抵達下一個餌也說不定,但小型的麻雀需要移動相對更遠的距離才能拿到餌(圖二)。這樣一來就需要比較急著移動,這麼解釋或許也很合理。

圖二、假設在距離鴿子兩個身體遠的地方放餌,對體型較小的麻雀來說,同距離就需要移動六個身體的長度,不移動更遠的距離就沒辦法拿到餌。

但是彈跳和跑步如果是同樣的運動,那為什麼不能用跑的呢?「小型鳥比較需要快速移動」這種說明,很遺憾地似乎不能完全解釋為什麼要選擇彈跳。

但這麼簡單的問題,21世紀的科學還無法解釋,真是令人驚訝。

-----廣告,請繼續往下閱讀-----

——本文摘自《鴿子為什麼要邊走邊搖頭?》,2023 年 8 月,晨星出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
所有討論 2